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Abstract. Let A be a unital simple C∗-algebra, with tracial rank zero and
let X be a compact metric space. Suppose that h1, h2 : C(X) → A are two
unital monomorphisms. We show that h1 and h2 are approximately unitarily
equivalent if and only if

[h1] = [h2] in KL(C(X), A) and τ ◦ h1(f) = τ ◦ h2(f)

for every f ∈ C(X) and every trace τ of A. Inspired by a theorem of Tomiyama,
we introduce a notion of approximate conjugacy for minimal dynamical sys-
tems. Let X be a compact metric space and let α, β : X → X be two minimal
homeomorphisms. Using the above-mentioned result, we show that two dy-
namical systems are approximately conjugate in that sense if and only if a
K-theoretical condition is satisfied. In the case that X is the Cantor set, this
notion coincides with the strong orbit equivalence of Giordano, Putnam and
Skau, and the K-theoretical condition is equivalent to saying that the associate
crossed product C∗-algebras are isomorphic.

Another application of the above-mentioned result is given for C∗-dynamical
systems related to a problem of Kishimoto. Let A be a unital simple AH-
algebra with no dimension growth and with real rank zero, and let α ∈ Aut(A).
We prove that if αr fixes a large subgroup of K0(A) and has the tracial Rokhlin
property, then A �α Z is again a unital simple AH-algebra with no dimension
growth and with real rank zero.

1. Introduction

Let X be a compact metric space and let α, β : X → X be homeomorphisms.
Suppose that α and β are minimal, i.e., neither α nor β has non-trivial invariant
closed subsets. Recall that α and β are conjugate if there exists a homeomorphism
σ : X → X such that α = σ ◦ β ◦ σ−1. They are flip conjugate if either α and β
are conjugate or α and β−1 are conjugate. It was proved by Jun Tomiyama ([56])
that α and β are flip conjugate if and only if there exists an isomorphism from
C(X) �α Z onto C(X) �β Z such that it maps C(X) onto C(X), where C(X) �α Z

and C(X)�βZ are the associated crossed product C∗-algebras or the transformation
group C∗-algebras. It is speculated that C∗-algebra theory may help to understand
the minimal dynamical systems (X, α) and (X, β). This is further demonstrated in
Giordano, Putnam and Skau’s work ([16]) on minimal Cantor systems. They show,
among other things, that two minimal Cantor systems (X, α) and (X, β) are strong
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orbit equivalent if and only if the associated crossed products are isomorphic. It
is worth noting that under the assumption that X is an infinite set and α and β
are minimal, the associated crossed product C∗-algebras are amenable simple C∗-
algebras. Given the recent development in the classification of amenable simple C∗-
algebras, it seems possible to have a K-theoretical description of a useful equivalence
relation for minimal dynamical systems as demonstrated in Giordano, Putnam and
Skau’s work. The author has proposed to study a version of approximate conjugacy
for minimal dynamical systems (see [43]). The original purpose of this research is
to give a K-theoretical description of approximate conjugacy in minimal dynamical
systems.

Diverging from dynamical systems, consider homomorphisms from C(X), the
C∗-algebra of continuous functions on a compact metric space, to a unital simple
C∗-algebra A. It is fundamentally important in topology to study homomorphisms
from C(X) to C(Y ). In C∗-algebra theory, it is also fundamentally important to
understand homomorphisms from C(X) into a unital C∗-algebra. The earliest
study of this kind is the classical Brown-Douglass-Fillmore theory (see [3] and [4]).
The BDF-theory classified monomorphisms from C(X) into the Calkin algebra
B(l2)/K(l2). The original motivation was to classify essentially normal operators.
There is no doubt that BDF-theory plays a crucial role in the development of
C∗-algebra theory, in particular, in the aspect of C∗-algebra theory related to K-
theory and KK-theory. One may note that the Calkin algebra is a very special
(non-separable) C∗-algebra. But it is a simple C∗-algebra with real rank zero.
It becomes clear that the study of monomorphisms from C(X) into a separable
simple C∗-algebra with real rank zero is also very important (see [8], [31], [32],
[33], [34], [18], [19] and [20]). In this paper, we prove that, under the assumption
that A is a unital simple C∗-algebra with tracial rank zero, then monomorphisms
from C(X) into A can be classified up to approximate unitary equivalence by their
K-theoretical information. We believe that this result is potentially very useful.
We will demonstrate this by presenting two applications.

Returning to minimal dynamical systems, it is known that many crossed product
C∗-algebras associated with minimal dynamical systems are simple C∗-algebras
with tracial rank zero. For example it is known (see for example Theorem 1.15 of
[16]) that C(X) �α Z is an AT-algebra of real rank zero if X is the Cantor set.
It follows (see [13] and [35]) that they have tracial rank zero. More recently it
is shown by Q. Lin and N.C. Phillips ([48]) that crossed products resulted from
minimal diffeomorphisms on a manifold are inductive limits of subhomogeoneous
C∗-algebras. Consequently, by [41], they have tracial topological rank zero. Thus
by the classification theorem of [39] these simple C∗-algebras are classified by their
K-theory. The classification of monomorphisms from C(X) to those simple C∗-
algebras leads to the notion of approximate (flip) conjugacy in minimal dynamical
systems. Briefly speaking, two minimal dynamical systems (X, α) and (X, β) are
approximately K-conjugate if there exist two sequence of homeomorphisms σn, γn :
X → X such that

lim
n→∞

f ◦ σn ◦ β ◦ σ−1
n = f ◦ α and lim

n→∞
f ◦ γn ◦ α ◦ γ−1

n = f ◦ β

for all f ∈ C(X) and both σn and γn satisfy a K-theoretical constrain. A prelim-
inary result ([45]) shows that when X is a Cantor set, α and β are approximately
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K-conjugate if and only if C(X) �α Z ∼= C(X) �β Z. In this paper, we define a
C∗-version of approximate flip conjugacy and use the classification of monomor-
phisms from C(X) into a unital simple C∗-algebra of tracial rank zero to give a
K-theoretical condition for two minimal dynamical systems being approximate flip
conjugate in that sense.

We present another related application of the above-mentioned classification of
monomorphisms from C(X). We study C∗-dynamical systems (A, α), where A is
a unital simple C∗-algebra with tracial rank zero and α ∈ Aut(A) which satis-
fies a certain Rokhlin property. The Rokhlin property in ergodic theory was first
adopted into operator algebras in the context of von Neumann algebras by A.
Connes ([7]). It was adopted by Herman and Ocneanu ([29]), then by M. Rørdam
([53]), A. Kishimoto and more recently by M. Isumi ([22]) in a much more general
context of C∗-algebras. Kishimoto has studied the problem when a crossed product
of a simple AT-algebra A of real rank zero by an automorphism α ∈ Aut(A) is again
an AT-algebra of real rank zero. A more general question is when A�α Z is a unital
simple AH-algebra with real rank zero if A is a unital simple AH-algebra. Given
the classification theorem for simple separable amenable C∗-algebra with tracial
rank zero, a similar question is under what condition A �α Z has tracial rank zero.

In order to make reasonable sense, one has to assume that α is sufficiently outer.
As proposed by A. Kishimoto ([26]), the right description of “sufficiently outer” is
that α has a Rokhlin property. One version of Rokhlin property was introduced in
[50] called “tracial Rokhlin property” which is closely related to, but slightly weaker
than, the so-called approximate Rokhlin property used in [24] (see Definition 3.12,
below). It was shown in [50] that the tracial Rokhlin property occurs quite often.
Tracial cyclic Rokhlin property was introduced in [47] which is a strong Rokhlin
property (see Definition 3.13 below). For example, if α has the tracial cyclic Rokhlin
property, then α∗0 fixes a large subset of K0(A). It is shown in [44] and [47] that if
A has tracial rank zero and α has the tracial cyclic Rokhlin property, then A �α Z

has tracial Rokhlin property. Thus one may apply classification theorem in [39] to
these simple crossed products. This leads to the question of when an automorphism
α has tracial cyclic Rokhlin property. We will apply the results of classification of
monomorphisms from C(X) into a unital simple C∗-algebra with tracial rank zero
to this problem. Among other things, we will show that, if αr

∗0|G = idG for some
subgroup G ⊂ K0(A) for which ρA(G) = ρA(K0(A)) and α has tracial Rokhlin
property, then α has tracial cyclic Rokhlin property. This result implies that,
under the same condition, A �α Z is a unital simple AH-algebra with no dimension
growth and with real rank zero if A is. This solves the generalized version of the
Kishimoto problem.

