Greedy wavelet projections are bounded on BV
HTML articles powered by AMS MathViewer
- by Paweł Bechler, Ronald DeVore, Anna Kamont, Guergana Petrova and Przemysław Wojtaszczyk PDF
- Trans. Amer. Math. Soc. 359 (2007), 619-635 Request permission
Abstract:
Let $\mathrm {BV}=\mathrm {BV}(\mathbb {R}^d)$ be the space of functions of bounded variation on $\mathbb {R}^d$ with $d\ge 2$. Let $\psi _\lambda$, $\lambda \in \Delta$, be a wavelet system of compactly supported functions normalized in $\mathrm {BV}$, i.e., $|\psi _\lambda |_{\mathrm {BV}(\mathbb {R}^d)}=1$, $\lambda \in \Delta$. Each $f\in \mathrm {BV}$ has a unique wavelet expansion $\sum _{\lambda \in \Delta } c_\lambda (f)\psi _\lambda$ with convergence in $L_1(\mathbb {R}^d)$. If $\Lambda _N(f)$ is the set of $N$ indicies $\lambda \in \Delta$ for which $|c_\lambda (f)|$ are largest (with ties handled in an arbitrary way), then $\mathcal {G}_N(f):=\sum _{\lambda \in \Lambda _N(f)}c_\lambda (f)\psi _\lambda$ is called a greedy approximation to $f$. It is shown that $|\mathcal {G}_N(f)|_{\mathrm {BV}(\mathbb {R}^d)}\le C|f|_{\mathrm {BV}(\mathbb {R}^d)}$ with $C$ a constant independent of $f$. This answers in the affirmative a conjecture of Meyer (2001).References
- A. Cohen, W. Dahmen, and R. DeVore, Multiscale decompositions on bounded domains, Trans. Amer. Math. Soc. 352 (2000), no. 8, 3651–3685. MR 1458320, DOI 10.1090/S0002-9947-00-02112-7
- Albert Cohen, Wolfgang Dahmen, Ingrid Daubechies, and Ronald DeVore, Harmonic analysis of the space BV, Rev. Mat. Iberoamericana 19 (2003), no. 1, 235–263. MR 1993422, DOI 10.4171/RMI/345
- Albert Cohen, Ingrid Daubechies, and Pierre Vial, Wavelets on the interval and fast wavelet transforms, Appl. Comput. Harmon. Anal. 1 (1993), no. 1, 54–81. MR 1256527, DOI 10.1006/acha.1993.1005
- Albert Cohen, Ronald DeVore, Pencho Petrushev, and Hong Xu, Nonlinear approximation and the space $\textrm {BV}(\textbf {R}^2)$, Amer. J. Math. 121 (1999), no. 3, 587–628. MR 1738406
- A. Cohen, R. A. DeVore, and R. Hochmuth, Restricted nonlinear approximation, Constr. Approx. 16 (2000), no. 1, 85–113. MR 1848843, DOI 10.1007/s003659910004
- A. Cohen, Y. Meyer, F. Oru, Improved Sobolev inequalities, Proceedings séminaires X-EDP, Ecole Polytechnique, Palaiseau, 1998.
- Stephan Dahlke, Wolfgang Dahmen, Reinhard Hochmuth, and Reinhold Schneider, Stable multiscale bases and local error estimation for elliptic problems, Appl. Numer. Math. 23 (1997), no. 1, 21–47. Multilevel methods (Oberwolfach, 1995). MR 1438079, DOI 10.1016/S0168-9274(96)00060-8
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Ronald A. DeVore, Nonlinear approximation, Acta numerica, 1998, Acta Numer., vol. 7, Cambridge Univ. Press, Cambridge, 1998, pp. 51–150. MR 1689432, DOI 10.1017/S0962492900002816
- Ronald A. DeVore and Vasil A. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305 (1988), no. 1, 397–414. MR 920166, DOI 10.1090/S0002-9947-1988-0920166-3
- Ronald A. DeVore, Björn Jawerth, and Bradley J. Lucier, Image compression through wavelet transform coding, IEEE Trans. Inform. Theory 38 (1992), no. 2, 719–746. MR 1162221, DOI 10.1109/18.119733
- Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635
- S. V. Konyagin and V. N. Temlyakov, Greedy approximation with regard to bases and general minimal systems, Serdica Math. J. 28 (2002), no. 4, 305–328. Dedicated to the memory of Vassil Popov on the occasion of his 60th birthday. MR 1965233
- Yves Meyer, Ondelettes et opérateurs. I, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990 (French). Ondelettes. [Wavelets]. MR 1085487
- Yves Meyer, Oscillating patterns in image processing and nonlinear evolution equations, University Lecture Series, vol. 22, American Mathematical Society, Providence, RI, 2001. The fifteenth Dean Jacqueline B. Lewis memorial lectures. MR 1852741, DOI 10.1090/ulect/022
- Aleksander Pełczyński and MichałWojciechowski, Spaces of functions with bounded variation and Sobolev spaces without local unconditional structure, J. Reine Angew. Math. 558 (2003), 109–157. MR 1979184, DOI 10.1515/crll.2003.036
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- V. N. Temlyakov, The best $m$-term approximation and greedy algorithms, Adv. Comput. Math. 8 (1998), no. 3, 249–265. MR 1628182, DOI 10.1023/A:1018900431309
- P. Wojtaszczyk, Greedy algorithm for general biorthogonal systems, J. Approx. Theory 107 (2000), no. 2, 293–314. MR 1806955, DOI 10.1006/jath.2000.3512
- P. Wojtaszczyk, Projections and non-linear approximation in the space $\textrm {BV}(\Bbb R^d)$, Proc. London Math. Soc. (3) 87 (2003), no. 2, 471–497. MR 1990936, DOI 10.1112/S0024611503014084
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Additional Information
- Paweł Bechler
- Affiliation: Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-950 Warsaw, Poland
- Email: pbechler@impan.gov.pl
- Ronald DeVore
- Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
- Email: devore@math.sc.edu
- Anna Kamont
- Affiliation: Institute of Mathematics, Polish Academy of Sciences, Branch in Gdansk, ul. Abrahama 18, 81-825 Sopot, Poland
- Email: A.Kamont@impan.gda.pl
- Guergana Petrova
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: gpetrova@math.tamu.edu
- Przemysław Wojtaszczyk
- Affiliation: Institute of Applied Mathematics and Mechanics, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland
- MR Author ID: 192029
- Email: pwojt@mimuw.edu.pl
- Received by editor(s): November 4, 2003
- Received by editor(s) in revised form: November 15, 2004
- Published electronically: August 16, 2006
- Additional Notes: This work was supported in part by the NRC New Investigators Twinning Program 2003-2004 as well as the Office of Naval Research Contract N00014-03-1-0051, the Air Force of Scientific Research Contracts UFEIES0302005USC, the NSF Grant DMS-0296020 and DAAD 19-02-1-0028, the Foundation for Polish Science and KBN grant 5P03A 03620 located at the Institute of Mathematics of the Polish Academy of Sciences.
- © Copyright 2006 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 359 (2007), 619-635
- MSC (2000): Primary 42C40, 46B70, 26B35, 42B25
- DOI: https://doi.org/10.1090/S0002-9947-06-03903-1
- MathSciNet review: 2255189