## Classification of homomorphisms and dynamical systems

HTML articles powered by AMS MathViewer

- by Huaxin Lin PDF
- Trans. Amer. Math. Soc.
**359**(2007), 859-895 Request permission

## Abstract:

Let $A$ be a unital simple $C^*$-algebra, with tracial rank zero and let $X$ be a compact metric space. Suppose that $h_1, h_2: C(X)\to A$ are two unital monomorphisms. We show that $h_1$ and $h_2$ are approximately unitarily equivalent if and only if \[ [h_1]=[h_2] \textrm {in} KL(C(X),A) \textrm {and} \tau \circ h_1(f)=\tau \circ h_2(f) \] for every $f\in C(X)$ and every trace $\tau$ of $A.$ Inspired by a theorem of Tomiyama, we introduce a notion of approximate conjugacy for minimal dynamical systems. Let $X$ be a compact metric space and let $\alpha , \beta : X\to X$ be two minimal homeomorphisms. Using the above-mentioned result, we show that two dynamical systems are approximately conjugate in that sense if and only if a $K$-theoretical condition is satisfied. In the case that $X$ is the Cantor set, this notion coincides with the strong orbit equivalence of Giordano, Putnam and Skau, and the $K$-theoretical condition is equivalent to saying that the associate crossed product $C^*$-algebras are isomorphic. Another application of the above-mentioned result is given for $C^*$-dynamical systems related to a problem of Kishimoto. Let $A$ be a unital simple AH-algebra with no dimension growth and with real rank zero, and let $\alpha \in Aut(A).$ We prove that if $\alpha ^r$ fixes a large subgroup of $K_0(A)$ and has the tracial Rokhlin property, then $A\rtimes _{\alpha }\mathbb {Z}$ is again a unital simple AH-algebra with no dimension growth and with real rank zero.## References

