## Greedy wavelet projections are bounded on BV

HTML articles powered by AMS MathViewer

- by Paweł Bechler, Ronald DeVore, Anna Kamont, Guergana Petrova and Przemysław Wojtaszczyk PDF
- Trans. Amer. Math. Soc.
**359**(2007), 619-635 Request permission

## Abstract:

Let $\mathrm {BV}=\mathrm {BV}(\mathbb {R}^d)$ be the space of functions of bounded variation on $\mathbb {R}^d$ with $d\ge 2$. Let $\psi _\lambda$, $\lambda \in \Delta$, be a wavelet system of compactly supported functions normalized in $\mathrm {BV}$, i.e., $|\psi _\lambda |_{\mathrm {BV}(\mathbb {R}^d)}=1$, $\lambda \in \Delta$. Each $f\in \mathrm {BV}$ has a unique wavelet expansion $\sum _{\lambda \in \Delta } c_\lambda (f)\psi _\lambda$ with convergence in $L_1(\mathbb {R}^d)$. If $\Lambda _N(f)$ is the set of $N$ indicies $\lambda \in \Delta$ for which $|c_\lambda (f)|$ are largest (with ties handled in an arbitrary way), then $\mathcal {G}_N(f):=\sum _{\lambda \in \Lambda _N(f)}c_\lambda (f)\psi _\lambda$ is called a greedy approximation to $f$. It is shown that $|\mathcal {G}_N(f)|_{\mathrm {BV}(\mathbb {R}^d)}\le C|f|_{\mathrm {BV}(\mathbb {R}^d)}$ with $C$ a constant independent of $f$. This answers in the affirmative a conjecture of Meyer (2001).## References

