Classification of homomorphisms and dynamical systems
HTML articles powered by AMS MathViewer
- by Huaxin Lin PDF
- Trans. Amer. Math. Soc. 359 (2007), 859-895 Request permission
Abstract:
Let $A$ be a unital simple $C^*$-algebra, with tracial rank zero and let $X$ be a compact metric space. Suppose that $h_1, h_2: C(X)\to A$ are two unital monomorphisms. We show that $h_1$ and $h_2$ are approximately unitarily equivalent if and only if \[ [h_1]=[h_2] \textrm {in} KL(C(X),A) \textrm {and} \tau \circ h_1(f)=\tau \circ h_2(f) \] for every $f\in C(X)$ and every trace $\tau$ of $A.$ Inspired by a theorem of Tomiyama, we introduce a notion of approximate conjugacy for minimal dynamical systems. Let $X$ be a compact metric space and let $\alpha , \beta : X\to X$ be two minimal homeomorphisms. Using the above-mentioned result, we show that two dynamical systems are approximately conjugate in that sense if and only if a $K$-theoretical condition is satisfied. In the case that $X$ is the Cantor set, this notion coincides with the strong orbit equivalence of Giordano, Putnam and Skau, and the $K$-theoretical condition is equivalent to saying that the associate crossed product $C^*$-algebras are isomorphic. Another application of the above-mentioned result is given for $C^*$-dynamical systems related to a problem of Kishimoto. Let $A$ be a unital simple AH-algebra with no dimension growth and with real rank zero, and let $\alpha \in Aut(A).$ We prove that if $\alpha ^r$ fixes a large subgroup of $K_0(A)$ and has the tracial Rokhlin property, then $A\rtimes _{\alpha }\mathbb {Z}$ is again a unital simple AH-algebra with no dimension growth and with real rank zero.References
- Bruce Blackadar, $K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR 859867, DOI 10.1007/978-1-4613-9572-0
- Bruce Blackadar and David Handelman, Dimension functions and traces on $C^{\ast }$-algebras, J. Functional Analysis 45 (1982), no. 3, 297–340. MR 650185, DOI 10.1016/0022-1236(82)90009-X
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^{\ast }$-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 58–128. MR 0380478
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^{\ast }$-algebras, operators with compact self-commutators, and $K$-homology, Bull. Amer. Math. Soc. 79 (1973), 973–978. MR 346540, DOI 10.1090/S0002-9904-1973-13284-7
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324. MR 458196, DOI 10.2307/1970999
- Lawrence G. Brown and Gert K. Pedersen, $C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), no. 1, 131–149. MR 1120918, DOI 10.1016/0022-1236(91)90056-B
- Alain Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 3, 383–419. MR 394228
- Marius Dădărlat, Approximately unitarily equivalent morphisms and inductive limit $C^\ast$-algebras, $K$-Theory 9 (1995), no. 2, 117–137. MR 1340842, DOI 10.1007/BF00961456
- Marius Dadarlat and Søren Eilers, On the classification of nuclear $C^*$-algebras, Proc. London Math. Soc. (3) 85 (2002), no. 1, 168–210. MR 1901373, DOI 10.1112/S0024611502013679
- Marius Dadarlat and Terry A. Loring, A universal multicoefficient theorem for the Kasparov groups, Duke Math. J. 84 (1996), no. 2, 355–377. MR 1404333, DOI 10.1215/S0012-7094-96-08412-4
- George A. Elliott, On the classification of $C^*$-algebras of real rank zero, J. Reine Angew. Math. 443 (1993), 179–219. MR 1241132, DOI 10.1515/crll.1993.443.179
- George A. Elliott, Dimension groups with torsion, Internat. J. Math. 1 (1990), no. 4, 361–380. MR 1080104, DOI 10.1142/S0129167X90000198
- George A. Elliott and Guihua Gong, On the classification of $C^*$-algebras of real rank zero. II, Ann. of Math. (2) 144 (1996), no. 3, 497–610. MR 1426886, DOI 10.2307/2118565
- G. A. Elliott, G. Gong and L. Li, On the classification of simple inductive limit $C^*$-algebras, II: The isomorphism theorem, preprint.