- Bruce Blackadar,
*$K$-theory for operator algebras*, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR**859867**, DOI 10.1007/978-1-4613-9572-0 - Bruce Blackadar and David Handelman,
*Dimension functions and traces on $C^{\ast }$-algebras*, J. Functional Analysis**45**(1982), no. 3, 297–340. MR**650185**, DOI 10.1016/0022-1236(82)90009-X - L. G. Brown, R. G. Douglas, and P. A. Fillmore,
*Unitary equivalence modulo the compact operators and extensions of $C^{\ast }$-algebras*, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 58–128. MR**0380478** - L. G. Brown, R. G. Douglas, and P. A. Fillmore,
*Extensions of $C^{\ast }$-algebras, operators with compact self-commutators, and $K$-homology*, Bull. Amer. Math. Soc.**79**(1973), 973–978. MR**346540**, DOI 10.1090/S0002-9904-1973-13284-7 - L. G. Brown, R. G. Douglas, and P. A. Fillmore,
*Extensions of $C^*$-algebras and $K$-homology*, Ann. of Math. (2)**105**(1977), no. 2, 265–324. MR**458196**, DOI 10.2307/1970999 - Lawrence G. Brown and Gert K. Pedersen,
*$C^*$-algebras of real rank zero*, J. Funct. Anal.**99**(1991), no. 1, 131–149. MR**1120918**, DOI 10.1016/0022-1236(91)90056-B - Alain Connes,
*Outer conjugacy classes of automorphisms of factors*, Ann. Sci. École Norm. Sup. (4)**8**(1975), no. 3, 383–419. MR**394228** - Marius Dădărlat,
*Approximately unitarily equivalent morphisms and inductive limit $C^\ast$-algebras*, $K$-Theory**9**(1995), no. 2, 117–137. MR**1340842**, DOI 10.1007/BF00961456 - Marius Dadarlat and Søren Eilers,
*On the classification of nuclear $C^*$-algebras*, Proc. London Math. Soc. (3)**85**(2002), no. 1, 168–210. MR**1901373**, DOI 10.1112/S0024611502013679 - Marius Dadarlat and Terry A. Loring,
*A universal multicoefficient theorem for the Kasparov groups*, Duke Math. J.**84**(1996), no. 2, 355–377. MR**1404333**, DOI 10.1215/S0012-7094-96-08412-4 - George A. Elliott,
*On the classification of $C^*$-algebras of real rank zero*, J. Reine Angew. Math.**443**(1993), 179–219. MR**1241132**, DOI 10.1515/crll.1993.443.179 - George A. Elliott,
*Dimension groups with torsion*, Internat. J. Math.**1**(1990), no. 4, 361–380. MR**1080104**, DOI 10.1142/S0129167X90000198 - George A. Elliott and Guihua Gong,
*On the classification of $C^*$-algebras of real rank zero. II*, Ann. of Math. (2)**144**(1996), no. 3, 497–610. MR**1426886**, DOI 10.2307/2118565 - G. A. Elliott, G. Gong and L. Li,
*On the classification of simple inductive limit $C^*$-algebras, II: The isomorphism theorem*, preprint. - George A. Elliott, Guihua Gong, Huaxin Lin, and Cornel Pasnicu,
*Abelian $C^*$-subalgebras of $C^*$-algebras of real rank zero and inductive limit $C^*$-algebras*, Duke Math. J.**85**(1996), no. 3, 511–554. MR**1422356**, DOI 10.1215/S0012-7094-96-08520-8 - Thierry Giordano, Ian F. Putnam, and Christian F. Skau,
*Topological orbit equivalence and $C^*$-crossed products*, J. Reine Angew. Math.**469**(1995), 51–111. MR**1363826** - Guihua Gong,
*On the classification of simple inductive limit $C^*$-algebras. I. The reduction theorem*, Doc. Math.**7**(2002), 255–461. MR**2014489** - Guihua Gong and Huaxin Lin,
*Almost multiplicative morphisms and almost commuting matrices*, J. Operator Theory**40**(1998), no. 2, 217–275. MR**1660385** - Guihua Gong and Huaxin Lin,
*Classification of homomorphisms from $C(X)$ to simple $C^*$-algebras of real rank zero*, Acta Math. Sin. (Engl. Ser.)**16**(2000), no. 2, 181–206. MR**1778701**, DOI 10.1007/s101140000036 - Guihua Gong and Huaxin Lin,
*Almost multiplicative morphisms and $K$-theory*, Internat. J. Math.**11**(2000), no. 8, 983–1000. MR**1797674**, DOI 10.1142/S0129167X0000043X - Dale Husemoller,
*Fibre bundles*, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR**0229247** - Masaki Izumi,
*The Rohlin property for automorphisms of $C^*$-algebras*, Mathematical physics in mathematics and physics (Siena, 2000) Fields Inst. Commun., vol. 30, Amer. Math. Soc., Providence, RI, 2001, pp. 191–206. MR**1867556** - Akitaka Kishimoto,
*Outer automorphisms and reduced crossed products of simple $C^{\ast }$-algebras*, Comm. Math. Phys.**81**(1981), no. 3, 429–435. MR**634163** - Akitaka Kishimoto,
*The Rohlin property for automorphisms of UHF algebras*, J. Reine Angew. Math.**465**(1995), 183–196. MR**1344136**, DOI 10.1515/crll.1995.465.183 - Akitaka Kishimoto,
*The Rohlin property for shifts on UHF algebras and automorphisms of Cuntz algebras*, J. Funct. Anal.**140**(1996), no. 1, 100–123. MR**1404576**, DOI 10.1006/jfan.1996.0100 - Akitaka Kishimoto,
*Automorphisms of $\textrm {A}\mathbf T$ algebras with the Rohlin property*, J. Operator Theory**40**(1998), no. 2, 277–294. MR**1660386** - A. Kishimoto,
*Unbounded derivations in $AT$ algebras*, J. Funct. Anal.**160**(1998), no. 1, 270–311. MR**1658684**, DOI 10.1006/jfan.1998.3333 - A. Kishimoto,
*Non-commutative shifts and crossed products*, J. Funct. Anal.**200**(2003), no. 2, 281–300. MR**1979013**, DOI 10.1016/S0022-1236(03)00024-7 - Richard H. Herman and Adrian Ocneanu,
