Bumpy metrics and closed parametrized minimal surfaces in Riemannian manifolds
HTML articles powered by AMS MathViewer
- by John Douglas Moore PDF
- Trans. Amer. Math. Soc. 358 (2006), 5193-5256 Request permission
Erratum: Trans. Amer. Math. Soc. 359 (2007), 5117-5123.
Abstract:
The purpose of this article is to study conformal harmonic maps $f:\Sigma \rightarrow M$, where $\Sigma$ is a closed Riemann surface and $M$ is a compact Riemannian manifold of dimension at least four. Such maps define parametrized minimal surfaces, possibly with branch points. We show that when the ambient manifold $M$ is given a generic metric, all prime closed parametrized minimal surfaces are free of branch points, and are as Morse nondegenerate as allowed by the group of automorphisms of $\Sigma$. They are Morse nondegenerate in the usual sense if $\Sigma$ has genus at least two, lie on two-dimensional nondegenerate critical submanifolds if $\Sigma$ has genus one, and on six-dimensional nondegenerate critical submanifolds if $\Sigma$ has genus zero.References
- William Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics, vol. 820, Springer, Berlin, 1980. MR 590044
- R. Abraham, Lectures of Smale on differential topology, Lecture notes from Columbia University, 1963.
- R. Abraham, Bumpy metrics, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 1–3. MR 0271994
- R. Abraham, J. Marsden and T. Ratiu, Manifolds, tensor analysis, and applications, Second Edition, Addison-Wesley, 1988.
- Ralph Abraham and Joel Robbin, Transversal mappings and flows, W. A. Benjamin, Inc., New York-Amsterdam, 1967. An appendix by Al Kelley. MR 0240836
- N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235–249. MR 92067
- Lipman Bers, Finite-dimensional Teichmüller spaces and generalizations, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 131–172. MR 621883, DOI 10.1090/S0273-0979-1981-14933-8
- R. Böhme and A. J. Tromba, The index theorem for classical minimal surfaces, Ann. of Math. (2) 113 (1981), no. 3, 447–499. MR 621012, DOI 10.2307/2006993
- R. Böhme and A. Tromba, The index theorem for minimal surfaces of higher genus, Memoirs of the Amer. Math. Soc. 560 (1995).
- Raoul Bott, Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 331–358. MR 663786, DOI 10.1090/S0273-0979-1982-15038-8
- Shiu Yuen Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), no. 1, 43–55. MR 397805, DOI 10.1007/BF02568142
- Clifford J. Earle and James Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19–43. MR 276999
- James Eells Jr., A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966), 751–807. MR 203742, DOI 10.1090/S0002-9904-1966-11558-6
- Arthur E. Fischer and Anthony J. Tromba, On a purely “Riemannian” proof of the structure and dimension of the unramified moduli space of a compact Riemann surface, Math. Ann. 267 (1984), no. 3, 311–345. MR 738256, DOI 10.1007/BF01456093
- Daniel S. Freed and Karen K. Uhlenbeck, Instantons and four-manifolds, 2nd ed., Mathematical Sciences Research Institute Publications, vol. 1, Springer-Verlag, New York, 1991. MR 1081321, DOI 10.1007/978-1-4613-9703-8
- Michael Freedman, Joel Hass, and Peter Scott, Least area incompressible surfaces in $3$-manifolds, Invent. Math. 71 (1983), no. 3, 609–642. MR 695910, DOI 10.1007/BF02095997
- R. D. Gulliver II, R. Osserman, and H. L. Royden, A theory of branched immersions of surfaces, Amer. J. Math. 95 (1973), 750–812. MR 362153, DOI 10.2307/2373697
- R. C. Gunning, Lectures on Riemann surfaces, Princeton Mathematical Notes, Princeton University Press, Princeton, N.J., 1966. MR 0207977
- N. Hingston, Equivariant Morse theory and closed geodesics, J. Differential Geom. 19 (1984), no. 1, 85–116. MR 739783
- Wilhelm Klingenberg, Lectures on closed geodesics, Grundlehren der Mathematischen Wissenschaften, Vol. 230, Springer-Verlag, Berlin-New York, 1978. MR 0478069
- Serge Lang, Differential and Riemannian manifolds, 3rd ed., Graduate Texts in Mathematics, vol. 160, Springer-Verlag, New York, 1995. MR 1335233, DOI 10.1007/978-1-4612-4182-9
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407, DOI 10.1007/978-1-4613-8652-0
- Dusa McDuff and Dietmar Salamon, $J$-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, vol. 52, American Mathematical Society, Providence, RI, 2004. MR 2045629, DOI 10.1090/coll/052
- William H. Meeks III and Shing Tung Yau, Topology of three-dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. (2) 112 (1980), no. 3, 441–484. MR 595203, DOI 10.2307/1971088
- William H. Meeks III and Shing Tung Yau, The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma, Topology 21 (1982), no. 4, 409–442. MR 670745, DOI 10.1016/0040-9383(82)90021-0
- Mario J. Micallef and John Douglas Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199–227. MR 924677, DOI 10.2307/1971420
- Mario J. Micallef and Brian White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. (2) 141 (1995), no. 1, 35–85. MR 1314031, DOI 10.2307/2118627
- John Douglas Moore, On the number of minimal two-spheres of small area in manifolds with curvature bounded above, Math. Ann. 288 (1990), no. 2, 323–343. MR 1075771, DOI 10.1007/BF01444536
- Robert Osserman, A survey of minimal surfaces, 2nd ed., Dover Publications, Inc., New York, 1986. MR 852409
- Richard S. Palais, Foundations of global non-linear analysis, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0248880
- J. Sacks and K. Uhlenbeck, The existence of minimal immersions of $2$-spheres, Ann. of Math. (2) 113 (1981), no. 1, 1–24. MR 604040, DOI 10.2307/1971131
- J. Sacks and K. Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc. 271 (1982), no. 2, 639–652. MR 654854, DOI 10.1090/S0002-9947-1982-0654854-8
- J. H. Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 2, 211–228. MR 510549
- R. Schoen and S. T. Yau, Lectures on harmonic maps, Conference Proceedings and Lecture Notes in Geometry and Topology, II, International Press, Cambridge, MA, 1997. MR 1474501
- S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866. MR 185604, DOI 10.2307/2373250
- K. Uhlenbeck, Integrals with nondegenerate critical points, Bull. Amer. Math. Soc. 76 (1970), 125–128. MR 254873, DOI 10.1090/S0002-9904-1970-12394-1
- K. Uhlenbeck, Morse theory on Banach manifolds, J. Functional Analysis 10 (1972), 430–445. MR 0377979, DOI 10.1016/0022-1236(72)90039-0
- Brian White, The space of minimal submanifolds for varying Riemannian metrics, Indiana Univ. Math. J. 40 (1991), no. 1, 161–200. MR 1101226, DOI 10.1512/iumj.1991.40.40008
- Joseph A. Wolf, Spaces of constant curvature, McGraw-Hill Book Co., New York-London-Sydney, 1967. MR 0217740
Additional Information
- John Douglas Moore
- Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106
- Email: moore@math.ucsb.edu
- Received by editor(s): February 18, 2004
- Published electronically: July 21, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 5193-5256
- MSC (2000): Primary 53C40, 58E12; Secondary 58D15, 58E05
- DOI: https://doi.org/10.1090/S0002-9947-06-04317-0
- MathSciNet review: 2238914