A local conjecture on Brauer character degrees of finite groups
HTML articles powered by AMS MathViewer
- by Thorsten Holm and Wolfgang Willems PDF
- Trans. Amer. Math. Soc. 359 (2007), 591-603 Request permission
Abstract:
Recently, a new conjecture on the degrees of the irreducible Brauer characters of a finite group was presented by W. Willems. In this paper we propose a ‘local’ version of this conjecture for blocks $B$ of finite groups, giving a lower bound for $\sum \varphi (1)^2$ where the sum runs through the set of irreducible Brauer characters of $B$ in terms of invariants of $B$. A slight reformulation leads to interesting open questions about traces of Cartan matrices of blocks. We show that the local conjecture is true for blocks with one simple module, blocks of $p$-solvable groups and blocks with cyclic defect groups. It also holds for many further examples of blocks of sporadic groups, symmetric groups or groups of Lie type. Finally we prove that the conjecture is true for blocks of tame representation type.References
- Richard Brauer, Representations of finite groups, Lectures on Modern Mathematics, Vol. I, Wiley, New York, 1963, pp. 133–175. MR 0178056
- Richard Brauer, Notes on representations of finite groups. I, J. London Math. Soc. (2) 13 (1976), no. 1, 162–166. MR 399240, DOI 10.1112/jlms/s2-13.1.162
- Peter Brockhaus, On the radical of a group algebra, J. Algebra 95 (1985), no. 2, 454–472. MR 801281, DOI 10.1016/0021-8693(85)90117-6
- Karin Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, vol. 1428, Springer-Verlag, Berlin, 1990. MR 1064107, DOI 10.1007/BFb0084003
- Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- Leonard Chastkofsky and Walter Feit, On the projective characters in characteristic $2$ of the groups $\textrm {Suz}(2^{m})$ and $\textrm {Sp}_{4}(2^{n})$, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 9–35. MR 573820
- B. Huppert, N. Blackburn, Finite groups II, III Springer-Verlag, Berlin, Heidelberg, New York, 1982.
- Bertram Huppert, Research in representation theory at Mainz (1984–1990), Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991) Progr. Math., vol. 95, Birkhäuser, Basel, 1991, pp. 17–36. MR 1112156
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- Masao Kiyota and Tomoyuki Wada, Some remarks on eigenvalues of the Cartan matrix in finite groups, Comm. Algebra 21 (1993), no. 11, 3839–3860. MR 1238129, DOI 10.1080/00927879308824769
- Peter Landrock, A counterexample to a conjecture on the Cartan invariants of a group algebra, Bull. London Math. Soc. 5 (1973), 223–224. MR 323887, DOI 10.1112/blms/5.2.223
- Gerhard O. Michler, A finite simple group of Lie type has $p$-blocks with different defects, $p\not =2$, J. Algebra 104 (1986), no. 2, 220–230. MR 866772, DOI 10.1016/0021-8693(86)90212-7
- G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, vol. 250, Cambridge University Press, Cambridge, 1998. MR 1632299, DOI 10.1017/CBO9780511526015
- Wolfgang Schwarz, Die Struktur modularer Gruppenringe endlicher Gruppen der $p$-Länge $1$, J. Algebra 60 (1979), no. 1, 51–75 (German). MR 549098, DOI 10.1016/0021-8693(79)90108-X
- Tomoyuki Wada, A lower bound of the Perron-Frobenius eigenvalue of the Cartan matrix of a finite group, Arch. Math. (Basel) 73 (1999), no. 6, 407–413. MR 1725175, DOI 10.1007/s000130050416
- D. A. R. Wallace, On the radical of a group algebra, Proc. Amer. Math. Soc. 12 (1961), 133–137. MR 121408, DOI 10.1090/S0002-9939-1961-0121408-3
- W. Willems, On degrees of irreducible Brauer characters, Trans. Amer. Math. Soc. 357 (2005), no. 6, 2379–2387. MR 2140443, DOI 10.1090/S0002-9947-04-03561-5
Additional Information
- Thorsten Holm
- Affiliation: Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
- Address at time of publication: Institut für Algebra und Geometrie, Otto-von-Guericke-Universität, Postfach 4120, 39016 Magdeburg, Germany
- Email: tholm@maths.leeds.ac.uk
- Wolfgang Willems
- Affiliation: Otto-von-Guericke-Universität, Institut für Algebra und Geometrie, Postfach 4120, 39016 Magdeburg, Germany
- Email: wolfgang.willems@mathematik.uni-magdeburg.de
- Received by editor(s): April 25, 2004
- Received by editor(s) in revised form: October 28, 2004
- Published electronically: July 21, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 591-603
- MSC (2000): Primary 20C20; Secondary 15A18, 15A36, 16G60, 20C05
- DOI: https://doi.org/10.1090/S0002-9947-06-03888-8
- MathSciNet review: 2255187