The rack space
Authors:
Roger Fenn, Colin Rourke and Brian Sanderson
Journal:
Trans. Amer. Math. Soc. 359 (2007), 701-740
MSC (2000):
Primary 55Q40, 57M25; Secondary 57Q45, 57R15, 57R20, 57R40
DOI:
https://doi.org/10.1090/S0002-9947-06-03912-2
Published electronically:
August 24, 2006
MathSciNet review:
2255194
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The main result of this paper is a new classification theorem for links (smooth embeddings in codimension 2). The classifying space is the rack space and the classifying bundle is the first James bundle. We investigate the algebraic topology of this classifying space and report on calculations given elsewhere. Apart from defining many new knot and link invariants (including generalised James-Hopf invariants), the classification theorem has some unexpected applications. We give a combinatorial interpretation for $\pi _2$ of a complex which can be used for calculations and some new interpretations of the higher homotopy groups of the 3-sphere. We also give a cobordism classification of virtual links.
- S. Buoncristiano, C. P. Rourke, and B. J. Sanderson, A geometric approach to homology theory, Cambridge University Press, Cambridge-New York-Melbourne, 1976. London Mathematical Society Lecture Note Series, No. 18. MR 0413113
- J. Scott Carter, Daniel Jelsovsky, Seiichi Kamada, Laurel Langford, and Masahico Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355 (2003), no. 10, 3947–3989. MR 1990571, DOI https://doi.org/10.1090/S0002-9947-03-03046-0
- J. Scott Carter, Seiichi Kamada, and Masahico Saito, Stable equivalence of knots on surfaces and virtual knot cobordisms, J. Knot Theory Ramifications 11 (2002), no. 3, 311–322. Knots 2000 Korea, Vol. 1 (Yongpyong). MR 1905687, DOI https://doi.org/10.1142/S0218216502001639
- Jean Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 89 (1961), 227–380 (French). MR 140120
- Adrien Douady, Variétés à bord anguleux et voisinages tubulaires, Séminaire Henri Cartan, 1961/62, Exp. 1, Secrétariat mathématique, Paris, 1961/1962, pp. 11 (French). MR 0160221
- Roger A. Fenn, Techniques of geometric topology, London Mathematical Society Lecture Note Series, vol. 57, Cambridge University Press, Cambridge, 1983. MR 787801
- R. Fenn, M. Jordan, L. H. Kauffman, Biracks and virtual links, to appear in Topology Appl. available from: http://www.maths.sussex.ac.uk/Staff/RAF/Maths/loumerc.ps
- Roger Fenn and Colin Rourke, Racks and links in codimension two, J. Knot Theory Ramifications 1 (1992), no. 4, 343–406. MR 1194995, DOI https://doi.org/10.1142/S0218216592000203
- Roger Fenn, Colin Rourke, and Brian Sanderson, An introduction to species and the rack space, Topics in knot theory (Erzurum, 1992) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 399, Kluwer Acad. Publ., Dordrecht, 1993, pp. 33–55. MR 1257904
- Roger Fenn, Colin Rourke, and Brian Sanderson, Trunks and classifying spaces, Appl. Categ. Structures 3 (1995), no. 4, 321–356. MR 1364012, DOI https://doi.org/10.1007/BF00872903
- R. Fenn, C. Rourke, and B. Sanderson, James bundles and applications, preprint (1996). http://www.maths.warwick.ac.uk/~cpr/ftp/james.ps
- Roger Fenn, Colin Rourke, and Brian Sanderson, James bundles, Proc. London Math. Soc. (3) 89 (2004), no. 1, 217–240. MR 2063665, DOI https://doi.org/10.1112/S0024611504014674
- R. Fenn, C. Rourke, and B. Sanderson, A classification of classical links, in preparation.
- J. Flower, Cyclic bordism and rack spaces, Ph.D. Thesis, Warwick, 1995.
- M. Greene, Some results in geometric topology and geometry, Ph.D. Thesis, Warwick, 1996, available from: http://www.maths.warwick.ac.uk/~cpr/ftp/mtg.ps.gz
- Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505
- P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154–172. MR 68218, DOI https://doi.org/10.1112/jlms/s1-30.2.154
- Naoko Kamada and Seiichi Kamada, Abstract link diagrams and virtual knots, J. Knot Theory Ramifications 9 (2000), no. 1, 93–106. MR 1749502, DOI https://doi.org/10.1142/S0218216500000049
- Louis H. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), no. 7, 663–690. MR 1721925, DOI https://doi.org/10.1006/eujc.1999.0314
- Ulrich Koschorke and Brian Sanderson, Self-intersections and higher Hopf invariants, Topology 17 (1978), no. 3, 283–290. MR 508891, DOI https://doi.org/10.1016/0040-9383%2878%2990032-0
- Greg Kuperberg, What is a virtual link?, Algebr. Geom. Topol. 3 (2003), 587–591. MR 1997331, DOI https://doi.org/10.2140/agt.2003.3.587
- R. K. Lashof and S. Smale, Self-intersections of immersed manifolds, J. Math. Mech. 8 (1959), 143–157. MR 0101522, DOI https://doi.org/10.1512/iumj.1959.8.58010
- R. A. Litherland and Sam Nelson, The Betti numbers of some finite racks, J. Pure Appl. Algebra 178 (2003), no. 2, 187–202. MR 1952425, DOI https://doi.org/10.1016/S0022-4049%2802%2900211-6
- J. G. Pastor, Bundle complexes and bordism of immersions, Ph.D. Thesis, University of Warwick, 1982.
- Colin Patrick Rourke and Brian Joseph Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer-Verlag, Berlin-New York, 1982. Reprint. MR 665919
- Colin Rourke and Brian Sanderson, The compression theorem. I, Geom. Topol. 5 (2001), 399–429. MR 1833749, DOI https://doi.org/10.2140/gt.2001.5.399
- C. Rourke and B. Sanderson, There are two $2$-twist spun trefoils, arxiv:math.GT/0006062:v1
- Brian J. Sanderson, The geometry of Mahowald orientations, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 152–174. MR 561221
- B. J. Sanderson, Bordism of links in codimension $2$, J. London Math. Soc. (2) 35 (1987), no. 2, 367–376. MR 881524, DOI https://doi.org/10.1112/jlms/s2-35.2.367
- J. H. C. Whitehead, On adding relations to homotopy groups, Ann. of Math. (2) 42 (1941), 409–428. MR 4123, DOI https://doi.org/10.2307/1968907
- Bert Wiest, Rack spaces and loop spaces, J. Knot Theory Ramifications 8 (1999), no. 1, 99–114. MR 1673890, DOI https://doi.org/10.1142/S0218216599000080
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55Q40, 57M25, 57Q45, 57R15, 57R20, 57R40
Retrieve articles in all journals with MSC (2000): 55Q40, 57M25, 57Q45, 57R15, 57R20, 57R40
Additional Information
Roger Fenn
Affiliation:
Department of Mathematics, University of Sussex, Falmer, Brighton, BN1 9QH, United Kingdom
Email:
R.A.Fenn@sussex.ac.uk
Colin Rourke
Affiliation:
Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
Email:
cpr@maths.warwick.ac.uk
Brian Sanderson
Affiliation:
Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
Email:
bjs@maths.warwick.ac.uk
Keywords:
Classifying space,
codimension 2,
cubical set,
James bundle,
link,
knot,
$\pi _2$,
rack
Received by editor(s):
August 1, 2003
Received by editor(s) in revised form:
November 24, 2004
Published electronically:
August 24, 2006
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.