The braid index is not additive for the connected sum of 2-knots
HTML articles powered by AMS MathViewer
- by Seiichi Kamada, Shin Satoh and Manabu Takabayashi PDF
- Trans. Amer. Math. Soc. 358 (2006), 5425-5439 Request permission
Abstract:
Any $2$-dimensional knot $K$ can be presented in a braid form, and its braid index, $\operatorname {Braid}(K)$, is defined. For the connected sum $K_1\# K_2$ of $2$-knots $K_1$ and $K_2$, it is easily seen that $\operatorname {Braid}(K_1\# K_2)\leq \operatorname {B}(K_1) + \operatorname {B}(K_2) -1$ holds. Birman and Menasco proved that the braid index (minus one) is additive for the connected sum of $1$-dimensional knots; the equality holds for $1$-knots. We prove that the equality does not hold for $2$-knots unless $K_1$ or $K_2$ is a trivial $2$-knot. We also prove that the $2$-knot obtained from a granny knot by Artin’s spinning is of braid index $4$, and there are infinitely many $2$-knots of braid index $4$.References
- J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. USA 9 (1923), 93–95.
- E. Artin, Zur Isotopie Zwei-dimensionaler Flaächen im $R_4$, Abh. Math. Sem. Univ. Hamburg 4 (1925), 174–177.
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- Joan S. Birman and William W. Menasco, Studying links via closed braids. IV. Composite links and split links, Invent. Math. 102 (1990), no. 1, 115–139. MR 1069243, DOI 10.1007/BF01233423
- J. Scott Carter and Masahico Saito, Knotted surfaces, braid moves, and beyond, Knots and quantum gravity (Riverside, CA, 1993) Oxford Lecture Ser. Math. Appl., vol. 1, Oxford Univ. Press, New York, 1994, pp. 191–229. MR 1309921
- J. S. Carter and M. Saito, Knot diagrams and braid theories in dimension $4$, Real and complex singularities (São Carlos, 1994) Pitman Res. Notes Math. Ser., vol. 333, Longman, Harlow, 1995, pp. 112–147. MR 1478515
- J. Scott Carter and Masahico Saito, Braids and movies, J. Knot Theory Ramifications 5 (1996), no. 5, 589–608. MR 1414089, DOI 10.1142/S0218216596000345
- J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs, vol. 55, American Mathematical Society, Providence, RI, 1998. MR 1487374, DOI 10.1090/surv/055
- F. González-Acuña, A characterization of $2$-knot groups, Rev. Mat. Iberoamericana 10 (1994), no. 2, 221–228. MR 1286475, DOI 10.4171/RMI/151
- Seiichi Kamada, Surfaces in $\textbf {R}^4$ of braid index three are ribbon, J. Knot Theory Ramifications 1 (1992), no. 2, 137–160. MR 1164113, DOI 10.1142/S0218216592000082
- Seiichi Kamada, $2$-dimensional braids and chart descriptions, Topics in knot theory (Erzurum, 1992) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 399, Kluwer Acad. Publ., Dordrecht, 1993, pp. 277–287. MR 1257915
- Seiichi Kamada, A characterization of groups of closed orientable surfaces in $4$-space, Topology 33 (1994), no. 1, 113–122. MR 1259518, DOI 10.1016/0040-9383(94)90038-8
- Seiichi Kamada, Alexander’s and Markov’s theorems in dimension four, Bull. Amer. Math. Soc. (N.S.) 31 (1994), no. 1, 64–67. MR 1254074, DOI 10.1090/S0273-0979-1994-00505-1
- Seiichi Kamada, On braid monodromies of non-simple braided surfaces, Math. Proc. Cambridge Philos. Soc. 120 (1996), no. 2, 237–245. MR 1384466, DOI 10.1017/S030500410007482X
- S. Kamada, An observation of surface braids via chart description, J. Knot Theory Ramifications 5 (1996), no. 4, 517–529. MR 1406718, DOI 10.1142/S0218216596000308
- Seiichi Kamada, Standard forms of $3$-braid $2$-knots and their Alexander polynomials, Michigan Math. J. 45 (1998), no. 1, 189–205. MR 1617423, DOI 10.1307/mmj/1030132090
- Seiichi Kamada, Unknotting immersed surface-links and singular $2$-dimensional braids by $1$-handle surgeries, Osaka J. Math. 36 (1999), no. 1, 33–49. MR 1670738
- Seiichi Kamada, Arrangement of Markov moves for $2$-dimensional braids, Low-dimensional topology (Funchal, 1998) Contemp. Math., vol. 233, Amer. Math. Soc., Providence, RI, 1999, pp. 197–213. MR 1701684, DOI 10.1090/conm/233/03430
- Seiichi Kamada, Braid and knot theory in dimension four, Mathematical Surveys and Monographs, vol. 95, American Mathematical Society, Providence, RI, 2002. MR 1900979, DOI 10.1090/surv/095
- Akio Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996. Translated and revised from the 1990 Japanese original by the author. MR 1417494
- A. A. Markov, Über die freie Aquivalenz der geschlossner Zopfe, Rec. Soc. Math. Moscou 1 (1935), 73–78.
- B. G. Moishezon, Stable branch curves and braid monodromies, Algebraic geometry (Chicago, Ill., 1980) Lecture Notes in Math., vol. 862, Springer, Berlin-New York, 1981, pp. 107–192. MR 644819
- B. Moishezon and M. Teicher, Braid group technique in complex geometry. I. Line arrangements in $\textbf {C}\textrm {P}^2$, Braids (Santa Cruz, CA, 1986) Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, 1988, pp. 425–555. MR 975093, DOI 10.1090/conm/078/975093
- Fujitsugu Hosokawa and Akio Kawauchi, Proposals for unknotted surfaces in four-spaces, Osaka Math. J. 16 (1979), no. 1, 233–248. MR 527028
- Lee Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), no. 1, 1–37. MR 699004, DOI 10.1007/BF02564622
- Lee Rudolph, Some topologically locally-flat surfaces in the complex projective plane, Comment. Math. Helv. 59 (1984), no. 4, 592–599. MR 780078, DOI 10.1007/BF02566368
- Lee Rudolph, Special positions for surfaces bounded by closed braids, Rev. Mat. Iberoamericana 1 (1985), no. 3, 93–133. MR 836285, DOI 10.4171/RMI/16
- D. Roseman, The spun square knot is the spun granny knot, Bol. Soc. Mat. Mexicana (2) 20 (1975), no. 2, 49–55. MR 515725
- O. Ya. Viro, Lecture given at Osaka City University, September, 1990.
- E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495. MR 195085, DOI 10.1090/S0002-9947-1965-0195085-8
Additional Information
- Seiichi Kamada
- Affiliation: Department of Mathematics, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
- MR Author ID: 288529
- Email: kamada@math.sci.hiroshima-u.ac.jp
- Shin Satoh
- Affiliation: Department of Mathematics, Chiba University, Inage, Chiba, 263-8522, Japan
- Email: satoh@math.s.chiba-u.ac.jp
- Manabu Takabayashi
- Affiliation: Japan Tokushima Prefectural, Mental Health & Welfare Center, 3-80 Shinkura, Tokushima, 770-0855, Japan
- Email: manabu12@khaki.plala.or.jp
- Received by editor(s): July 15, 2003
- Received by editor(s) in revised form: October 1, 2004
- Published electronically: April 11, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 5425-5439
- MSC (2000): Primary 57Q45
- DOI: https://doi.org/10.1090/S0002-9947-06-03867-0
- MathSciNet review: 2238921