The paper is organized as follows. In Section 2, we list some conventions that will
be used in this paper. In Section 3, we present the main results. We first give (in
Subsection 2.1) the classification of monomorphisms from C(X) into a unital simple
C∗-algebra with tracial topological rank zero. We then give two applications of the
theorem, one for minimal dynamical systems (Subsection 2.2) and the other for
the C∗-dynamical systems and the Rokhlin property (Subsection 2.3). In Section
4, we give the proof of the classification theorem mentioned above and also give
proofs of several approximate version of it. In Section 5, we present the proof of
the theorems presented in Subsection 3.2. Finally, in Section 6, we give the proof
of the main results in Subsection 2.3.
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2. Notation

We will use the following conventions:
(1) Let A be a C∗-algebra. As.a. is the set of all selfadjoint elements of A, and

A+ is the positive cone of A.
(2) Let A be a C∗-algebra and let a ∈ A. We write Her(a) for the hereditary

C∗-subalgebra generated by a, i.e., Her(a) = aAa.
(3) Let A be a C∗-algebra and let p, q ∈ A be two projections. We write p ∼ q

and say p is equivalent to q if there exists a partial isometry v ∈ A such that v∗v = p
and vv∗ = q. If a ∈ A+, we write [p] ≤ [a] if p ∼ q for some projection q ∈ Her(a).

(4) Let A be a C∗-algebra. We denote by Aut(A) the automorphism group of
A. If A is unital and u ∈ A is a unitary, we denote by adu the inner automorphism
defined by adu(a) = u∗au for all a ∈ A.

(5) T (A) is the tracial state space of A. Denote by ρA : K0(A) → Aff(T (A))
the homomorphism induced by ρA([p])(τ ) = τ (p) for τ ∈ T (A).

Furthermore, we also use ρA : As.a → Aff(T (A)) for the homomorphism defined
by ρA(a)(τ ) = τ (a) for a ∈ As.a.

(6) Let A and B be two C∗-algebras and let φ, ψ : A → B be two maps. Let
ε > 0 and F ⊂ A be a finite subset. We write

φ ≈ε ψ on F
if

‖φ(a) − ψ(a)‖ < ε for all a ∈ F .

If B is unital and there is a unitary u ∈ B such that

‖ad u ◦ φ(a) − ψ(a)‖ < ε for all a ∈ A,

then we write
φ

u∼ε ψ on F .

(7) Let x ∈ A, ε > 0 and F ⊂ A. We write x ∈ε F if dist(x,F) < ε or there is
y ∈ F such that ‖x − y‖ < ε.

Let F and G be subsets of a C∗-algebra A; we write F ⊂ε G, if for every x ∈ F ,
x ∈ε G.

(8) Let A be a separable amenable C∗-algebra. We say that A satisfies the
Universal Coefficient Theorem (UCT) if for any σ-unital C∗-algebra B one has the
following short exact sequence:

0 → extZ(K∗−1(A), K∗(B)) → KK∗(A, B) → Hom(K∗(A), K∗(B)) → 0.

Every C∗-algebra A in the so-called “bootstrap” class N satisfies the UCT.
Let G and F be abelian groups. Denote by Pext(G, F ) the group of pure group

extensions in extZ(G, F ), i.e., those extensions of F by G so that every finitely gener-
ated subgroup of F lifts. Denote KL(A, B) = KK(A, B)/Pext(K∗−1(A), K∗(B)).

(9) Let Cn be a commutative C∗-algebra with K0(Cn) = Z/nZ and K1(Cn) = 0.
Suppose that A is a C∗-algebra. Then Ki(A, Z/kZ) = Ki(A⊗Ck). Let P(A) be the
set of equivalence classes of projections in M∞(A), M∞(C(S1)⊗A), M∞((A⊗Cm)̃)
and M∞((C(S1) ⊗ A ⊗ Cm)̃). We have the following commutative diagram ([55]):

K0(A) → K0(A, Z/kZ) → K1(A)
↑k ↓k

K0(A) ← K1(A, Z/kZ) ← K1(A)
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As in [10], we use the notation

K(A) =
⊕

i=0,1,n∈Z+

Ki(A; Z/nZ).

By HomΛ(K(A), K(B)) we mean all homomorphisms from K(A) to K(B) which
respect the direct sum decomposition and the so-called Bockstein operations (see
[10]). It follows from [10] that if A satisfies the Universal Coefficient Theorem, then
HomΛ(K(A), K(B)) ∼= KL(A, B).

(10) Let {An} be a sequence of C∗-algebras. Set l∞({Bn}) =
∏∞

n=1 Bn (C∗-
product of {Bn}) and c0({Bn}) =

⊕∞
n=1 Bn (C∗-direct sum). We will use q∞({Bn})

for the quotient l∞({Bn})/c0({Bn}).
(11) Let A = limn→∞(An, φn), where φn : An → An+1 is the connecting ho-

momorphism. We denote by φn,∞ : An → A the homomorphism induced by the
inductive system. A is said to be an AT-algebra if each An has the form C(T)⊗Fn,
for some finite-dimensional C∗-subalgebra Fn. A is said to be an AH-algebra if
each An has the form PnMk(n)(C(Xn))Pn, where Xn is a finite CW-complex and
Pn ∈ Mk(n)(C(Xn)) is a projection. We say that A has no dimension growth if
there is an integer N such that dimXn ≤ N.

(12) Let A and B be two C∗-algebras and let φ : A → B be a contractive
completely positive linear map. Let ε > 0 and let F ⊂ A be a subset. The map φ
is said to be F-ε-multiplicative if

‖φ(ab) − φ(a)φ(b)‖ < ε for all a, b ∈ F .

(13) Let A be a C∗-algebra, let {Bn} be a sequence of C∗-algebras and let
φn : A → Bn be a sequence of contractive completely positive linear maps. We say
that {φn} is a sequentially asymptotic morphism if

lim
n→∞

‖φn(ab) − φn(a)φn(b)‖ = 0 for all a ∈ A.

Let Φ : A → l∞({Bn}) be defined by Φ(a) = {φn} and let φ = π ◦ Φ : A →
q∞({Bn}), where π : l∞({Bn}) → q∞({Bn}) is the quotient map. Then φ is a
homomorphism. In particular, [φ] gives an element in Hom(K(A), K(q∞({Bn}))).
It follows that, for any finite subset P ⊂ P(A), for sufficiently large n, [φn]|P is
well defined partial map to K(Bn).

Thus, given any finite subset P ⊂ P(A), there is δ > 0 and a finite subset F ⊂ A,
such that, if φ : A → B is an F-δ-multiplicative contractive completely positive
linear map, then [φ]|P is well defined.

In what follows, given a finite subset P ⊂ P(A), and φ is an F-δ-multiplicative
contractive completely positive linear map, when we write [φ]|P we mean it is well
defined.

(14) Let h : C(X) → A be a homomorphism and let O ⊂ X be an open subset.
We write

Her(h(O)) = {h(f) : f(t) = 0 t ∈ X \ O}.
(15) Let A be a C∗-algebra and let {an} be a sequence of elements in A. We say

that {an} is a central sequence if

lim
n→∞

‖anx − xan‖ = 0 for all x ∈ A.

These conventions will be used throughout the paper without further explana-
tion.
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3. The main results

3.1. Monomorphisms from C(X). In the 1970’s, Brown, Douglass and Fillmore
([3], [4] and [5]) proved that two unital monomorphisms h1 and h2 from C(X)
into the Calkin algebra B(l2)/K(l2), where B(l2) is the C∗-algebra of bounded
operators and K(l2) is the C∗-algebra of compact operators on the Hilbert space
l2, are unitarily equivalent if and only if they induce the same KK-element. It
should be noted that the Calkin algebra is a simple C∗-algebra with real rank
zero. M. Dadarlat showed that two monomorphisms from C(X) to a unital purely
infinite simple C∗-algebra are approximately unitarily equivalent if and only if
they give the same element in KL(C(X), A). We consider two monomorphisms
h1, h2 : C(X) → A, where A is a unital simple C∗-algebra with tracial (topological)
rank zero. One important previous result was obtained in [19], where we assume
that A has a unique trace.

We recall the definition of the tracial (topological) rank of C*-algebras.

Definition 3.1. Let A be a unital simple C∗-algebra and k ∈ N. Then A is said
to have tracial (topological) rank zero if and only if for any finite set F ⊂ A, and
ε > 0 and any non-zero positive element a ∈ A, there exists a finite-dimensional
C∗-subalgebra B ⊂ A with idB = p such that

(1) ‖[x, p]‖ < ε for all x ∈ F ,
(2) pxp ∈ε B for all x ∈ F ,
(3) [1 − p] ≤ [a].

We write TR(A) = 0 if A has tracial (topological) rank zero.

Recall that a C∗-algebra A is said to have the Fundamental Comparison Prop-
erty, if, for any two projections p, q ∈ A, τ (p) < τ (q) for all τ ∈ T (A) implies that
p ∼ q′ ≤ q. If A has the Fundamental Comparison Property, then condition (3)
above can be replaced by

(3′) τ (1 − p) < ε for all τ ∈ T (A).
It is proved in [36] that if TR(A) = 0, then A has real rank zero, stable rank one

and weakly unperforated K0(A). Every simple AH-algebra with slow dimension
growth and with real rank zero has tracial rank zero. Other simple C∗-algebras
that are inductive limits of type I are also proved to have tracial rank zero (see
[41]). Separable simple amenable C∗-algebras with tracial rank zero which satisfy
the UCT are classified by their K-theory (see [39] and [38]).

