## Boundary relations and their Weyl families

HTML articles powered by AMS MathViewer

- by Vladimir Derkach, Seppo Hassi, Mark Malamud and Henk de Snoo PDF
- Trans. Amer. Math. Soc.
**358**(2006), 5351-5400 Request permission

## Abstract:

The concepts of boundary relations and the corresponding Weyl families are introduced. Let $S$ be a closed symmetric linear operator or, more generally, a closed symmetric relation in a Hilbert space $\mathfrak {H}$, let $\mathcal {H}$ be an auxiliary Hilbert space, let \[ J_\mathfrak {H}=\begin {pmatrix}0&-iI_\mathfrak {H} iI_\mathfrak {H} & 0\end {pmatrix}, \] and let $J_\mathcal {H}$ be defined analogously. A unitary relation $\Gamma$ from the Kreĭn space $(\mathfrak {H}^2,J_\mathfrak {H})$ to the Kreĭn space $(\mathcal {H}^2,J_\mathcal {H})$ is called a*boundary relation*for the adjoint $S^*$ if $\ker \Gamma =S$. The corresponding

*Weyl family*$M(\lambda )$ is defined as the family of images of the defect subspaces $\widehat {\mathfrak {N}}_\lambda$, $\lambda \in \mathbb {C}\setminus \mathbb {R}$, under $\Gamma$. Here $\Gamma$ need not be surjective and is even allowed to be multi-valued. While this leads to fruitful connections between certain classes of holomorphic families of linear relations on the complex Hilbert space $\mathcal {H}$ and the class of unitary relations $\Gamma :(\mathfrak {H}^2,J_\mathfrak {H})\to (\mathcal {H}^2,J_\mathcal {H})$, it also generalizes the notion of so-called boundary value space and essentially extends the applicability of abstract boundary mappings in the connection of boundary value problems. Moreover, these new notions yield, for instance, the following realization theorem: every $\mathcal {H}$-valued maximal dissipative (for $\lambda \in \mathbb {C}_+$) holomorphic family of linear relations is the Weyl family of a boundary relation, which is unique up to unitary equivalence if certain minimality conditions are satisfied. Further connections between analytic and spectral theoretical properties of Weyl families and geometric properties of boundary relations are investigated, and some applications are given.