- George A. Elliott, Guihua Gong, Huaxin Lin, and Cornel Pasnicu, Abelian $C^*$-subalgebras of $C^*$-algebras of real rank zero and inductive limit $C^*$-algebras, Duke Math. J. 85 (1996), no. 3, 511–554. MR 1422356, DOI 10.1215/S0012-7094-96-08520-8
- Thierry Giordano, Ian F. Putnam, and Christian F. Skau, Topological orbit equivalence and $C^*$-crossed products, J. Reine Angew. Math. 469 (1995), 51–111. MR 1363826
- Guihua Gong, On the classification of simple inductive limit $C^*$-algebras. I. The reduction theorem, Doc. Math. 7 (2002), 255–461. MR 2014489
- Guihua Gong and Huaxin Lin, Almost multiplicative morphisms and almost commuting matrices, J. Operator Theory 40 (1998), no. 2, 217–275. MR 1660385
- Guihua Gong and Huaxin Lin, Classification of homomorphisms from $C(X)$ to simple $C^*$-algebras of real rank zero, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 2, 181–206. MR 1778701, DOI 10.1007/s101140000036
- Guihua Gong and Huaxin Lin, Almost multiplicative morphisms and $K$-theory, Internat. J. Math. 11 (2000), no. 8, 983–1000. MR 1797674, DOI 10.1142/S0129167X0000043X
- Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0229247
- Masaki Izumi, The Rohlin property for automorphisms of $C^*$-algebras, Mathematical physics in mathematics and physics (Siena, 2000) Fields Inst. Commun., vol. 30, Amer. Math. Soc., Providence, RI, 2001, pp. 191–206. MR 1867556
- Akitaka Kishimoto, Outer automorphisms and reduced crossed products of simple $C^{\ast }$-algebras, Comm. Math. Phys. 81 (1981), no. 3, 429–435. MR 634163
- Akitaka Kishimoto, The Rohlin property for automorphisms of UHF algebras, J. Reine Angew. Math. 465 (1995), 183–196. MR 1344136, DOI 10.1515/crll.1995.465.183
- Akitaka Kishimoto, The Rohlin property for shifts on UHF algebras and automorphisms of Cuntz algebras, J. Funct. Anal. 140 (1996), no. 1, 100–123. MR 1404576, DOI 10.1006/jfan.1996.0100
- Akitaka Kishimoto, Automorphisms of $\textrm {A}\mathbf T$ algebras with the Rohlin property, J. Operator Theory 40 (1998), no. 2, 277–294. MR 1660386
- A. Kishimoto, Unbounded derivations in $AT$ algebras, J. Funct. Anal. 160 (1998), no. 1, 270–311. MR 1658684, DOI 10.1006/jfan.1998.3333
- A. Kishimoto, Non-commutative shifts and crossed products, J. Funct. Anal. 200 (2003), no. 2, 281–300. MR 1979013, DOI 10.1016/S0022-1236(03)00024-7
- Richard H. Herman and Adrian Ocneanu, Stability for integer actions on UHF $C^{\ast }$-algebras, J. Funct. Anal. 59 (1984), no. 1, 132–144. MR 763780, DOI 10.1016/0022-1236(84)90056-9
- Shanwen Hu, Huaxin Lin, and Yifeng Xue, The tracial topological rank of $C^*$-algebras. II, Indiana Univ. Math. J. 53 (2004), no. 6, 1578–1603. MR 2106337, DOI 10.1512/iumj.2004.53.2458
- Huaxin Lin, Approximation by normal elements with finite spectra in $C^\ast$-algebras of real rank zero, Pacific J. Math. 173 (1996), no. 2, 443–489. MR 1394400
- Huaxin Lin, $C^*$-algebras with weak (FN), J. Funct. Anal. 150 (1997), no. 1, 65–74. MR 1473626, DOI 10.1006/jfan.1997.3112
- Huaxin Lin, Homomorphisms from $C(X)$ into $C^*$-algebras, Canad. J. Math. 49 (1997), no. 5, 963–1009. MR 1604126, DOI 10.4153/CJM-1997-050-9
- Huaxin Lin, Almost commuting selfadjoint matrices and applications, Operator algebras and their applications (Waterloo, ON, 1994/1995) Fields Inst. Commun., vol. 13, Amer. Math. Soc., Providence, RI, 1997, pp. 193–233. MR 1424963
- Huaxin Lin, Tracially AF $C^*$-algebras, Trans. Amer. Math. Soc. 353 (2001), no. 2, 693–722. MR 1804513, DOI 10.1090/S0002-9947-00-02680-5
- Huaxin Lin, The tracial topological rank of $C^*$-algebras, Proc. London Math. Soc. (3) 83 (2001), no. 1, 199–234. MR 1829565, DOI 10.1112/plms/83.1.199