Definition 3.2. Let A be a C∗-algebra and let B be a unital C∗-algebra. Suppose
that h1, h2 : A → B are two maps. We say h1 and h2 are approximately unitarily
equivalent if

h1
u∼ε h2 on F

for every finite subset F and ε > 0. In other words, there exists a sequence of
unitaries un ∈ B such that

lim
n→∞

‖ad un ◦ h1(a) − h2(a)‖ = 0 for all a ∈ A.

Suppose that A has tracial states and both h1 and h2 are homomorphisms. Let
τ ∈ T (A). It is clear that if h1 and h2 are approximately unitarily equivalent, then
τ ◦ h1 = τ ◦ h2. In other words, τ ◦ h1 and τ ◦ h2 induce the same Borel measure on
X.

The first main result of this paper is the following.
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Theorem 3.3. Let X be a compact metric space and let A be a unital separable
simple C∗-algebra with TR(A) = 0. Suppose that h1 : C(X) → A is a unital
monomorphism. For any ε > 0 and any finite subset F ⊂ C(X), there exist δ > 0
and a finite subset G ⊂ C(X) satisfying the following: if h2 : C(X) → A is another
unital monomorphism such that

[h1] = [h2] in KL(C(X), A) and |τ ◦ h1(f) − τ ◦ h2(f)| < δ

for all f ∈ G and τ ∈ T (A), then there exists a unitary u ∈ A such that

h1
u∼ε h2 on F .

Consequently, we have

Theorem 3.4. Let X be a compact metric space and let A be a unital separable
simple C∗-algebra with TR(A) = 0. Suppose that h1, h2 : C(X) → A are two unital
monomorphisms. Then h1 and h2 are approximately unitarily equivalent if and only
if

[h1] = [h2] in KL(C(X), A)

and τ ◦ h1(a) = τ ◦ h2(a) for all a ∈ C(X).

A special case when A has a unique tracial state was obtained in [19].

Corollary 3.5. Let X be a compact metric space with torsion free Ki(C(X)) (i =
0, 1) and let A be a unital separable simple C∗-algebra with TR(A) = 0. Suppose
that h1, h2 : C(X) → A are two unital monomorphisms. Then h1 and h2 are
approximately unitarily equivalent if and only if

(h1)∗i = (h2)∗i, i = 0, 1,

and τ ◦ h1(a) = τ ◦ h2(a) for all a ∈ C(X).

We will give two interesting applications of these results. Some approximate
versions of it will be give in Section 4.

3.2. Minimal dynamical systems. Let X be a compact metric space and let
α : X → X be a homeomorphism. Recall that α is said to be minimal if {αn(x) :
n ∈ Z} is dense in X. We assume that X is an infinite set. The corresponding
transformation group C∗-algebra denoted by Aα = C(X) �α Z is a unital simple
C∗-algebra. It is also amenable and separable. It is in the so-called “Bootstrap”
class of C∗-algebras. Therefore it satisfies the Universal Coefficient Theorem.

Many C∗-algebras described above have tracial rank zero. For example, if X is
a connected manifold and α is a diffeomorphism, then TR(Aα) = 0 if and only if
ρAα

(K0(Aα)) is dense in Aff(T (Aα)) (see [49] and [41]).
In what follows, we will use Aα for C(X) �α Z and jα : C(X) → Aα for the

obvious embedding.
A theorem of Tomiyama (see [56]) establishes the following important relation

between C∗-algebra theory and topological dynamics.

Theorem 3.6 (J. Tomiyama). Let X be a compact metric space and let α, β :
X → X be homeomorphisms. Suppose that (X, α) and (X, β) are topologically
transitive. Then α and β are flip conjugate if and only if there is an isomorphism
φ : C(X) �α Z → C(X) �β Z such that φ ◦ jα = jβ ◦ χ for some isomorphism
χ : C(X) → C(X).
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It should be noted that all minimal dynamical systems are transitive.
In the light of Tomiyama’s theorem, we introduce the following version of ap-

proximate flip conjugacy (for the case that TR(Aα) = TR(Aβ) = 0).

Definition 3.7. Let (X, α) and (X, β) be two minimal dynamical systems such
that TR(Aα) = TR(Aβ) = 0. We say that (X, α) and (X, β) are C∗-strongly
approximately flip conjugate if there exists a sequence of isomorphisms φn : Aα →
Aβ and a sequence of isomorphisms χn : C(X) → C(X) such that [φn] = [φ1] in
KL(Aα, Aβ) for all n and

lim
n→∞

‖φn ◦ jα(f) − jβ ◦ χn(f)‖ = 0 for all f ∈ C(X).

For the general case that the crossed products are not assumed to have tracial
rank zero, a modified definition is given in [46].

In Theorem 3.6, let θ = [φ] in KK(Aα, Aβ). Let Γ(θ) be the induced element in
Hom(K∗(Aα), K∗(Aβ)) which preserves the order and the unit. Then one has

[jα] × θ = [jβ ◦ χ]

Suppose that TR(Aα) = TR(Aβ) = 0. Then ρAα
(K0(Aα)) and ρAβ

(K0(Aβ))
are dense in Aff(T (Aα)) and Aff(T (Aβ)), respectively. Thus Γ(θ) induces an
order and unit preserving affine isomorphism θρ : Aff(T (Aα)) → Aff(T (Aβ)).
Recall ρAα

: (Aα)s.a → Aff(T (Aα)) by ρAα
(a)(τ ) = τ (a) for τ ∈ T (A). Therefore,

in terms of K-theory and KK-theory, one has the following: If α and β are flip
conjugate, then there is an isomorphism χ : C(X) → C(X) such that

(e 3.1) [jα] × θ = [jβ ◦ χ] in KK(C(X), Aβ) and θρ ◦ ρAα
◦ jα = ρAβ

◦ jβ ◦ χ.

The following theorem gives a K-theoretical description of C∗-strong approxi-
mate flip conjugacy.

Theorem 3.8. Let (X, α) and (X, β) be two minimal dynamical systems such that
Aα and Aβ have tracial rank zero. Then α and β are C∗-strongly approximately flip
conjugate if and only if the following hold: There is a sequence of isomorphisms
χn : C(X) → C(X) and θ ∈ KL(Aα, Aβ) such that Γ(θ) gives an isomorphism
from (K0(Aα), K0(Aα)+, [1], K1(Aα)) to (K0(Aβ), K0(Aβ)+, [1], K1(Aβ)), for any
finitely generated subgroup G ⊂ K(C(X)),

(e 3.2) [jα] × θ|G = [jβ ◦ χn]|G in KL(C(X), Aβ) for all sufficiently large n

and

(e 3.3) lim
n→∞

‖ρAβ
◦ jβ ◦ χn(f) − θρ ◦ ρAα

◦ jα(f)‖ = 0 for all f ∈ C(X)s.a.

Corollary 3.9. Let X be a compact metric space with torsion free K-theory.
Let (X, α) and (X, β) be two minimal dynamical systems such that TR(Aα) =
TR(Aβ) = 0. Suppose that there is a unit preserving order isomorphism

γ : (K0(Aα), K0(Aα)+, [1Aα
], K1(Aα)) → (K0(Aβ), K0(Aβ)+, [1Aβ

], K1(Aβ)),
(e 3.4)

[jα] × θ = [jβ ◦ χ] in KL(C(X), Aβ) and γρ ◦ jα = ρAβ
◦ jβ ◦ χ(e 3.5)

for some isomorphism χ : C(X) → C(X). Then (X, α) and (X, β) are C∗-strongly
approximately flip conjugate.
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Remark 3.10. In Definition 3.7, we require that [φn] = [φ1] for all n. It will be
only a marginal gain by removing this condition from the definition. If both
Ki(Aα) and Ki(Aβ) are finitely generated (i = 0, 1), then there are only finitely
many order isomorphisms which preserve the identity. Moreover, in this case,
extZ(Ki−1(Aα), Ki(Aβ)) has only finitely many elements. Thus, in this case, there
are only finitely many elements θ ∈ KL(Aα, Aβ) which gives order and unit preserv-
ing isomorphisms from Ki(Aα) to Ki(Aβ) (i = 0, 1). Hence, there is a subsequence
{nk} such that [φnk

] = θ for some θ. Therefore one may well assume that [φn] = [φ1]
for all n.

In the case when X is the Cantor set, K0(C(X)) = C(X, Z). It follows that, if
there is θ : Ki(Aα) → Ki(Aβ) that is an order and unit preserving isomorphism,
then there exists χ : C(X) → C(X) such that

θ ◦ (jα)∗0 = (jβ ◦ χ)∗0

(see Theorem 2.6 of [45]). Moreover, it implies that

θρ ◦ ρAα
◦ jα = ρAβ

◦ jβ ◦ χ.

In other words, in the case that X is the Cantor set condition (e 3.3) or (e 3.5) is
automatic.

Furthermore, if X is the Cantor set, two minimal homeomorphisms α and β
are C∗-strongly approximately conjugate if and only if they are approximately K-
conjugate. More precisely we have the following theorem which is also related to
the work of Giordano, Putnam and Skau in [16].

