The Lefschetz property, formality and blowing up in symplectic geometry
Author:
Gil Ramos Cavalcanti
Journal:
Trans. Amer. Math. Soc. 359 (2007), 333-348
MSC (2000):
Primary 53D35; Secondary 57R19
DOI:
https://doi.org/10.1090/S0002-9947-06-04058-X
Published electronically:
August 15, 2006
MathSciNet review:
2247894
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we study the behaviour of the Lefschetz property under the blow-up construction. We show that it is possible to reduce the dimension of the kernel of the Lefschetz map if we blow up along a suitable submanifold satisfying the Lefschetz property. We use this, together with results about Massey products, to construct compact nonformal symplectic manifolds satisfying the Lefschetz property.
- 1. I. K. Babenko and I. A. Taĭmanov, Massey products in symplectic manifolds, Mat. Sb. 191 (2000), no. 8, 3–44 (Russian, with Russian summary); English transl., Sb. Math. 191 (2000), no. 7-8, 1107–1146. MR 1786415, https://doi.org/10.1070/SM2000v191n08ABEH000497
- 2. I. K. Babenko and I. A. Taĭmanov, On nonformal simply connected symplectic manifolds, Sibirsk. Mat. Zh. 41 (2000), no. 2, 253–269, i (Russian, with Russian summary); English transl., Siberian Math. J. 41 (2000), no. 2, 204–217. MR 1762178, https://doi.org/10.1007/BF02674589
- 3. C. Benson and C. S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518. MR 0976592 (90b:53042)
- 4. J. Brylinski, A differential complex for Poisson manifolds, J. Differential Geometry 28 (1988), 93-114. MR 0950556 (89m:58006)
- 5.
G. R. Cavalcanti, New aspects of the
-lemma, Ph.D. thesis, Oxford University, 2004, math.DG/0501406.
- 6. L. Cordero, M. Fernández, and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), 375-380. MR 0842431 (87j:53051)
- 7. Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274. MR 0382702, https://doi.org/10.1007/BF01389853
- 8. S. K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996), no. 4, 666–705. MR 1438190
- 9. Marisa Fernández and Vicente Muñoz, Formality of Donaldson submanifolds, Math. Z. 250 (2005), no. 1, 149–175. MR 2136647, https://doi.org/10.1007/s00209-004-0747-8
- 10. Robert E. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995), no. 3, 527–595. MR 1356781, https://doi.org/10.2307/2118554
- 11. M. L. Gromov, A topological technique for the construction of solutions of differential equations and inequalities, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 221–225. MR 0420697
- 12. M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford University, 2003, math.DG/0401221.
- 13. Nigel Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281–308. MR 2013140, https://doi.org/10.1093/qjmath/54.3.281
- 14. Raúl Ibáñez, Yuli Rudyak, Aleksy Tralle, and Luis Ugarte, On certain geometric and homotopy properties of closed symplectic manifolds, Proceedings of the Pacific Institute for the Mathematical Sciences Workshop “Invariants of Three-Manifolds” (Calgary, AB, 1999), 2003, pp. 33–45. MR 1953319, https://doi.org/10.1016/S0166-8641(02)00041-X
- 15. J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Elie Cartan et les meth. d'aujourd'hui, Astérisque hors-série, 1985, pp. 251-271.MR 0837203 (88m:17013)
- 16. Gregory Lupton and John Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), no. 1-3, 193–207. MR 1255930, https://doi.org/10.1016/0022-4049(94)90142-2
- 17. Olivier Mathieu, Harmonic cohomology classes of symplectic manifolds, Comment. Math. Helv. 70 (1995), no. 1, 1–9. MR 1314938, https://doi.org/10.1007/BF02565997
- 18. D. McDuff, Examples of simply-connected symplectic non-Kählerian manifolds, J. Differential Geometry 20 (1984), 267-277. MR 0772133 (86c:57036)
- 19. Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications. MR 1373431
- 20. S. A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Internat. Math. Res. Notices 14 (1998), 727–733. MR 1637093, https://doi.org/10.1155/S1073792898000439
- 21.
T. J. Miller, On the formality of
connected compact manifolds of dimension less than or equal to
, Illinois J. Math. 23 (1979), 253-258.MR 0528561 (80j:55017)
- 22. Katsumi Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2) 59 (1954), 531–538. MR 0064057, https://doi.org/10.2307/1969716
- 23. A. N. Paršin, On a certain generalization of Jacobian manifold, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 175–182 (Russian). MR 0196770
- 24. Yuli Rudyak and Aleksy Tralle, On Thom spaces, Massey products, and nonformal symplectic manifolds, Internat. Math. Res. Notices 10 (2000), 495–513. MR 1759504, https://doi.org/10.1155/S1073792800000271
- 25. David Tischler, Closed 2-forms and an embedding theorem for symplectic manifolds, J. Differential Geometry 12 (1977), no. 2, 229–235. MR 0488108
- 26. Dong Yan, Hodge structure on symplectic manifolds, Adv. Math. 120 (1996), no. 1, 143–154. MR 1392276, https://doi.org/10.1006/aima.1996.0034
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53D35, 57R19
Retrieve articles in all journals with MSC (2000): 53D35, 57R19
Additional Information
Gil Ramos Cavalcanti
Affiliation:
Mathematical Institute, University of Oxford, St. Giles 24-29, Oxford, OX1 3BN, United Kingdom
Email:
gilrc@maths.ox.ac.uk
DOI:
https://doi.org/10.1090/S0002-9947-06-04058-X
Keywords:
Strong Lefschetz property,
symplectic blow-up,
Massey products
Received by editor(s):
November 14, 2004
Published electronically:
August 15, 2006
Additional Notes:
This research was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Ministério da Educação e Cultura), Brazilian Government, Grant 1326/99-6
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.