- Huaxin Lin, Classification of simple tracially AF $C^*$-algebras, Canad. J. Math. 53 (2001), no. 1, 161–194. MR 1814969, DOI 10.4153/CJM-2001-007-8
- Huaxin Lin, Classification of simple $C^*$-algebras and higher dimensional noncommutative tori, Ann. of Math. (2) 157 (2003), no. 2, 521–544. MR 1973053, DOI 10.4007/annals.2003.157.521
- Huaxin Lin, Classification of simple $C^\ast$-algebras of tracial topological rank zero, Duke Math. J. 125 (2004), no. 1, 91–119. MR 2097358, DOI 10.1215/S0012-7094-04-12514-X
- Huaxin Lin, An introduction to the classification of amenable $C^*$-algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1884366, DOI 10.1142/9789812799883
- Huaxin Lin, Traces and simple $C^*$-algebras with tracial topological rank zero, J. Reine Angew. Math. 568 (2004), 99–137. MR 2034925, DOI 10.1515/crll.2004.021
- H. Lin, Simple $C^*$-algebras with tracial topological rank one, arXiv.org math.OA/0401240.
- H. Lin, $C^*$-algebras and dynamical systems, NSF Proposal DMS-0355273 (Analysis Program).
- H. Lin, The Rokhlin property for automorphisms on simple $C^*$-algebras, Contemp. Math., to appear, arXiv.org math.OA/0602513.
- Huaxin Lin and Hiroki Matui, Minimal dynamical systems and approximate conjugacy, Math. Ann. 332 (2005), no. 4, 795–822. MR 2179778, DOI 10.1007/s00208-005-0654-2
- H. Lin and H. Matui, Minimal dynamical systems on the product of the Cantor set and the circle, II, Selecta Math., to appear.
- Huaxin Lin and Hiroyuki Osaka, The Rokhlin property and the tracial topological rank, J. Funct. Anal. 218 (2005), no. 2, 475–494. MR 2108121, DOI 10.1016/j.jfa.2004.05.005
- Q. Lin and N. C. Phillips, $C^*$-algebras of minimal diffeomorphisms, preprint 2000.
- Qing Lin and N. Christopher Phillips, Direct limit decomposition for $C^*$-algebras of minimal diffeomorphisms, Operator algebras and applications, Adv. Stud. Pure Math., vol. 38, Math. Soc. Japan, Tokyo, 2004, pp. 107–133. MR 2059804, DOI 10.2969/aspm/03810107
- H. Osaka and N. C. Phillips, Furstenberg transformations on irrational rotation algebras, in preprint.
- N. C. Phillips, Crossed products by finite cyclic group actions with the tracial Rokhlin property, arXiv.org math.OA/0306410.
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- Mikael Rørdam, Classification of certain infinite simple $C^*$-algebras, J. Funct. Anal. 131 (1995), no. 2, 415–458. MR 1345038, DOI 10.1006/jfan.1995.1095
- Jonathan Rosenberg and Claude Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized $K$-functor, Duke Math. J. 55 (1987), no. 2, 431–474. MR 894590, DOI 10.1215/S0012-7094-87-05524-4
- Claude Schochet, Topological methods for $C^{\ast }$-algebras. IV. Mod $p$ homology, Pacific J. Math. 114 (1984), no. 2, 447–468. MR 757511
- Jun Tomiyama, Topological full groups and structure of normalizers in transformation group $C^\ast$-algebras, Pacific J. Math. 173 (1996), no. 2, 571–583. MR 1394406
Additional Information
- Huaxin Lin
- Affiliation: Department of Mathematics, East China Normal University, Shanghai, People’s Republic of China
- Address at time of publication: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222
- Received by editor(s): April 22, 2004
- Received by editor(s) in revised form: January 6, 2005
- Published electronically: September 12, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 859-895
- MSC (2000): Primary 46L35, 46L55
- DOI: https://doi.org/10.1090/S0002-9947-06-03932-8
- MathSciNet review: 2255199
Dedicated: Dedicated to George Elliott on his 60th birthday