Theorem 3.11 (Theorem 5.4 of [45]). Let X be the Cantor set and let α and β be
minimal homeomorphisms. Then the following are equivalent:

(i) α and β are C∗-strongly approximately flip conjugate,
(ii) α and β are approximately K-conjugate,
(iii) Aα and Aβ are isomorphic,
(iv) (K0(Aα), K0(Aα)+, [1Aα

]) ∼= (K0(Aβ), K0(Aβ)+, [1Aβ
]),

(v) there exists a sequence γn ∈ [[α]] and σn ∈ [[β]], and a homeomorphism
χ : X → X such that

f ◦ α = lim
n→∞

f ◦ χ ◦ σn ◦ β ◦ σ−1
n ◦ χ−1 and

f ◦ β = lim
n→∞

f ◦ χ−1 ◦ γn ◦ α ◦ γ−1
n ◦ χ

for all f ∈ C(X).
(vi) α and β are strong orbit equivalent.

In Theorem 3.11, [[α]] is the set of topological full group with respect to α, i.e.,
the group of all homeomorphisms γ : X → X such that γ(x) = αn(x)(x) for all
x ∈ X, where n ∈ C(X, Z). We will explain other terminologies used in Theorem
3.11 in Section 5. Further discussion of approximate conjugacy will be given in
Section 5.

3.3. C∗-dynamical systems and the Rokhlin property. By a C∗-dynamical
system we mean a pair (A, α), where A is a C∗-algebra and α ∈ Aut(A). Let A be
a unital simple AT-algebra with real rank zero and α ∈ Aut(A) be a “sufficiently
outer” automorphism. A. Kishimoto studied the problem when the associated
crossed product is again an AT-algebra of real rank zero ([24], [25], [26] and [27]).
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In particular, Kishimoto studied the case that A has a unique tracial state and α
is approximately inner. Kishimoto also suggested that the appropriate notion for
“sufficiently outer” is the Rokhlin property. A more general question is: Let A
be a unital simple AH-algebra with no dimension growth and with real rank zero.
Suppose that α ∈ Aut(A). When is A �α Z again a unital simple AH-algebra with
no dimension growth and with real rank zero?

With the classification theorem for simple C∗-algebras of tracial topological rank
zero, an important question related to the crossed products is the following: Let
A be a unital separable simple C∗-algebra with tracial rank zero and α an (outer)
automorphism. When does A �α Z have tracial rank zero?

The following is defined in [50, Definition 2.1].

Definition 3.12. Let A be a simple unital C∗-algebra and let α ∈ Aut(A). We say
α has the tracial Rokhlin property if for every finite set F ⊂ A, every ε > 0, every
n ∈ N, and every nonzero positive element x ∈ A, there are mutually orthogonal
projections e0, e1, . . . , en ∈ A such that:

(1) ‖α(ej) − ej+1‖ < ε for 0 ≤ j ≤ n − 1.
(2) ‖eja − aej‖ < ε for 0 ≤ j ≤ n and all a ∈ F .
(3) With e =

∑n
j=0 ej , [1 − e] ≤ [x].

Recall that a unital simple C∗-algebra A is said to have the Fundamental Com-
parison Property if for any two projections p, q ∈ A, p ∼ q′ ≤ q, if τ (p) < τ (q) for
all τ ∈ T (A). In Definition 3.12, if A has the Fundamental Comparison Property,
then condition (3) can be replaced by

(3′) τ (1 − e) < ε for all τ ∈ A.
This is the reason why it called tracial Rokhlin property.

A much stronger version of Rokhlin property was recently introduced in [47].

Definition 3.13. Let A be a simple unital C∗-algebra and let α ∈ Aut(A). We
say α has the tracial cyclic Rokhlin property if for every finite set F ⊂ A, every
ε > 0, every n ∈ N, and every non-zero positive element x ∈ A, there are mutually
orthogonal projections e0, e1, . . . , en ∈ A such that

(1) ‖α(ej) − ej+1‖ < ε for 0 ≤ j ≤ n, where en+1 = e0.
(2) ‖eja − aej‖ < ε for 0 ≤ j ≤ n and all a ∈ F .
(3) With e =

∑n
j=0 ej , [1 − e] ≤ [x].

Note that if α has the tracial cyclic Rokhlin property, then K0(A) must have a
“dense” subset which is invariant under α∗0.

It is shown (see Theorem 2.9 of [47] and also [44]) that if α has tracial cyclic
Rokhlin property, then indeed the crossed product A �α Z has tracial rank zero.
It is proved in [50] that tracial Rokhlin property occurs more often than one may
think. For example, assuming that A is a unital separable simple C∗-algebra with
a unique tracial state and with tracial rank zero, they prove in [50] that A�α Z has
tracial Rokhlin property if and only if A �α Z has a unique tracial state, or A �α Z

has real rank zero. It is proved in [47] that if αr is approximately inner for some
integer r > 0 and α has the tracial Rokhlin property, then α has the tracial cyclic
Rokhlin property. Consequently, A �α Z has tracial rank zero. In particular, by
the classification theorem for simple unital separable amenable C∗-algebras with
tracial rank zero (see [39]), if A is a unital AT-algebra of real rank zero, in this case,
A �α Z is again a unital AT-algebra with real rank zero provided that A �α Z has
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torsion-free K-theory. This solves Kishimoto’s problem in this setting. By applying
an approximate version of Theorem 3.3 (see Corollary 4.8), we have the following
theorem.

Theorem 3.14. Let A be a unital separable simple amenable C∗-algebra with
TR(A) = 0 which satisfies the UCT and let α ∈ Aut(A). Suppose that α satis-
fies the tracial Rokhlin property. If there is an integer r > 0 such that αr

∗0|G = idG

for some subgroup G ⊂ K0(A) for which ρA(G) = ρA(K0(A)), then α satisfies the
tracial cyclic Rokhlin property.

From this we obtain:

Theorem 3.15. Let A be a unital separable simple amenable C∗-algebra with
TR(A) = 0 which satisfies the UCT and let α ∈ Aut(A). Suppose that α satis-
fies the tracial Rokhlin property and αr

∗0|G = idG for some subgroup G ⊂ K0(A)
for which ρA(G) = ρA(K0(A)). Then A �α Z is a unital simple AH-algebra with no
dimension growth and with real rank zero.

As a consequence, combining the results in [50], we also have the following.

Theorem 3.16. Let A be a unital separable simple amenable C∗-algebra with
TR(A) = 0 and with a unique tracial state which satisfies the UCT, and let
α ∈ Aut(A) be such that αk

∗0|G = idG for some subgroup G ⊂ K0(A) for which
ρA(G) = ρA(K0(A)). Then the following are equivalent:

(i) α has the tracial Rokhlin property;
(ii) A �α Z has a unique tracial state;
(iii) A �α Z has real rank zero;
(iv) α has the tracial cyclic Rokhlin property;
(v) A �α Z has tracial rank zero;
(vi) A �α Z is a unital simple AH-algebra with unique tracial state and real rank

zero.

Finally we would like to mention the Furstenberg transformations on irrational
rotation algebras studied recently by H. Osaka and N. C. Phillips. These also
include the transformation group C∗-algebras of minimal Furstenberg transforma-
tions on the torus.

Definition 3.17. Let Aθ be the usual rotation algebra generated by unitaries u
and v satisfying vu = e2πiθuv. Let θ, γ ∈ R, let d ∈ Z, and let f : S1 → R

be a continuous function. The Furstenberg transformation on Aθ determined by
(θ, γ, d, f) is the automorphism αθ,γ,d,f of Aθ such that

αθ,γ,d,f (u) = e2πiγu and αθ,γ,d,f (v) = exp(2πif(u))udv.

The resulted crossed product is denoted by Aθ �α Z.

Combining the results in [50] and Theorem 3.16, we obtain the following.

Theorem 3.18. Let θ, γ ∈ R and suppose that 1, θ, γ are linearly independent over
Q. Let d ∈ Z and let αθ,γ,d,f ∈ Aut(Aθ) be as defined in Definition 3.17. Then

(1) Aθ �α Z is a unital simple AH-algebra with no dimension growth, with real
rank zero and with a unique tracial state.

(2) If, in addition, d = 0, then Aθ �α Z is an AT-algebra with real rank zero.
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4. Maps from C(X)

In this section we will prove Theorem 3.3 and Theorem 3.4. We do this by proving
an approximate version of these (Theorem 4.6). We will also prove Theorem 4.8,
which we use in Section 5.

Lemma 4.1. Let A be a unital C∗-algebra. For any ε > 0 and any finite subset
F ⊂ A, there exists δ > 0 and G ⊂ A which satisfy the following:

If B is another unital C∗-algebra, τ ∈ T (B) and φn : A → B is a unital contrac-
tive completely positive linear map which is G-δ-multiplicative, then there exists a
tracial state σ ∈ T (A) such that

|τ ◦ φn(a) − σ(a)| < ε for all a ∈ F .