- A. Cohen, W. Dahmen, and R. DeVore,
*Multiscale decompositions on bounded domains*, Trans. Amer. Math. Soc.**352**(2000), no. 8, 3651–3685. MR**1458320**, DOI 10.1090/S0002-9947-00-02112-7 - Albert Cohen, Wolfgang Dahmen, Ingrid Daubechies, and Ronald DeVore,
*Harmonic analysis of the space BV*, Rev. Mat. Iberoamericana**19**(2003), no. 1, 235–263. MR**1993422**, DOI 10.4171/RMI/345 - Albert Cohen, Ingrid Daubechies, and Pierre Vial,
*Wavelets on the interval and fast wavelet transforms*, Appl. Comput. Harmon. Anal.**1**(1993), no. 1, 54–81. MR**1256527**, DOI 10.1006/acha.1993.1005 - Albert Cohen, Ronald DeVore, Pencho Petrushev, and Hong Xu,
*Nonlinear approximation and the space $\textrm {BV}(\textbf {R}^2)$*, Amer. J. Math.**121**(1999), no. 3, 587–628. MR**1738406** - A. Cohen, R. A. DeVore, and R. Hochmuth,
*Restricted nonlinear approximation*, Constr. Approx.**16**(2000), no. 1, 85–113. MR**1848843**, DOI 10.1007/s003659910004 - A. Cohen, Y. Meyer, F. Oru,
*Improved Sobolev inequalities*, Proceedings séminaires X-EDP, Ecole Polytechnique, Palaiseau, 1998. - Stephan Dahlke, Wolfgang Dahmen, Reinhard Hochmuth, and Reinhold Schneider,
*Stable multiscale bases and local error estimation for elliptic problems*, Appl. Numer. Math.**23**(1997), no. 1, 21–47. Multilevel methods (Oberwolfach, 1995). MR**1438079**, DOI 10.1016/S0168-9274(96)00060-8 - Ingrid Daubechies,
*Ten lectures on wavelets*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR**1162107**, DOI 10.1137/1.9781611970104 - Ronald A. DeVore,
*Nonlinear approximation*, Acta numerica, 1998, Acta Numer., vol. 7, Cambridge Univ. Press, Cambridge, 1998, pp. 51–150. MR**1689432**, DOI 10.1017/S0962492900002816 - Ronald A. DeVore and Vasil A. Popov,
*Interpolation of Besov spaces*, Trans. Amer. Math. Soc.**305**(1988), no. 1, 397–414. MR**920166**, DOI 10.1090/S0002-9947-1988-0920166-3 - Ronald A. DeVore, Björn Jawerth, and Bradley J. Lucier,
*Image compression through wavelet transform coding*, IEEE Trans. Inform. Theory**38**(1992), no. 2, 719–746. MR**1162221**, DOI 10.1109/18.119733 - Ronald A. DeVore and George G. Lorentz,
*Constructive approximation*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR**1261635** - S. V. Konyagin and V. N. Temlyakov,
*Greedy approximation with regard to bases and general minimal systems*, Serdica Math. J.**28**(2002), no. 4, 305–328. Dedicated to the memory of Vassil Popov on the occasion of his 60th birthday. MR**1965233** - Yves Meyer,
*Ondelettes et opérateurs. I*, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990 (French). Ondelettes. [Wavelets]. MR**1085487** - Yves Meyer,
*Oscillating patterns in image processing and nonlinear evolution equations*, University Lecture Series, vol. 22, American Mathematical Society, Providence, RI, 2001. The fifteenth Dean Jacqueline B. Lewis memorial lectures. MR**1852741**, DOI 10.1090/ulect/022 - Aleksander Pełczyński and MichałWojciechowski,
*Spaces of functions with bounded variation and Sobolev spaces without local unconditional structure*, J. Reine Angew. Math.**558**(2003), 109–157. MR**1979184**, DOI 10.1515/crll.2003.036 - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - V. N. Temlyakov,
*The best $m$-term approximation and greedy algorithms*, Adv. Comput. Math.**8**(1998), no. 3, 249–265. MR**1628182**, DOI 10.1023/A:1018900431309 - P. Wojtaszczyk,
*Greedy algorithm for general biorthogonal systems*, J. Approx. Theory**107**(2000), no. 2, 293–314. MR**1806955**, DOI 10.1006/jath.2000.3512 - P. Wojtaszczyk,
*Projections and non-linear approximation in the space $\textrm {BV}(\Bbb R^d)$*, Proc. London Math. Soc. (3)**87**(2003), no. 2, 471–497. MR**1990936**, DOI 10.1112/S0024611503014084 - William P. Ziemer,
*Weakly differentiable functions*, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR**1014685**, DOI 10.1007/978-1-4612-1015-3

## Additional Information

**Paweł Bechler**- Affiliation: Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-950 Warsaw, Poland
- Email: pbechler@impan.gov.pl
**Ronald DeVore**- Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
- Email: devore@math.sc.edu
**Anna Kamont**- Affiliation: Institute of Mathematics, Polish Academy of Sciences, Branch in Gdansk, ul. Abrahama 18, 81-825 Sopot, Poland
- Email: A.Kamont@impan.gda.pl
**Guergana Petrova**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: gpetrova@math.tamu.edu
**Przemysław Wojtaszczyk**- Affiliation: Institute of Applied Mathematics and Mechanics, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland
- MR Author ID: 192029
- Email: pwojt@mimuw.edu.pl
- Received by editor(s): November 4, 2003
- Received by editor(s) in revised form: November 15, 2004
- Published electronically: August 16, 2006
- Additional Notes: This work was supported in part by the NRC New Investigators Twinning Program 2003-2004 as well as the Office of Naval Research Contract N00014-03-1-0051, the Air Force of Scientific Research Contracts UFEIES0302005USC, the NSF Grant DMS-0296020 and DAAD 19-02-1-0028, the Foundation for Polish Science and KBN grant 5P03A 03620 located at the Institute of Mathematics of the Polish Academy of Sciences.
- © Copyright 2006 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**359**(2007), 619-635 - MSC (2000): Primary 42C40, 46B70, 26B35, 42B25
- DOI: https://doi.org/10.1090/S0002-9947-06-03903-1
- MathSciNet review: 2255189