The rack space
HTML articles powered by AMS MathViewer
- by Roger Fenn, Colin Rourke and Brian Sanderson PDF
- Trans. Amer. Math. Soc. 359 (2007), 701-740 Request permission
Abstract:
The main result of this paper is a new classification theorem for links (smooth embeddings in codimension 2). The classifying space is the rack space and the classifying bundle is the first James bundle. We investigate the algebraic topology of this classifying space and report on calculations given elsewhere. Apart from defining many new knot and link invariants (including generalised James-Hopf invariants), the classification theorem has some unexpected applications. We give a combinatorial interpretation for $\pi _2$ of a complex which can be used for calculations and some new interpretations of the higher homotopy groups of the 3-sphere. We also give a cobordism classification of virtual links.References
- S. Buoncristiano, C. P. Rourke, and B. J. Sanderson, A geometric approach to homology theory, London Mathematical Society Lecture Note Series, No. 18, Cambridge University Press, Cambridge-New York-Melbourne, 1976. MR 0413113
- J. Scott Carter, Daniel Jelsovsky, Seiichi Kamada, Laurel Langford, and Masahico Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355 (2003), no. 10, 3947–3989. MR 1990571, DOI 10.1090/S0002-9947-03-03046-0
- J. Scott Carter, Seiichi Kamada, and Masahico Saito, Stable equivalence of knots on surfaces and virtual knot cobordisms, J. Knot Theory Ramifications 11 (2002), no. 3, 311–322. Knots 2000 Korea, Vol. 1 (Yongpyong). MR 1905687, DOI 10.1142/S0218216502001639
- Jean Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 89 (1961), 227–380 (French). MR 140120
- Adrien Douady, Variétés à bord anguleux et voisinages tubulaires, Séminaire Henri Cartan, 1961/62, Exp. 1, Secrétariat mathématique, Paris, 1961/1962, pp. 11 (French). MR 0160221
- Roger A. Fenn, Techniques of geometric topology, London Mathematical Society Lecture Note Series, vol. 57, Cambridge University Press, Cambridge, 1983. MR 787801
- R. Fenn, M. Jordan, L. H. Kauffman, Biracks and virtual links, to appear in Topology Appl. available from: http://www.maths.sussex.ac.uk/Staff/RAF/Maths/loumerc.ps
- Roger Fenn and Colin Rourke, Racks and links in codimension two, J. Knot Theory Ramifications 1 (1992), no. 4, 343–406. MR 1194995, DOI 10.1142/S0218216592000203
- Roger Fenn, Colin Rourke, and Brian Sanderson, An introduction to species and the rack space, Topics in knot theory (Erzurum, 1992) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 399, Kluwer Acad. Publ., Dordrecht, 1993, pp. 33–55. MR 1257904
- Roger Fenn, Colin Rourke, and Brian Sanderson, Trunks and classifying spaces, Appl. Categ. Structures 3 (1995), no. 4, 321–356. MR 1364012, DOI 10.1007/BF00872903
- R. Fenn, C. Rourke, and B. Sanderson, James bundles and applications, preprint (1996). http://www.maths.warwick.ac.uk/~cpr/ftp/james.ps
- Roger Fenn, Colin Rourke, and Brian Sanderson, James bundles, Proc. London Math. Soc. (3) 89 (2004), no. 1, 217–240. MR 2063665, DOI 10.1112/S0024611504014674
- R. Fenn, C. Rourke, and B. Sanderson, A classification of classical links, in preparation.
- J. Flower, Cyclic bordism and rack spaces, Ph.D. Thesis, Warwick, 1995.
- M. Greene, Some results in geometric topology and geometry, Ph.D. Thesis, Warwick, 1996, available from: http://www.maths.warwick.ac.uk/~cpr/ftp/mtg.ps.gz
- Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505, DOI 10.1007/978-3-662-02267-2
- P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154–172. MR 68218, DOI 10.1112/jlms/s1-30.2.154
- Naoko Kamada and Seiichi Kamada, Abstract link diagrams and virtual knots, J. Knot Theory Ramifications 9 (2000), no. 1, 93–106. MR 1749502, DOI 10.1142/S0218216500000049
- Louis H. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), no. 7, 663–690. MR 1721925, DOI 10.1006/eujc.1999.0314
- Ulrich Koschorke and Brian Sanderson, Self-intersections and higher Hopf invariants, Topology 17 (1978), no. 3, 283–290. MR 508891, DOI 10.1016/0040-9383(78)90032-0
- Greg Kuperberg, What is a virtual link?, Algebr. Geom. Topol. 3 (2003), 587–591. MR 1997331, DOI 10.2140/agt.2003.3.587
- R. K. Lashof and S. Smale, Self-intersections of immersed manifolds, J. Math. Mech. 8 (1959), 143–157. MR 0101522, DOI 10.1512/iumj.1959.8.58010
- R. A. Litherland and Sam Nelson, The Betti numbers of some finite racks, J. Pure Appl. Algebra 178 (2003), no. 2, 187–202. MR 1952425, DOI 10.1016/S0022-4049(02)00211-6
- J. G. Pastor, Bundle complexes and bordism of immersions, Ph.D. Thesis, University of Warwick, 1982.
- Colin Patrick Rourke and Brian Joseph Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer-Verlag, Berlin-New York, 1982. Reprint. MR 665919
- Colin Rourke and Brian Sanderson, The compression theorem. I, Geom. Topol. 5 (2001), 399–429. MR 1833749, DOI 10.2140/gt.2001.5.399
- C. Rourke and B. Sanderson, There are two $2$-twist spun trefoils, arxiv:math.GT/0006062:v1
- Brian J. Sanderson, The geometry of Mahowald orientations, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 152–174. MR 561221
- B. J. Sanderson, Bordism of links in codimension $2$, J. London Math. Soc. (2) 35 (1987), no. 2, 367–376. MR 881524, DOI 10.1112/jlms/s2-35.2.367
- J. H. C. Whitehead, On adding relations to homotopy groups, Ann. of Math. (2) 42 (1941), 409–428. MR 4123, DOI 10.2307/1968907
- Bert Wiest, Rack spaces and loop spaces, J. Knot Theory Ramifications 8 (1999), no. 1, 99–114. MR 1673890, DOI 10.1142/S0218216599000080
Additional Information
- Roger Fenn
- Affiliation: Department of Mathematics, University of Sussex, Falmer, Brighton, BN1 9QH, United Kingdom
- Email: R.A.Fenn@sussex.ac.uk
- Colin Rourke
- Affiliation: Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Email: cpr@maths.warwick.ac.uk
- Brian Sanderson
- Affiliation: Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Email: bjs@maths.warwick.ac.uk
- Received by editor(s): August 1, 2003
- Received by editor(s) in revised form: November 24, 2004
- Published electronically: August 24, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 701-740
- MSC (2000): Primary 55Q40, 57M25; Secondary 57Q45, 57R15, 57R20, 57R40
- DOI: https://doi.org/10.1090/S0002-9947-06-03912-2
- MathSciNet review: 2255194