Proof. Suppose that the lemma is false. Then there exist ε0 > 0 and a finite subset
F0 ⊂ A, there exists a Gn-δn-multiplicative contractive completely positive linear
map φn : A → Bn, where Bn are unital C∗-algebras and

⋃∞
n=1 Gn is dense in A

and
∑∞

n=1 δn < ∞, and a sequence of tracial states τn ∈ T (Bn) such that

inf
n∈N

{inf{sup{|τn ◦ φn(a) − σ(a)| : a ∈ F0} : σ ∈ T (A)}} ≥ ε0.

Take a weak limit σ of {τn◦φn}. Then σ is a tracial state of A. There is subsequence
φn(k) such that

σ(a) = lim
k→∞

τ ◦ φn(k)(a) for all a ∈ A.

This gives a contradiction. �

Definition 4.2. Let X be a compact metric space and let A be a unital C∗-
algebra. Suppose that φ : C(X) → A is a unital positive linear map and suppose
that τ ∈ T (A). Then τ ◦ φ is a positive linear functional on C(X). We use µτ◦φ for
the induced probability Borel regular measure.

Let X be a compact metric space and η > 0. Then there are finitely many
(distinct) points x1, x2, ..., xm ∈ X such that {x1, x2, ..., xm} is an η-dense subset.
There is an integer s > 0, such that

Oi ∩ Oj = ∅, i �= j,

where Oi = {x ∈ X : dist(x, xi) < η/2s}, i = 1, 2, ..., m. The integer s depends on
the choice of {x1, x2, ..., xm}.

Lemma 4.3. Let X be a compact metric space, let ε > 0 and let F ⊂ C(X) be a
finite subset. Let L > 0 be an integer and let η > 0 be such that |f(x) − f(x′)| <
ε/8 if dist(x, x′) < η. Then, for any integer s > 0, any finite η/2-dense subset
{x1, x2, ..., xm} of X for which Oi ∩ Oj = ∅, if i �= j, where

Oi = {ξ ∈ X : dist(ξ, xi) < η/2s}

and any 1/2s > σ > 0, there exist a finite subset G ⊂ C(X) and δ > 0 satisfying
the following:

For any unital separable stably finite C∗-algebra A with real rank zero, τ ∈ T (A)
and any G-δ-multiplicative contractive completely positive linear map φ : C(X) →
A, if µτ◦φ(Oi) > σ · η, for all i, then there are mutually orthogonal projections

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CLASSIFICATION OF HOMOMORPHISMS AND DYNAMICAL SYSTEMS 871

p1, p2, ..., pm in A such that

‖φ(f) − ((1 − p)φ(f)(1 − p) +
m∑

i=1

f(xi)pi)‖ < ε for all f ∈ F

and ‖(1 − p)φ(f) − φ(f)(1 − p)‖ < ε,

where p =
∑m

i=1 pi,

τ (pk) > (4mL + 4)τ (1 −
m∑

i=1

pi) and τ (pk) >
σ

2
· η, k = 1, 2, ..., m.

(In the above statement, η does not depend on the choice of σ.)

Proof. Suppose that there exists ε0 > 0 and a finite subset F0 ⊂ C(X) so that the
lemma is false. Fix ε > 0 so that ε < ε0/4. Let η > 0 so that

|f(x) − f(y)| < ε/8 if dist(x, y) < η, x, y ∈ X,

for all f ∈ F0. Suppose that {x1, x2, ..., xm} is an η/2-dense subset of X such that
Oi ∩ Oj = ∅, if i �= j, where

Oi = {x ∈ X : dist(x, xi) < η/2s}, i = 1, 2, ..., m,

for some integer s > 0. Let 1/2s > σ > 0. Since the lemma is false (for a choice
of the aboved-mentioned x1, ..., xm, s and σ), there exist a sequence of unital sep-
arable stably finite C∗-algebra Bn of real rank zero, a sequence of unital Gn-δn-
multiplicative contractive completely positive linear maps φn : C(X) → Bn, where⋃∞

n=1 Gn is dense in C(X) and
∑∞

n=1 δn < ∞, and there are τn ∈ T (Bn) such that
µτ◦φn

(Oi) > σ · η satisfying the following:

inf{sup{‖φn(f) − [(1 − pn)φn(1 − pn) +
m∑

i=1

f(xi)p(i, n)]‖ : f ∈ F0} : n} ≥ ε0

where the infimum is taken among all mutually orthogonal projections p(1, n),
p(2, n), ..., p(m, n) which satisfy

τn(p(i, n)) > (4mL + 4)τn(1 − pn) and τn(p(i, n)) > ση/2,

where pn =
∑m

i=1 p(i, n).
Define Φ : C(X) → l∞({Bn}) by Φ(f) = {φn(f)} and let π : l∞({Bn}) →

q∞({Bn}). Then π ◦ Φ : C(X) → q∞({Bn}) is a homomorphism.
By passing to a subsequence, if necessary, we may also assume that there is

τ ∈ l∞({Bn}) such that
lim

n→∞
τn(an) = τ ({an})

for any {an} ∈ l∞({Bn}). Moreover, since, for each {an}∈c0({Bn}), limn→∞ τn(an)
= 0, we may view τ as a tracial state of q∞({Bn}). It follows that

µτ,π◦Φ(Oi) > σ · η,

i = 1, 2, ..., m.
Exactly as in the proof of 2.11 of [34], there are ri ∈ (0, 1) such that

µτ,π◦Φ(Cri
) = 0,(e 4.6)

where
Cri

= {ζ ∈ X : dist(ζ, xi) = (1 + ri)(η/2)}.
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Let Ω1, Ω2, ..., ΩK′ be disjoint open subsets such that
⋃K′

i=1 Ωi = X \
⋃m

i=1 Cri
.

Therefore
K′⋃
i=1

Ωi ∪ (
m⋃

i=1

Cri
) = X and diam(Ωi) < η/2.

(Note that K ′ ≤ mm.) Since Oi ∩ Oj = ∅, if i �= j, we may assume that Oi ⊂ Ωi,
i = 1, 2, ..., m, and µτ◦π◦Φ(Ωi) > 0, i = 1, 2, ..., K (and µτ◦π◦Φ(Ωi) = 0 if i > K and
K ′ ≥ K ≥ m). Let BΩi

= Her(π ◦ Φ(Ωj)), i = 1, 2, ..., K ′. Since Bn has real rank
zero, q∞({Bn}) also has real rank zero. Hence there is an approximate identity
{ei(n)} for BOi

for each i. Then

τ (e(n)
i ) ↗ µτ◦π◦Φ(Ωi),

i = 1, 2, ..., K. Since µτ◦π◦Φ(X \
⋃m

i Cri
) = 0,

τ (
K∑

i=1

e
(n)
i ) ↗ 1

as n → ∞. So

τ (1 −
K∑

i=1

e
(n)
i ) → 0 as n → ∞.

Since µτ◦π◦Φ(Ωi) > 0 for i = 1, 2, ..., K, we obtain projections qj (= ej(n) for some
large n) so that

(4KL + 5)τ (1 −
K∑

k=1

qk) < τ (qi), i = 1, 2, ..., K.

By Lemma 2.5 of [34] and by the choice of η, one obtains

‖π ◦ Φ(f) − [(1 − q)π ◦ Φ(f)(1 − q) +
K∑

k=1

f(ζk)qk]‖ < ε/2 and

‖qπ ◦ Φ(f) − π ◦ Φ(f)q‖ < ε/2

for all f ∈ F0, where q =
∑K

k=1 qk. Thus, for all sufficiently large n, there are non-
zero mutually orthogonal projections p(1, n), p(2, n), ..., p(K, n) ∈ Bn such that

‖φn(f) − [(1 − pn)φn(f)(1 − pn) +
K∑

k=1

f(ζk)p(k, n)]‖ < ε/2,

‖pnφn(f) − φn(f)pn‖ < ε/2 for all f ∈ F0 and

(4KL + 4)τn(1 − pn) < τn(p(k, n)),

where pn =
∑K

k=1 p(i, n). Note that Oi ⊂ Ωi, i = 1, 2, ..., m. Since {x1, x2, ..., xm}
is η/2-dense in X, by the choice of η and by replacing some of points ξj which close
to xi within η/2 by xi and p(k, n) by sum of some p(k′, n)’s, we may assume that
K = m and ξi = xi. Furthermore, it is also clear that we may assume that

τ (pk) >
σ · η

2
, k = 1, 2, ..., m.