*Stability for integer actions on UHF $C^{\ast }$-algebras*, J. Funct. Anal.**59**(1984), no. 1, 132–144. MR**763780**, DOI 10.1016/0022-1236(84)90056-9 - Shanwen Hu, Huaxin Lin, and Yifeng Xue,
*The tracial topological rank of $C^*$-algebras. II*, Indiana Univ. Math. J.**53**(2004), no. 6, 1578–1603. MR**2106337**, DOI 10.1512/iumj.2004.53.2458 - Huaxin Lin,
*Approximation by normal elements with finite spectra in $C^\ast$-algebras of real rank zero*, Pacific J. Math.**173**(1996), no. 2, 443–489. MR**1394400** - Huaxin Lin,
*$C^*$-algebras with weak (FN)*, J. Funct. Anal.**150**(1997), no. 1, 65–74. MR**1473626**, DOI 10.1006/jfan.1997.3112 - Huaxin Lin,
*Homomorphisms from $C(X)$ into $C^*$-algebras*, Canad. J. Math.**49**(1997), no. 5, 963–1009. MR**1604126**, DOI 10.4153/CJM-1997-050-9 - Huaxin Lin,
*Almost commuting selfadjoint matrices and applications*, Operator algebras and their applications (Waterloo, ON, 1994/1995) Fields Inst. Commun., vol. 13, Amer. Math. Soc., Providence, RI, 1997, pp. 193–233. MR**1424963** - Huaxin Lin,
*Tracially AF $C^*$-algebras*, Trans. Amer. Math. Soc.**353**(2001), no. 2, 693–722. MR**1804513**, DOI 10.1090/S0002-9947-00-02680-5 - Huaxin Lin,
*The tracial topological rank of $C^*$-algebras*, Proc. London Math. Soc. (3)**83**(2001), no. 1, 199–234. MR**1829565**, DOI 10.1112/plms/83.1.199 - Huaxin Lin,
*Classification of simple tracially AF $C^*$-algebras*, Canad. J. Math.**53**(2001), no. 1, 161–194. MR**1814969**, DOI 10.4153/CJM-2001-007-8 - Huaxin Lin,
*Classification of simple $C^*$-algebras and higher dimensional noncommutative tori*, Ann. of Math. (2)**157**(2003), no. 2, 521–544. MR**1973053**, DOI 10.4007/annals.2003.157.521 - Huaxin Lin,
*Classification of simple $C^\ast$-algebras of tracial topological rank zero*, Duke Math. J.**125**(2004), no. 1, 91–119. MR**2097358**, DOI 10.1215/S0012-7094-04-12514-X - Huaxin Lin,
*An introduction to the classification of amenable $C^*$-algebras*, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR**1884366**, DOI 10.1142/9789812799883 - Huaxin Lin,
*Traces and simple $C^*$-algebras with tracial topological rank zero*, J. Reine Angew. Math.**568**(2004), 99–137. MR**2034925**, DOI 10.1515/crll.2004.021 - H. Lin,
*Simple $C^*$-algebras with tracial topological rank one*, arXiv.org math.OA/0401240. - H. Lin,
*$C^*$-algebras and dynamical systems*, NSF Proposal DMS-0355273 (Analysis Program). - H. Lin,
*The Rokhlin property for automorphisms on simple $C^*$-algebras*, Contemp. Math., to appear, arXiv.org math.OA/0602513. - Huaxin Lin and Hiroki Matui,
*Minimal dynamical systems and approximate conjugacy*, Math. Ann.**332**(2005), no. 4, 795–822. MR**2179778**, DOI 10.1007/s00208-005-0654-2 - H. Lin and H. Matui,
*Minimal dynamical systems on the product of the Cantor set and the circle, II*, Selecta Math., to appear. - Huaxin Lin and Hiroyuki Osaka,
*The Rokhlin property and the tracial topological rank*, J. Funct. Anal.**218**(2005), no. 2, 475–494. MR**2108121**, DOI 10.1016/j.jfa.2004.05.005 - Q. Lin and N. C. Phillips,
*$C^*$-algebras of minimal diffeomorphisms*, preprint 2000. - Qing Lin and N. Christopher Phillips,
*Direct limit decomposition for $C^*$-algebras of minimal diffeomorphisms*, Operator algebras and applications, Adv. Stud. Pure Math., vol. 38, Math. Soc. Japan, Tokyo, 2004, pp. 107–133. MR**2059804**, DOI 10.2969/aspm/03810107 - H. Osaka and N. C. Phillips,
*Furstenberg transformations on irrational rotation algebras*, in preprint. - N. C. Phillips,
*Crossed products by finite cyclic group actions with the tracial Rokhlin property*, arXiv.org math.OA/0306410. - Gert K. Pedersen,
*$C^{\ast }$-algebras and their automorphism groups*, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR**548006** - Mikael Rørdam,
*Classification of certain infinite simple $C^*$-algebras*, J. Funct. Anal.**131**(1995), no. 2, 415–458. MR**1345038**, DOI 10.1006/jfan.1995.1095 - Jonathan Rosenberg and Claude Schochet,
*The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized $K$-functor*, Duke Math. J.**55**(1987), no. 2, 431–474. MR**894590**, DOI 10.1215/S0012-7094-87-05524-4 - Claude Schochet,
*Topological methods for $C^{\ast }$-algebras. IV. Mod $p$ homology*, Pacific J. Math.**114**(1984), no. 2, 447–468. MR**757511** - Jun Tomiyama,
*Topological full groups and structure of normalizers in transformation group $C^\ast$-algebras*, Pacific J. Math.**173**(1996), no. 2, 571–583. MR**1394406**

## Additional Information

**Huaxin Lin**- Affiliation: Department of Mathematics, East China Normal University, Shanghai, People’s Republic of China
- Address at time of publication: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222
- Received by editor(s): April 22, 2004
- Received by editor(s) in revised form: January 6, 2005
- Published electronically: September 12, 2006
- © Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**359**(2007), 859-895 - MSC (2000): Primary 46L35, 46L55
- DOI: https://doi.org/10.1090/S0002-9947-06-03932-8
- MathSciNet review: 2255199

Dedicated: Dedicated to George Elliott on his 60th birthday