Tilting objects in abelian categories and quasitilted rings
HTML articles powered by AMS MathViewer
- by Riccardo Colpi and Kent R. Fuller PDF
- Trans. Amer. Math. Soc. 359 (2007), 741-765 Request permission
Abstract:
D. Happel, I. Reiten and S. Smalø initiated an investigation of quasitilted artin $K$-algebras that are the endomorphism rings of tilting objects in hereditary abelian categories whose Hom and Ext groups are all finitely generated over a commutative artinian ring $K$. Here, employing a notion of $\ast$-objects, tilting objects in arbitrary abelian categories are defined and are shown to yield a version of the classical tilting theorem between the category and the category of modules over their endomorphism rings. This leads to a module theoretic notion of quasitilted rings and their characterization as endomorphism rings of tilting objects in hereditary cocomplete abelian categories.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR 1245487, DOI 10.1007/978-1-4612-4418-9
- Klaus Bongartz, Tilted algebras, Representations of algebras (Puebla, 1980) Lecture Notes in Math., vol. 903, Springer, Berlin-New York, 1981, pp. 26–38. MR 654701
- Sheila Brenner and M. C. R. Butler, Generalizations of the Bernstein-Gel′fand-Ponomarev reflection functors, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) Lecture Notes in Math., vol. 832, Springer, Berlin-New York, 1980, pp. 103–169. MR 607151
- R. R. Colby and K. R. Fuller, Tilting, cotilting, and serially tilted rings, Comm. Algebra 18 (1990), no. 5, 1585–1615. MR 1059750, DOI 10.1080/00927879008823985
- R. R. Colby and K. R. Fuller, Tilting and torsion theory counter-equivalences, Comm. Algebra 23 (1995), no. 13, 4833–4849. MR 1356105, DOI 10.1080/00927879508825503
- Robert R. Colby and Kent R. Fuller, Equivalence and duality for module categories, Cambridge Tracts in Mathematics, vol. 161, Cambridge University Press, Cambridge, 2004. With tilting and cotilting for rings. MR 2048277, DOI 10.1017/CBO9780511546518
- Riccardo Colpi, Tilting in Grothendieck categories, Forum Math. 11 (1999), no. 6, 735–759. MR 1725595, DOI 10.1515/form.1999.023
- Riccardo Colpi and Jan Trlifaj, Tilting modules and tilting torsion theories, J. Algebra 178 (1995), no. 2, 614–634. MR 1359905, DOI 10.1006/jabr.1995.1368
- Spencer E. Dickson, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223–235. MR 191935, DOI 10.1090/S0002-9947-1966-0191935-0
- Edgar E. Enochs and Overtoun M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics, vol. 30, Walter de Gruyter & Co., Berlin, 2000. MR 1753146, DOI 10.1515/9783110803662
- Carl Faith, Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179–191. MR 193107
- Robert M. Fossum, Phillip A. Griffith, and Idun Reiten, Trivial extensions of abelian categories, Lecture Notes in Mathematics, Vol. 456, Springer-Verlag, Berlin-New York, 1975. Homological algebra of trivial extensions of abelian categories with applications to ring theory. MR 0389981
- Dieter Happel and Idun Reiten, An introduction to quasitilted algebras, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 4 (1996), no. 2, 137–149. Representation theory of groups, algebras, and orders (Constanţa, 1995). MR 1428462
- Dieter Happel, Idun Reiten, and Sverre O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88. MR 1327209, DOI 10.1090/memo/0575
- Dieter Happel and Claus Michael Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399–443. MR 675063, DOI 10.1090/S0002-9947-1982-0675063-2
- B. Keller. Derived Categories and Tilting (to appear in Handbook of Tilting Theory).
- Claudia Menini and Adalberto Orsatti, Representable equivalences between categories of modules and applications, Rend. Sem. Mat. Univ. Padova 82 (1989), 203–231 (1990). MR 1049594
- Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787
- Yoichi Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), no. 1, 113–146. MR 852914, DOI 10.1007/BF01163359
- N. Popescu, Abelian categories with applications to rings and modules, London Mathematical Society Monographs, No. 3, Academic Press, London-New York, 1973. MR 0340375
- Lance W. Small, An example in Noetherian rings, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1035–1036. MR 188252, DOI 10.1073/pnas.54.4.1035
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953
Additional Information
- Riccardo Colpi
- Affiliation: Department of Pure and Applied Mathematics, University of Padova, via Belzoni 7, I 35100 Padova, Italy
- Email: colpi@math.unipd.it
- Kent R. Fuller
- Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242-1419
- Email: kfuller@math.uiowa.edu
- Received by editor(s): September 21, 2004
- Received by editor(s) in revised form: December 3, 2004
- Published electronically: August 24, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 741-765
- MSC (2000): Primary 16E10, 16G99, 16S50, 18E40, 18E25, 18G20; Secondary 16B50, 16D90
- DOI: https://doi.org/10.1090/S0002-9947-06-03909-2
- MathSciNet review: 2255195