This is a contradiction. �
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Lemma 4.4. Let X be a compact metric space, let ε > 0 and let F ⊂ C(X) be a
finite subset. Let L > 0 be an integer and let η > 0 be such that |f(x)−f(x′)| < ε/8
if dist(x, x′) < η. Then, for any integer s > 0, any finite η/2-dense subset of X for
which Oi ∩ Oj = ∅ for i �= j, where

Oi = {ξ ∈ X : dist(ξ, xi) < η/2s}
and any 1/2s > σ > 0, there exist γ > 0, a finite subset G ⊂ C(X) and δ > 0
satisfying the following:

For any unital separable stably finite C∗-algebra A with real rank zero, τ ∈ T (A)
and any unital G-δ-multiplicative contractive completely positive linear map φ, ψ :
C(X) → A with

|τ ◦ φ(g) − τ ◦ ψ(g)| < γ for all g ∈ G,

and if
µτ◦φ(Oi), µτ◦ψ(Oi) > σ · η,

for all i, then there are mutually orthogonal projections p1, p2, ..., pm and q1, q2, ...,
qm in A such that

‖φ(f) − ((1 − p)φ(f)(1 − p) +
m∑

i=1

f(xi)pi)‖ < ε for all f ∈ F

and ‖(1 − p)φ(f) − φ(f)(1 − p)‖ < ε/2,

where p =
∑m

i=1 pi,

τ (pk) > (3mL + 3)τ (1 −
m∑

i=1

pi) and τ (pk) >
σ · η

2
, k = 1, 2, ..., m,

and

‖ψ(f) − ((1 − q)ψ(f)(1 − q) +
m∑

i=1

f(xi)qi)‖ < ε for all f ∈ F

and ‖(1 − q)ψ(f) − ψ(f)(1 − q)‖ < ε,

where q =
∑m

i=1 qi,

τ (qk) > (3mL + 3)τ (1 −
m∑

i=1

qi) and τ (qk) > σ · η/2, k = 1, 2, ..., m,

and

|τ (qk) − τ (pk)| <
mink{τ (pk)}

3mL
, k = 1, 2, ..., m.(e 4.7)

(Here γ depends on m, which depends on η as well as σ. But η does not depend
on σ.)

Proof. First we note that only (e 4.7) needs a proof. The proof is similar to that of
Lemma 4.3. But we need to “dig” out the projections simultaneously

Let Bn be any sequence of unital separable C∗-algebras of real rank zero, let
φn, ψn : C(X) → Bn be any unital contractive completely positive linear maps and
let τn ∈ T (Bn) such that

lim
n→∞

‖φn(ab) − φn(a)φn(b)‖ = 0, lim
n→∞

‖ψn(ab) − ψn(a)ψn(b)‖ = 0 and

lim
n→∞

|τn ◦ φn(f) − τn ◦ ψn(f)‖ = 0
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for all a, b, f ∈ C(X). Let Φ, Ψ : C(X) → l∞({Bn}) be defined by Φ(f) = {φn(f)}
and Ψn(f) = {ψn(f)}, respectively. Let π : l∞({Bn}) → q∞({Bn}) be the quotient
map. As in the proof of Lemma 4.3, π ◦ Φ, π ◦ Ψ : C(X) → q∞({Bn}) are unital
homomorphisms. By the assumption, borrowing the notation in the proof of Lemma
4.3, τ ◦ π ◦ Φ = τ ◦ π ◦ Ψ. Thus, in the proof of Lemma 4.3, one has

µτ,π◦Φ(Ωi) = µτ,π◦Ψ(Ωi), i = 1, 2, ..., K.

Note that we assume that µτ,π◦Φ(Ωi) > 0, i = 1, 2, ..., K. Note also that m ≤ K ≤
mm. Let {e′j(n)} be an approximate identity for Her(π ◦ Ψn(Ωj)). Put

r = inf{µτ,π◦Φ(Ωi) : i = 1, 2, ..., K} > 0.

So one can choose n so that

|τ (e′j(n)) − τ (ej(n))| < r/(4KL + 4) as well as

τ (e′j(n)) > (4KL + 4)τ (1 −
K∑

j=1

e′j(n)), j = 1, 2, ..., K.

We then apply the last argument of the proof of Lemma 4.3. It is then clear from
the proof of Lemma 4.3 that, by matching the size of projections, one may further
require (e 4.7) to be held. �

The following is taken from Theorem 3.1 in [20] (see also Remark 1.1 in [20]).
Some special cases of this can be found in [31], [15]. A different form, but similar
in nature, of the following was proved in [8].

Theorem 4.5. Let X be a compact metric space. For any ε > 0 and any finite
subset F ⊂ C(X), there exist δ > 0, η > 0, an integer N > 0, a finite subset
G ⊂ C(X) and a finite subset P ⊂ P(C(X)) satisfy the following:

For any unital C∗-algebra A with real rank zero, stable rank one and weakly un-
perforated K0(A) and any unital G-δ-multiplicative contractive completely positive
linear maps φ, ψ : C(X) → A, if

[φ]|P = [ψ]|P ,

then there exists a unitary u ∈ MNk+1(A) such that

φ(f) ⊕ f(x1) · 1N ⊕ f(x2) · 1N ⊕ · · · ⊕ f(xk) · 1N
u∼ε ψ(f),

f(x1) · ⊕1N ⊕ f(x2) · 1N ⊕ · · · ⊕ f(xk) · 1N

for all f ∈ F , and for any η-dense set {x1, x2, ..., xk} in X.

Theorem 4.6. Let X be a compact metric space, ε > 0 and F ⊂ C(X) be a
finite subset. Let η > 0 be such that |f(x) − f(x′)| < ε/8 if dist(x, x′) < η. Then,
for any integer s > 0, any finite η/2-dense subset {x1, x2, ..., xm} of X for which
Oi ∩ Oj = ∅, where

Oi = {x ∈ X : dist(x, xi) < η/2s}
and any 1/2s > σ > 0, there exist γ > 0, a finite subset G ⊂ C(X), δ > 0, and a
finite subset P ⊂ P(C(X)) satisfying the following:

For any unital separable simple C∗-algebra A with TR(A) = 0, any G-δ-multipli-
cative unital contractive completely positive linear maps φ, ψ : C(X) → A with

|τ ◦ φ(g) − τ ◦ ψ(g)| < γ for all g ∈ G and for all τ ∈ T (A), if

µτ◦φ(Oi), µτ◦ψ(Oi) > σ · η,
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for all i and for all τ ∈ T (A), and, if

[φ]|P = [ψ]|P ,

then there exists a unitary u ∈ A such that

φ
u∼ε ψ on F .

(Here η does not depend on σ. But γ does depend on σ as well as η.)

Proof. Fix ε > 0 and a finite subset F ⊂ C(X). Let δ1, G1, P1, η1 and integer N
be required by Theorem 4.5 for ε/8 and F . Let L = 2N. There is a finite subset
F1 ⊂ C(X) and δ2 > 0 satisfying the following: For any F1-δ2-multiplicative
contractive completely positive linear maps H1, H2 : C(X) → B (for any unital B)
if H1 ≈δ2 H2 on F1 implies that

[H1]|P1 = [H2]|P1 .(e 4.8)

Without loss of generality, to simplify notation, we may assume that F1 ⊃ F and
δ2 < δ1. Set F2 = G1 ∪ F1. Let η2 > 0, σ > 0, δ3 > 0, γ1 > 0 and a finite subset G2

be required in Lemma 4.4 corresponding to ε/16, F2, L. We now let G = F2 ∪ G2

and η = min{η1, η2}. We may assume that δ3 < δ2. Let x1, x2, ..., xm ∈ X be an
η/2-dense subset. Suppose that

Oi ∩ Oj = ∅, if i �= j,

where Oi = {x ∈ X : dist(x, xi) < η/2s}, and suppose that

µτ◦φ(Oi), µτ◦ψ(Oi) > η · σ for all τ ∈ T (A), 1 ≤ i ≤ m.

We also assume that

(e 4.9) |τ ◦ φ(f) − τ ◦ ψ(f)| < γ/2 for all f ∈ G and for all τ ∈ T (A).

Since TR(A) = 0, there exists a sequence of finite-dimensional C∗-subalgebras
Bn with en = 1Bn

and a sequence of contractive completely positive linear maps
φn : A → Bn such that

(1) limn→∞ ‖ena − aen‖ = 0 for all a ∈ A,
(2) limn→∞ ‖φn(a) − enaen‖ = 0 for all a ∈ A and φn(1) = en,
(3) limn→∞ ‖φn(ab) − φn(a)φn(b)‖ = 0 for all a, b ∈ A, and
(4) τ (1 − en) → 0 uniformly on T (A).
In what follows, we may assume that

τ (1 − en) <
σ · η

8mL + 1
for all τ ∈ T (A).(e 4.10)

We write Bn =
⊕r(n)

i=1 D(i, n), where each D(i, n) is a simple finite-dimensional C∗-
algebra, a full matrix algebra. Denote by Φ(i, n) : A → D(i, n) the map which is the
composition of the projection map from Bn onto D(i, n) with φn. Denote by τ (i, n)
the standard normalized trace on D(i, n). Note that any weak limit of τ (i, n)◦Φ(i, n)
gives a tracial state of A. By (e 4.9) and (4), we have, for all sufficiently large n,

|τ (i, n) ◦ Φ(i, n) ◦ φ(g) − τ (i, n) ◦ Φ(i, n) ◦ ψ(g)| < γ for all g ∈ G.

