CORRIGENDUM TO “WEST’S PROBLEM ON EQUIVARIANT HYPERSONES AND BANACH-MAZUR COMPACTA”

SERGEY ANTONYAN

In our article [1], on p. 3389, the definition of the weak topology of the G-nerve $\mathcal{N}(U)$ contains a gap. Namely, it is claimed there that the topology on $\mathcal{N}(U)$ induced from \mathcal{J} is the weak one, which is false. The author apologizes for this mistake.

Nevertheless, in the proofs of Lemmas 4.2, 4.4 and 5.2, where the topology of $\mathcal{N}(U)$ is essential, in fact the right weak topology of $\mathcal{N}(U)$ was applied. Thus, all of the proofs given in [1] are correct and complete.

Using the notation and references adopted in [1], the above-mentioned gap in the definition of the topology of the G-nerve $\mathcal{N}(U)$ may be filled by replacing the text on p. 3389 starting in line 26 and ending in line 35, by the following.

“For every simplex $L = (\mu_0, \ldots, \mu_n) \subset \tilde{\mathcal{N}}(U)$, set

$$\Delta(L) = \bigcup \{ \Delta(S, F_S) | S \text{ is a subsimplex of } L \}.$$

Clearly, $\Delta(L)$ is an invariant subset of the finite join $G/H_{\mu_0} \ast \cdots \ast G/H_{\mu_n}$. We always will consider the induced topology and G-action on $\Delta(L)$. Observe that, if N is a subsimplex of L, then $\Delta(N)$ is a closed invariant subset of $\Delta(L)$. Indeed, let $\xi : G/H_{\mu_0} \ast \cdots \ast G/H_{\mu_n} \to L$ be the continuous map sending the point $\sum_{i=0}^n t_{\mu_i} g_{\mu_i} H_{\mu_i} \in G/H_{\mu_0} \ast \cdots \ast G/H_{\mu_n}$ to the point $\sum_{i=0}^n t_{\mu_i} \mu_i \in L$. Since $P_{LN} : \prod_{\mu \in L} G/H_{H_\mu} \to \prod_{\mu \in N} G/H_{H_\mu}$ is the Cartesian projection, we see that the preimage $\xi^{-1}(N)$ is just $\Delta(N)$. Since N is closed in L, this yields that $\Delta(N)$ is closed in $\Delta(L)$, as required. Invariance of $\Delta(N)$ is evident.

It is clear that, if $K \subset \tilde{\mathcal{N}}(U)$ is yet another simplex, then $\Delta(L) \cap \Delta(K) = \Delta(L \cap K)$. Consequently, $\Delta(L) \cap \Delta(K)$ is closed in both $\Delta(L)$ and $\Delta(K)$.

Consider the following invariant subset of \mathcal{J}:

$$\mathcal{N}(U) = \bigcup \{ \Delta(L) | L \in \tilde{\mathcal{N}}(U) \}.$$

We consider the weak topology on $\mathcal{N}(U)$ determined by the family

$$\{ \Delta(L) | L \in \tilde{\mathcal{N}}(U) \}.$$

Namely, a set $U \subset \mathcal{N}(U)$ is, by definition, open in $\mathcal{N}(U)$ if and only if $U \cap \Delta(L)$ is open in $\Delta(L)$ for every simplex $L \subset \tilde{\mathcal{N}}(U)$.

Received by the editors October 13, 2004 and, in revised form, November 1, 2005.

2000 Mathematics Subject Classification. Primary 57N20, 57S10, 54B20, 54C55, 55P91, 46B99.

Key words and phrases. G-nerve, weak topology.

©2006 American Mathematical Society
The G-action on $\mathcal{N}(U)$, defined by the following formula, makes $\mathcal{N}(U)$ a G-space, called the G-nerve of U:

$$g \ast \left(\sum_{\mu \in M} t_\mu g_\mu' H_\mu \right) = \sum_{\mu \in M} t_\mu g g_\mu H_\mu, \quad g \in G.$$

Since the intersection $\Delta(L) \cap \Delta(K)$ is closed in both $\Delta(L)$ and $\Delta(K)$, we see that each space $\Delta(L)$ retains its original topology and is a closed invariant subset of $\mathcal{N}(U)$ (see, e.g., [2] Ch. VI, §8). We call $\Delta(L)$ a G-n-simplex over the n-simplex L.

In the proofs of Lemmas 4.4 and 5.2 the following well-known and easily proved property of the weak topology is used: a map $f: \mathcal{N}(U) \to Z$ is continuous if and only if each restriction $f|_{\Delta(L)}$ is continuous."

As is defined on page 3389, lines 9–10, the elements of a G-normal cover U are tubular slice-sets gS_μ with companion groups H_μ. However, in order to emphasize the role of H_μ, we have used the denotation (gS_μ, H_μ) instead of gS_μ, which in some occasions may cause confusion. Thus, in Lemmas 4.1, 4.2 and 5.2 the denotation $U = \{ (gS_\mu, H_\mu) | g \in G, \mu \in M \}$ should be replaced by $U = \{ gS_\mu | g \in G, \mu \in M \}$, where S_μ is an H_μ-slice.

For the proof of Lemma 5.2 it is important to formulate Lemma 4.1 in the following more precise form.

Lemma 4.1. Let X be a paracompact G-space and V an open cover of X. Then X admits a G-normal cover $U = \{ gS_\lambda | g \in G, \lambda \in \Lambda \}$ with the companion groups $\{ H_\lambda \}_{\lambda \in \Lambda}$ such that each H_λ is the stabilizer of a point $x_\lambda \in S_\lambda$ and U is a star-refinement of V.

In Lemma 5.2 under the term “ε-cover” we mean the family of all open balls in $L_0(n)$ which have radius ε.

In the formulation and in the proof of Lemma 5.2, always $G = O(n)$.

Also, one should correct the following misprints:

1. page 3389, line 14: “$O \in U_1$” should be “$O \in U_1$”.
2. page 3389, line 20: “of U” should be “of U”.
3. page 3390, line 27: “(gS_λ, G_x)” should be “gS_λ”.
4. page 3390, line 30: “an open G-normal cover” should be “a G-normal cover”.
5. page 3391, line 28: “$\Delta(L, F_\mu)$” should be “$\Delta(L)$”.
6. page 3392, line 2: “$R(x) \in F_{3n-1}(s^1)$” should be “$R(x) \in F_{3n-1}(s^1)$”, where s^1 is the 1-dimensional skeleton of s”.
7. page 3392, line 7: “$\Delta(L, F_\mu)$” should be “$\Delta(L)$”.
8. page 3392, line 13: “$F_{3n-1}(s^1)$” should be “$F_{3n-1}(s^1)$”.
9. page 3394, line 30: “$q'(g_1A_\mu) = q'(g_1A_\lambda)$” should be “$q'(g_1H_\mu) = q'(g_1H_\lambda)$”.
10. page 3394, line 36: “of g_0A_λ” should be “of g_0A_λ g_1A_μ”.
11. page 3394, line 41: “of g_1A_μ” should be “of g_0A_λ g_1A_μ”.
12. page 3398, line 22: “domain. Since” should be “domain V. Since”.
References

Department of Mathematics, Faculty of Sciences, Universidad Nacional Autónoma de México, Mexico D.F. 04510, Mexico

E-mail address: antonyan@servidor.unam.mx