## References

- N. I. Akhiezer and I. M. Glazman,
*Theory of linear operators in Hilbert space. Vol. I*, Monographs and Studies in Mathematics, vol. 9, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981. Translated from the third Russian edition by E. R. Dawson; Translation edited by W. N. Everitt. MR**615736** - Richard Arens,
*Operational calculus of linear relations*, Pacific J. Math.**11**(1961), 9–23. MR**123188** - T. Ya. Azizov and I. S. Iokhvidov,
*Linear operators in spaces with an indefinite metric*, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1989. Translated from the Russian by E. R. Dawson; A Wiley-Interscience Publication. MR**1033489** - J. Behrndt and P. Jonas, “Boundary value problems with local generalized Nevanlinna functions in the boundary condition", Integral Equations Operator Theory, to appear (Preprint 01-2004, Institute of Mathematics, Technische Universität Berlin, 2004).
- Ch. Bennewitz,
*Symmetric relations on a Hilbert space*, Conference on the Theory of Ordinary and Partial Differential Equations (Univ. Dundee, Dundee, 1972) Lecture Notes in Math., Vol. 280, Springer, Berlin, 1972, pp. 212–218. MR**0415380** - Louis de Branges,
*Some Hilbert spaces of entire functions. IV*, Trans. Amer. Math. Soc.**105**(1962), 43–83. MR**143016**, DOI 10.1090/S0002-9947-1962-0143016-6 - M. S. Brodskiĭ,
*Treugol′nye, i zhordanovy predstavleniya lineĭ nykh operatorov*, Izdat. “Nauka”, Moscow, 1969 (Russian). MR**0259648** - Ĭ. Bryuning and V. A. Geĭler,
*Geometric scattering on compact Riemannian manifolds*, Dokl. Akad. Nauk**389**(2003), no. 3, 310–313 (Russian). MR**2003683** - Jochen Brüning, Vladimir Geyler, and Konstantin Pankrashkin,
*On-diagonal singularities of the Green functions for Schrödinger operators*, J. Math. Phys.**46**(2005), no. 11, 113508, 16. MR**2186783**, DOI 10.1063/1.2113087 - Earl A. Coddington,
*Extension theory of formally normal and symmetric subspaces*, Memoirs of the American Mathematical Society, No. 134, American Mathematical Society, Providence, R.I., 1973. MR**0477855** - V.A. Derkach, S. Hassi, M.M. Malamud, and H.S.V. de Snoo, “Generalized resolvents of symmetric operators and admissibility”, Reports of the Department of Mathematics, University of Helsinki, Preprint 252 (2000), 51 pp.
- V. A. Derkach, S. Hassi, M. M. Malamud, and H. S. V. de Snoo,
*Generalized resolvents of symmetric operators and admissibility*, Methods Funct. Anal. Topology**6**(2000), no. 3, 24–55. MR**1903120** - V. A. Derkach, M. M. Malamud, Kh. de Snoo, and S. Khassi,
*Boundary relations and Weyl families*, Dokl. Akad. Nauk**399**(2004), no. 2, 151–156 (Russian). MR**2125963** - V. A. Derkach and M. M. Malamud,
*On the Weyl function and Hermite operators with lacunae*, Dokl. Akad. Nauk SSSR**293**(1987), no. 5, 1041–1046 (Russian). MR**890193** - V. A. Derkach and M. M. Malamud,
*Generalized resolvents and the boundary value problems for Hermitian operators with gaps*, J. Funct. Anal.**95**(1991), no. 1, 1–95. MR**1087947**, DOI 10.1016/0022-1236(91)90024-Y - V. A. Derkach and M. M. Malamud,
*The extension theory of Hermitian operators and the moment problem*, J. Math. Sci.**73**(1995), no. 2, 141–242. Analysis. 3. MR**1318517**, DOI 10.1007/BF02367240 - A. Dijksma and H. S. V. de Snoo,
*Self-adjoint extensions of symmetric subspaces*, Pacific J. Math.**54**(1974), 71–100. MR**361889** - William F. Donoghue Jr.,
*Monotone matrix functions and analytic continuation*, Die Grundlehren der mathematischen Wissenschaften, Band 207, Springer-Verlag, New York-Heidelberg, 1974. MR**0486556** - Fritz Gesztesy, Nigel J. Kalton, Konstantin A. Makarov, and Eduard Tsekanovskii,
*Some applications of operator-valued Herglotz functions*, Operator theory, system theory and related topics (Beer-Sheva/Rehovot, 1997) Oper. Theory Adv. Appl., vol. 123, Birkhäuser, Basel, 2001, pp. 271–321. MR**1821917** - V. I. Gorbachuk and M. L. Gorbachuk,
*Boundary value problems for operator differential equations*, Mathematics and its Applications (Soviet Series), vol. 48, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated and revised from the 1984 Russian original. MR**1154792**, DOI 10.1007/978-94-011-3714-0 - F. Atkinson,
*Diskretnye i nepreryvnye granichnye zadachi*, Izdat. “Mir”, Moscow, 1968 (Russian). Translated from the English by I. S. Iohvidov and G. A. Karal′nik; Edited and supplemented by I. S. Kac and M. G. Kreĭn. MR**0243149** - Tosio Kato,
*Perturbation theory for linear operators*, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR**0203473** - M. A. Krasnosel′skiĭ,