Put φ(i,n) = Φ(i, n) ◦ φ and ψ(i,n) = Φ(i, n) ◦ ψ. By (4), for all sufficiently large n,
we have
(e 4.11)

µτ(i,n)◦φ(i,n)
(Ok) ≥ σ · η/2 and µτ(i,n)◦ψ(i,n)

(Ok) ≥ σ · η/2, k = 1, 2, ..., m,
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for each i. From (1), (2), (3) above and (e 4.11), by applying Lemma 4.4, for each
i and all sufficiently large n, we have

‖φ(i,n)(f) − [(1D(i,n) − pi,n)φ(i,n)(f)(1D(i,n) − pi,n) +
m∑

j=1

f(xj)p(j, i, n)]‖ < ε/8,

(e 4.12)

‖ψ(i,n)(f) − [(1D(i,n) − qi,n)ψ(i,n)(f)(1D(i,n) − qi,n) +
m∑

j=1

f(xj)q(j, i, n)]‖ < ε/8,

(e 4.13)

‖pi,nφi,n(f) − φi,n(f)pi,n‖ < ε/8 and ‖qnψi,n(f) − ψi,nn(f)qi,n‖ < ε/8

for all f ∈ G, where p(1, i, n), p(2, i, n), ..., p(m, i, n) ∈ D(i, n) are non-zero mutually
orthogonal projections, pi,n = 1 −

∑m
j=1 p(j, i, n) and qi,n = 1 −

∑m
j=1 q(j, i, n).

Moreover,

(3mL + 3)τ (i, n)(1D(i,n) − pi,n) < τ (i, n)(p(k, i, n)),(e 4.14)

(3mL + 3)τ (i, n)(1D(i,n) − qi,n) < τ (i, n)(q(k, i, n)),(e 4.15)

|τ (i, n)(p(k, i, n))− τ (i, n)(q(k, i, n))| < min
k

{τ (i, n)(p(k, i, n))}/3mL and
(e 4.16)

τ (i, n)(p(k, i, n)), τ (i, n)(q(k, i, n)) > σ · η/2, 1 ≤ k ≤ m.(e 4.17)

For convenience, we may assume that

τ (i, n)(p(k, i, n)) ≥ τ (i, n)(q(k, i, n)), 1 ≤ k ≤ m1 < m, and

τ (i, n)(q(k, i, n)) ≥ τ (i, n)(p(k, i, n)), m1 + 1 ≤ k ≤ m.

In D(i, n), there are projections p(k, i, n)′ ≤ p(k, i, n), k = 1, 2, ..., m1, and q(k, i, n)′

≤ q(k, i, n), k = m1 + 1, m1 + 2, ..., m, such that

τ (i, n)(p(k, i, n)′) = τ (i, n)(q(k, i, n)), k = 1, 2, ..., m1, and

τ (i, n)(q(k, i, n)′) = τ (i, n)(p(k, i, n)), k = m1 + 1, m1 + 2, ..., m.

Put p′i,n =
∑m1

k=1 p(k, i, n)′ +
∑m

k=m1+1 p(k, i, n) and

q′i,n =
m1∑
k=1

q(k, i, n) +
m∑

k=m1+1

q(k, i, n)′.

One computes, by (e 4.14), (e 4.15) and (e 4.16), that

(2mL + 1)τ (i, n)(1D(i,n) − p′i,n) < τ (i, n)(p(k, i, n)), τ (i, n)(p(k, i, n)′) and

(2mL + 1)τ (i, n)(1D(i,n) − q′i,n) < τ (i, n)(q(k, i, n)), τ (i, n)(q(k, i, n)′) and

τ (i, n)(p(k, i, n)′) > (σ · η)/2 for 1 ≤ k ≤ m1, and

τ (i, n)(q(k, i, n)) > (σ · η)/2 for m1 < k ≤ m.

One also has

‖φ(i,n)(f) − [(1D(i,n) − p′i,n)φ(i,n)(f)(1D(i,n) − p′i,n)

+
m1∑
j=1

f(xj)p(j, i, n)′ +
m∑

j=m1+1

f(xj)p(j, i, n)]‖ < ε/8
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and

‖ψ(i,n)(f) − [(1D(i,n) − q′i,n)ψ(i,n)(f)(1D(i,n) − q′i,n)

+
m1∑
j=1

f(xj)q(j, i, n) +
m∑

j=m1+1

f(xj)q(j, i, n)′]‖ < ε/8

for all f ∈ G.
Note that in D(i, n), there is a unitary u(i,n) such that

u∗
(i,n)p(j, i, n)′u(i,n) = q(j, i, n), 1 ≤ j ≤ m1, and

u∗
(i,n)p(j, i, n)u(i,n) = q(j, i, n)′, m1 < j ≤ m.

Thus without loss of generality, we may assume that p(j, i, n)′ = q(j, i, n) and
p(j, i, n)′ = q(j, i, n). Furthermore, by changing notation if necessary, we may as-
sume that (e 4.12) and (e 4.13) hold as well as

(e 4.18) (2mL + 1)τ (i, n)(1− pn) < τ (i, n)(p(j, i, n))

and pi,n = qi,n, p(j, i, n) = q(j, i, n). By combining all i, without loss generality, we
may write that

‖φn(f) − [(1Bn
− Pn)φn(f)(1Bn

− Pn) +
m∑

k=1

f(xk)P (k, n)]‖ < ε/4 and

(e 4.19)

‖ψn(f) − [(1Bn
− Pn)ψn(f)(1|Bn

− Pn) +
m∑

k=1

f(xk)P (k, n)]‖ < ε/4(e 4.20)

for all f ∈ F . Here P (k, n) =
∑r(n)

i=1 p(k, i, n) and Pn = 1Bn
−

∑m
k=1 P (k, n).

Furthermore, we also have
(e 4.21)
(2mL+1)[1Bn

−Pn] ≤ [P (k, n)] in Bn and t(P (k, n)) ≥ σ · η
4

for all t ∈ T (A).

It follows from (e 4.21) and (e 4.10) that (TR(A) = 0)

(mL + 1)[1A − Pn] ≤ [P (k, n)] in A, k = 1, 2, ..., m.(e 4.22)

Put

H1(f) = (1A − Pn)h1(f)(1A − Pn) and H2(f) = (1A − Pn)h2(f)(1A − Pn)

for f ∈ C(X). It follows from (1), (2) above and by (e 4.19) and (e 4.20), for all
sufficiently large n, one estimates that

φ ∼ε/4 H1 ⊕ (
m⊕

k=1

f(xi)P (k, n)) and(e 4.23)

ψ ∼ε/4 H2 ⊕ (
m⊕

k=1

f(xi)P (k, n))(e 4.24)

on G. By the choice of F1 and δ2, one obtains that

[H1 ⊕
m⊕

k=1

f(xi)P (k, n)]|P1 = [H2 ⊕
m⊕

k=1

f(xi)P (k, n)]|P1 .
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It follows that (working in each group Ki(A ⊗ Cn))

[H1]|P1 = [H2]|P1 .

Denote E = 1A − Pn and define H ′
0 : C(X) → Mm(EAE) by

H ′
0(f) = diag(f(x1), f(x2), ..., f(xm)) for all f ∈ C(X)

and define H0 = H ′
0 ⊕ H ′

0 ⊕ · · · ⊕ H ′
0 : C(X) → MmN (EAE). Then, by the

choice of N, η1, δ1, G1 and P1 and applying Theorem 4.5, we obtain a unitary
u ∈ MmN+1(EAE) such that

(e 4.25) H1 ⊕ H0
u≈ε/2 H2 ⊕ H0 on F .

Rewrite H0(f) =
∑m

k=1 f(xk)E′
k, where E′

1, E
′
2, ..., E

′
m are mutually orthogonal

projections, for f ∈ C(X). By (e 4.22), there is a unitary W ∈ A such that
W ∗E′

kW ≤ P (k, n), k = 1, 2, ..., m. Put Qk = P (k, n) − W ∗E′
kW and define

H00(f) =
∑m

k=1 f(xk)Qk for f ∈ C(X). Then one has

H1 ⊕ H0 ⊕ H00 ∼ H1 ⊕ (
m⊕

k=1

f(xk)P (k, n)) and(e 4.26)

H2 ⊕ H0 ⊕ H00 ∼ H2 ⊕ (
m⊕

k=1

f(xi)P (k, n))(e 4.27)

on F . Finally, by (e 4.25), (e 4.26), (e 4.27), (e 4.23) and (e 4.24), one obtains

φ ∼ε ψ on F .

�

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let η > 0 and let x1, x2, ..., xm ∈ X be an η/4-dense subset.
Choose an integer s > 0 such that

Oi ∩ Oj = ∅, if i �= j,

where Oi = {x ∈ X : dist(x, xi) < η/2s}. Let gi ∈ C(X) such that 0 ≤ gi ≤ 1,
gi(x) = 1 if dist(x, xi) < η/8s and gi(x) = 0 if dist(x, xi) ≥ η/4s, i = 1, 2, ..., m.

Since A is simple and h1 is a monomorphism,

inf{τ (gi) : τ ∈ T (A)} = ai > 0, i = 1, 2, ..., m.

Thus µτ◦h1(Oi) > ai for all τ ∈ T (A), i = 1, 2, ..., m. Choose d = inf{ai : 1 ≤ i ≤
m}/η. Then

µτ◦h1(Oi) > d · η, i = 1, 2, ..., m.

