Homotopical complexity and good spaces
HTML articles powered by AMS MathViewer
- by M. Intermont and J. Strom PDF
- Trans. Amer. Math. Soc. 359 (2007), 687-700 Request permission
Abstract:
This paper is an exploration of two ideas in the study of closed classes: the $A$-complexity of a space $X$ and the notion of good spaces (spaces $A$ for which $\mathcal {C}(A) = \overline {\mathcal {C}(A)}$). A variety of formulae for the computation of complexity are given, along with some calculations. Good spaces are characterized in terms of the functors $CW_A$ and $P_A$. The main result is a countable upper bound for $\Sigma A$-complexity when $A$ is a good space.References
- Martin Arkowitz, The generalized Whitehead product, Pacific J. Math. 12 (1962), 7–23. MR 155328
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- A. K. Bousfield, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. 7 (1994), no. 4, 831–873. MR 1257059, DOI 10.1090/S0894-0347-1994-1257059-7
- Wojciech Chachólski, Closed classes, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994) Progr. Math., vol. 136, Birkhäuser, Basel, 1996, pp. 95–118. MR 1397724, DOI 10.1007/978-3-0348-9018-2_{7}
- Wojciech Chachólski, On the functors $CW_A$ and $P_A$, Duke Math. J. 84 (1996), no. 3, 599–631. MR 1408539, DOI 10.1215/S0012-7094-96-08419-7
- Wojciech Chachólski, Desuspending and delooping cellular inequalities, Invent. Math. 129 (1997), no. 1, 37–62. MR 1464865, DOI 10.1007/s002220050157
- W. Chachólski, W. G. Dwyer, and M. Intermont, The $A$-complexity of a space, J. London Math. Soc. (2) 65 (2002), no. 1, 204–222. MR 1875145, DOI 10.1112/S0024610701002691
- Wojciech Chachólski, Paul-Eugene Parent, and Donald Stanley, Cellular generators, Proc. Amer. Math. Soc. 132 (2004), no. 11, 3397–3409. MR 2073317, DOI 10.1090/S0002-9939-04-07346-0
- E. Dror Farjoun, Cellular inequalities, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 159–181. MR 1320991, DOI 10.1090/conm/181/02033
- E. Dror Farjoun, Cellular Sapces, Null Spaces, and Homotopy Localization, Springer-Verlag, Berlin, 1996.
- Abraham A. Fraenkel, Abstract set theory, Third revised edition, North-Holland Publishing Co., Amsterdam, 1966. MR 0197271
- Christopher R. Stover, A van Kampen spectral sequence for higher homotopy groups, Topology 29 (1990), no. 1, 9–26. MR 1046622, DOI 10.1016/0040-9383(90)90022-C
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
Additional Information
- M. Intermont
- Affiliation: Department of Mathematics, Kalamazoo College, Kalamazoo, Michigan 49006
- Email: intermon@kzoo.edu
- J. Strom
- Affiliation: Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008
- Email: Jeff.Strom@wmich.edu
- Received by editor(s): June 10, 2004
- Received by editor(s) in revised form: November 23, 2004
- Published electronically: August 16, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 687-700
- MSC (2000): Primary 55Q05
- DOI: https://doi.org/10.1090/S0002-9947-06-03890-6
- MathSciNet review: 2255193