*On self-adjoint extensions of Hermitian operators*, Ukrain. Mat. Žurnal**1**(1949), no. 1, 21–38 (Russian). MR**0047924** - M. G. Kreĭn and G. K. Langer,
*The defect subspaces and generalized resolvents of a Hermitian operator in the space $\Pi _{\kappa }$*, Funkcional. Anal. i Priložen**5**(1971), no. 2, 59–71 (Russian). MR**0282238** - M. G. Kreĭn and H. Langer,
*Über die $Q$-Funktion eines $\pi$-hermiteschen Operators im Raume $\Pi _{\kappa }$*, Acta Sci. Math. (Szeged)**34**(1973), 191–230 (German). MR**318958** - H. Langer and B. Textorius,
*On generalized resolvents and $Q$-functions of symmetric linear relations (subspaces) in Hilbert space*, Pacific J. Math.**72**(1977), no. 1, 135–165. MR**463964** - Matthias Lesch and Mark Malamud,
*On the deficiency indices and self-adjointness of symmetric Hamiltonian systems*, J. Differential Equations**189**(2003), no. 2, 556–615. MR**1964480**, DOI 10.1016/S0022-0396(02)00099-2 - M. M. Malamud,
*On a formula for the generalized resolvents of a non-densely defined Hermitian operator*, Ukraïn. Mat. Zh.**44**(1992), no. 12, 1658–1688 (Russian, with Russian and Ukrainian summaries); English transl., Ukrainian Math. J.**44**(1992), no. 12, 1522–1547 (1993). MR**1215039**, DOI 10.1007/BF01061278 - M. M. Malamud and S. M. Malamud,
*Spectral theory of operator measures in a Hilbert space*, Algebra i Analiz**15**(2003), no. 3, 1–77 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**15**(2004), no. 3, 323–373. MR**2052164**, DOI 10.1090/S1061-0022-04-00812-X - M. A. Neumark,
*On spectral functions of a symmetric operator*, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR]**7**(1943), 285–296 (Russian, with English summary). MR**0010790** - B.C. Orcutt,
*Canonical differential equations*, Doctoral dissertation, University of Virginia, 1969. - R. S. Phillips,
*Dissipative operators and hyperbolic systems of partial differential equations*, Trans. Amer. Math. Soc.**90**(1959), 193–254. MR**104919**, DOI 10.1090/S0002-9947-1959-0104919-1 - R. S. Phillips,
*The extension of dual subspaces invariant under an algebra*, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 366–398. MR**0133686** - Ju. L. Šmul′jan,
*Theory of linear relations, and spaces with indefinite metric*, Funkcional. Anal. i Priložen.**10**(1976), no. 1, 67–72 (Russian). MR**0405165** - I. M. Spitkovskiĭ,
*The reconstruction of a unitary operator from two of its diagonal blocks*, Mat. Issled.**8**(1973), no. 4(30), 187–193, 199 (Russian). MR**0350505** - B. Sekefal′vi-Nad′ and Č. Fojaš,
*Garmonicheskiĭ analiz operatorov v gil′bertovom prostranstve*, Izdat. “Mir”, Moscow, 1970 (Russian). Translated from the French by Jr. L. Šmul′jan; Edited by Ju. P. Ginzburg; With a foreword by M. G. Kreĭn. MR**0275191** - A. V. Štraus,
*Characteristic functions of linear operators*, Izv. Akad. Nauk SSSR Ser. Mat.**24**(1960), 43–74 (Russian). MR**0140950** - A. V. Štraus,
*Self-adjoint operators in an orthogonal sum of Hilbert spaces*, Dokl. Akad. Nauk SSSR**144**(1962), 512–515 (Russian). MR**0136994** - E. C. Titchmarsh,
*Eigenfunction expansions associated with second-order differential equations. Part I*, 2nd ed., Clarendon Press, Oxford, 1962. MR**0176151** - Hermann Weyl,
*Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen*, Math. Ann.**68**(1910), no. 2, 220–269 (German). MR**1511560**, DOI 10.1007/BF01474161

## Additional Information

**Vladimir Derkach**- Affiliation: Department of Mathematics, Donetsk National University, Universitetskaya str. 24, 83055 Donetsk, Ukraine
- Email: derkach@univ.donetsk.ua
**Seppo Hassi**- Affiliation: Department of Mathematics and Statistics, University of Vaasa, P.O. Box 700, 65101 Vaasa, Finland
- Email: sha@uwasa.fi
**Mark Malamud**- Affiliation: Department of Mathematics, Donetsk National University, Universitetskaya str. 24, 83055 Donetsk, Ukraine
- MR Author ID: 193515
- Email: mmm@univ.donetsk.ua
**Henk de Snoo**- Affiliation: Department of Mathematics and Computing Science, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
- Email: desnoo@math.rug.nl
- Received by editor(s): September 15, 2004
- Published electronically: July 20, 2006
- Additional Notes: The present research was supported by the Research Institute for Technology at the University of Vaasa and by the Academy of Finland (projects 203226, 208055)
- © Copyright 2006 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**358**(2006), 5351-5400 - MSC (2000): Primary 47A06, 47A20, 47A56, 47B25; Secondary 47A48, 47B50
- DOI: https://doi.org/10.1090/S0002-9947-06-04033-5
- MathSciNet review: 2238919