Fourier expansions of functions with bounded variation of several variables
HTML articles powered by AMS MathViewer
- by Leonardo Colzani PDF
- Trans. Amer. Math. Soc. 358 (2006), 5501-5521 Request permission
Abstract:
In the first part of the paper we establish the pointwise convergence as $t\rightarrow +\infty$ for convolution operators $\int _{\mathbb {R}^{d}}t^{d}K\left ( ty\right ) \varphi (x-y)dy$ under the assumptions that $\varphi (y)$ has integrable derivatives up to an order $\alpha$ and that $\left | K(y)\right | \leq c\left ( 1+\left | y\right | \right ) ^{-\beta }$ with $\alpha +\beta >d$. We also estimate the Hausdorff dimension of the set where divergence may occur. In particular, when the kernel is the Fourier transform of a bounded set in the plane, we recover a two-dimensional analog of the Dirichlet theorem on the convergence of Fourier series of functions with bounded variation. In the second part of the paper we prove an equiconvergence result between Fourier integrals on euclidean spaces and expansions in eigenfunctions of elliptic operators on manifolds, which allows us to transfer some of the results proved for Fourier integrals to eigenfunction expansions. Finally, we present some examples of different behaviors between Fourier integrals, Fourier series and spherical harmonic expansions.References
- Shavkat Alimov, On the eigenfunction expansion of a piecewise smooth function, J. Fourier Anal. Appl. 9 (2003), no. 1, 67–76. MR 1953073, DOI 10.1007/s00041-003-0005-1
- Arne Beurling, Ensembles exceptionnels, Acta Math. 72 (1940), 1–13 (French). MR 1370, DOI 10.1007/BF02546325
- Salomon Bochner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc. 40 (1936), no. 2, 175–207. MR 1501870, DOI 10.1090/S0002-9947-1936-1501870-1
- Luca Brandolini and Leonardo Colzani, Localization and convergence of eigenfunction expansions, J. Fourier Anal. Appl. 5 (1999), no. 5, 431–447. MR 1755098, DOI 10.1007/BF01261637
- Luca Brandolini and Leonardo Colzani, Decay of Fourier transforms and summability of eigenfunction expansions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 3, 611–638. MR 1817712
- L. Brandolini, L. Colzani, A. Iosevich, and G. Travaglini, The rate of convergence of Fourier expansions in the plane: a geometric viewpoint, Math. Z. 242 (2002), no. 4, 709–724. MR 1981194, DOI 10.1007/s002090100375
- Anthony Carbery and Fernando Soria, Almost-everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an $L^2$-localisation principle, Rev. Mat. Iberoamericana 4 (1988), no. 2, 319–337. MR 1028744, DOI 10.4171/RMI/76
- Leonardo Colzani and Marco Vignati, The Gibbs phenomenon for multiple Fourier integrals, J. Approx. Theory 80 (1995), no. 1, 119–131. MR 1308597, DOI 10.1006/jath.1995.1007
- L. De Michele and D. Roux, Approximate units and Gibbs phenomenon, Boll. Un. Mat. Ital. A (7) 11 (1997), no. 3, 739–746 (English, with Italian summary). MR 1489045
- L. De Michele and D. Roux, The Gibbs phenomenon for $L^1_\textrm {loc}$ kernels, J. Approx. Theory 100 (1999), no. 1, 144–156. MR 1710557, DOI 10.1006/jath.1998.3326
- Alfred Gray and Mark A. Pinsky, Gibbs’ phenomenon for Fourier-Bessel series, Exposition. Math. 11 (1993), no. 2, 123–135. MR 1214664
- Herbert Federer, On spherical summation of the Fourier transform of a distribution whose partial derivatives are representable by integration, Ann. of Math. (2) 91 (1970), 136–143. MR 410251, DOI 10.2307/1970603
- E. Hlawka, Über Integrale auf convexen Körpen, I, II, Monatshefte Mathematik 54 (1950), 1-36, 81-99.
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- V. A. Il′in, Theorem on the possibility of expansion of a piecewise smooth function according to eigenfunctions of an arbitrary two-dimensional region, Dokl. Akad. Nauk SSSR (N.S.) 109 (1956), 442–445 (Russian). MR 0087020
- Jean-Pierre Kahane, Le phénomène de Pinsky et la géométrie des surfaces, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 8, 1027–1029 (French, with English and French summaries). MR 1360566
- Emmanuel Montini, On the capacity of sets of divergence associated with the spherical partial integral operator, Trans. Amer. Math. Soc. 355 (2003), no. 4, 1415–1441. MR 1946398, DOI 10.1090/S0002-9947-02-03144-6
- Christopher Meaney, On almost-everywhere convergent eigenfunction expansions of the Laplace-Beltrami operator, Math. Proc. Cambridge Philos. Soc. 92 (1982), no. 1, 129–131. MR 662968, DOI 10.1017/S0305004100059788
- Mark A. Pinsky, Pointwise Fourier inversion and related eigenfunction expansions, Comm. Pure Appl. Math. 47 (1994), no. 5, 653–681. MR 1278348, DOI 10.1002/cpa.3160470504
- Mark A. Pinsky, Fourier inversion in the piecewise smooth category, Fourier analysis (Orono, ME, 1992) Lecture Notes in Pure and Appl. Math., vol. 157, Dekker, New York, 1994, pp. 401–411. MR 1277831
- Mark A. Pinsky and Michael E. Taylor, Pointwise Fourier inversion: a wave equation approach, J. Fourier Anal. Appl. 3 (1997), no. 6, 647–703. MR 1481629, DOI 10.1007/BF02648262
- R. Salem and A. Zygmund, Capacity of sets and Fourier series, Trans. Amer. Math. Soc. 59 (1946), 23–41. MR 15537, DOI 10.1090/S0002-9947-1946-0015537-9
- Michael Taylor, Pointwise Fourier inversion on tori and other compact manifolds, J. Fourier Anal. Appl. 5 (1999), no. 5, 449–463. MR 1755099, DOI 10.1007/BF01261638
- Michael Taylor, The Dirichlet-Jordan test and multidimensional extensions, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1031–1035. MR 1709767, DOI 10.1090/S0002-9939-00-05658-6
- Michael E. Taylor, The Gibbs phenomenon, the Pinsky phenomenon, and variants for eigenfunction expansions, Comm. Partial Differential Equations 27 (2002), no. 3-4, 565–605. MR 1900555, DOI 10.1081/PDE-120002866
- Grant V. Welland, Riesz-Bochner summability of Fourier integrals and Fourier series, Studia Math. 44 (1972), 229–238. MR 313714, DOI 10.4064/sm-44-3-229-238
- A. Zygmund, Trigonometric series. Vol. I, II, Cambridge University Press, Cambridge-New York-Melbourne, 1977. Reprinting of the 1968 version of the second edition with Volumes I and II bound together. MR 0617944
Additional Information
- Leonardo Colzani
- Affiliation: Dipartimento di Matematica, Università di Milano–Bicocca, Edificio U5, via R.Cozzi 53, 20125 Milano, Italia
- MR Author ID: 50785
- Email: leonardo@matapp.unimib.it
- Received by editor(s): April 26, 2004
- Received by editor(s) in revised form: November 16, 2004
- Published electronically: July 20, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 5501-5521
- MSC (2000): Primary 42B08, 43A50
- DOI: https://doi.org/10.1090/S0002-9947-06-03910-9
- MathSciNet review: 2238924