Choose σ = min{d/2, 1/2s}. Let G = G ∪ {gi : 1 ≤ i ≤ m}. By choosing small γ, if

|τ ◦ h1(g) − τ ◦ h2(g)| < γ for all g ∈ G,

one also has
µτ◦h2(Oi) > σ ◦ η, i = 1, 2, ..., m.

We see then Theorem 3.3 follows from Theorem 4.6. �

Proof of Theorem 3.4. It is an immediate consequence of Theorem 3.3. �
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Definition 4.7. Let X be a compact metric space and let A be a stably finite
C∗-algebra. Let C = PMk(C(X))P. Suppose that h : C → A is a unital homomor-
phism and τ ∈ T (A). Define φ : C(X) → C by φ(f) = f · P for f ∈ C(X). Define
τ̃ = τ ◦ φ : C(X) → C. We use µ̃τ for the probability measure induced by τ̃ . This
notation will be used below and in the proof of Lemma 6.3. Note also that if X is
connected and has finite dimension, then C is a full hereditary C∗-subalgebra of
Mk(C(X)), consequently Ki(C) = Ki(C(X)) (i = 0, 1).

Corollary 4.8. Let X be a finite-dimensional compact metric space and let C =
PMk(C(X))P, where P ∈ Mk(C(X)) is a projection. Let ε > 0, F ⊂ C be a finite
subset. Let η > 0 be such that |f(x) − f(x′)| < ε/8. Then, for any integer s > 0,
any finite η/2-dense subset {x1, x2, ..., xm} ⊂ X such that Oi ∩ Oj = ∅ if i �= j,
where

Oj = {x ∈ X : dist(x, xi) < η/2s}
and any 1/2s > σ > 0, there exist γ > 0, δ > 0, a finite subset G ⊂ C and a finite
subset P ⊂ P(C) satisfying the following:

For any unital simple C∗-algebra A with TR(A) = 0, any unital G-δ-multiplica-
tive contractive completely positive linear maps, φ, ψ : C → A with

|τ ◦ φ(a) − τ ◦ ψ(a)| < γ for all g ∈ G and for all τ ∈ T (A),

if
µ̃τ◦φ(Oi), µ̃τ◦ψ(Oi) > σ · η

for all i and τ ∈ T (A), and if
[φ]|P = [ψ]|P ,

then there exists a unitary in A such that

φ
u∼ε ψ on F .

(Here η does not depend on σ. But γ does depend on η and σ.)

Proof. First let us assume that C = Mk(C(X)). Let {eij} be a system of matrix
unitis. Suppose that {φn} : C → A is a unital sequentially asymptotic morphism.
There is a sequence of projections pn ∈ A such that

lim
n→∞

‖φn(e11) − pn‖ = 0.

One obtains a sequence of elements an ∈ A such that anφn(e11)an = pn and

lim
n→∞

‖an − pn‖ = 0.(e 4.28)

Let φ′
n(c) = anφn(c)an for c ∈ e11Ce11 (∼= C(X)). Then φ′

n is a completely positive
linear map. Since φ′

n(1C) = pn, it is a contractive completely positive linear map.
Since

∑k
i=1 eii = 1C , it is easy to check that, for all large n, there are elements

{a(n)
ij } ⊂ A such that {a(n)

ij } forms a system of matrix unit (with size k) such that

a
(n)
11 = en and

∑k
i=1 eii = 1A. In other words, we may write A = Mk(enAen).

Define φ′′
n : C → Mk(enAen) by φ′′

n = φ′
n ⊗ idMk

. By (e 4.28), we have

lim
n→∞

‖φn − φ′
n‖ = 0.

It follows that
lim

n→∞
‖φn − φ′′

n‖ = 0.
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Therefore we may assume that φ(e11) is a projection. Note that τ (φ(f · e11)) =
(1/k)τ̃ ◦φ(f ·P )) for f ∈ C(X). It is then clear, by identifying e11Ce11 with C(X),
that we reduce the case that C = Mk(C(X)) to the case that C = C(X) which has
been proved in Theorem 4.6.

Now we consider the general case. Suppose that C = PMk(C(X))P and dimX =
d. It follows from 8.12 of [21] (see also 6.10.3 of [1]) that there exists an integer
K ≥ 1 (K ≤ 2dk) such that there is a projection Q ∈ MK(C) and partial isometry
z ∈ Mk(C) such that z∗z = P and zz∗ ≤ Q, and QMK(C)Q ∼= Ml(C(X)) for
some integer Kk ≥ l > 0. Suppose that {φn} and {ψn} are two unital sequentially
asymptotic morphisms from C into A. Define Φn = φn ⊗ idMK

and Ψn = ψn ⊗
idMK

. Then {Φn} and {Ψn} are two unital sequentially asymptotic morphisms from
MK(C) into MK(A). Use Φn and Ψn again for the restriction of Φn and Ψn on
QMK(C)Q. There exist projections en, e′n ∈ MK(A) such that

lim
n→∞

‖Φn(Q) − en‖ = 0 and lim
n→∞

‖Ψn(Q) − e′n‖ = 0.

One obtains an, a′
n ∈ MK(A) such that

anΦn(Q)an = en, a′
nΨn(Q)a′

n = en and lim
n→∞

‖an − en‖ = 0.

Thus, by replacing Φn by anΦnan and Ψn by a′
nΨa′

n, we may assume that Φn

and Ψn map into enAen and e′nAe′n, respectively. By the assumption, we may
also assume that en and e′n are unitarily equivalent. Without loss of generality,
therefore, we may assume that en = e′n. Note that we have proved the case that
C = Mk(C(X)). Since C is a C∗-subalgebra of QMK(C)Q ∼= Ml(C(X)), one easily
concludes that this corollary holds. �

5. Approximately conjugate

Proposition 5.1. Let (X, α) and (X, β) be minimal systems such that TR(Aα) =
TR(Aβ) = 0. Then (X, α) and (X, β) are C∗-strongly approximately flip conjugate
if and only if there exists an isomorphism φ : Aα → Aβ, a sequence of unitaries
{un} in Aβ and a sequence of isomorphisms χn : C(X) → C(X) such that

lim
n→∞

‖ad un ◦ φ ◦ jα(f) − jβ ◦ χn(f)‖ = 0 for all f ∈ C(X).

Proof. The “if part” is obvious. Suppose that (X, α) and (X, β) are C∗-strongly
approximately flip conjugate. Suppose that φn : Aα → Aβ are isomorphisms such
that [φn] = [φ1] in KL(Aα, Aβ) for all n and

lim
n→∞

‖φn ◦ jα(f) − jβ ◦ χn(f)‖ = 0 for all f ∈ C(X).

Let {Fn} be an increasing sequence of finite subsets of Aα for which the union⋃
n Fn is dense in A. Since [φn] = [φ1] in KL(Aα, Aβ), by Theorem 2.3 in [37],

there is a unitary un ∈ Aβ such that

ad un ◦ φ1 ∼1/2n φn on Fn.

It follows immediately that

lim
n→∞

‖ad un ◦ φ1 ◦ jα(f) − jβ ◦ χn(f)‖ = 0 for all f ∈ C(X).

�
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Proof of Theorem 3.8. To see the “only if ” part, suppose that there exists a se-
quence of isomorphisms φn : Aα → Aβ and there exists a sequence of isomorphisms
χn : C(X) → C(X) such that [φn] = [φ1] in KL(Aα, Aβ) for all n and

(e 5.29) lim
n→∞

‖φn(jα(f)) − jβ ◦ χn(f)‖ = 0 for all f ∈ C(X).

Put θ = [φn]. It follows from [53] and (e 5.29) that

[jα] × θ = [jβ ◦ χn] for all n.

Since [φn] = θ, it follows that
(φn)ρ = θρ.

Therefore
lim

n→∞
‖ρAβ

◦ jβ ◦ χn − θρ ◦ ρAα
◦ jα(f)‖ = 0

for all f ∈ C(X). This proves the “only if ” part.
To prove the “if” part, we apply Theorem 3.3. Since both Aα and Aβ are simple

amenable separable C∗-algebras which satisfy the UCT, if (X, α) and (X, β) satisfy
the condition of the theorem, then, by [38], there is an isomorphism h : Aα → Aβ

such that [h] = θ. Moreover, for any finite subset G ⊂ C(X) and any γ > 0, there
exists N > 0 such that, for all n ≥ N,

|τ ◦ h ◦ jα(f) − τ ◦ jβ ◦ χn(f)| < γ for all f ∈ C(X)

and all τ ∈ T (Aβ). Since

[h ◦ jα] = [jβ ◦ χn] in KL(C(X), Aβ),

it follows from Theorem 3.3 that there are unitaries un ∈ Aβ such that

lim
n→∞

‖u∗
n(h ◦ jα(f))un − jβ ◦ χn(f)‖ = 0 for all f ∈ C(X).

Let hn = adun ◦ h. We conclude that α and β are C∗-strongly approximately flip
conjugate. �

Definition 5.2 (3.1 of [45]). Let X be a compact metric space and let α, β : X → X
be minimal homeomorphisms. We say that α and β are weakly approximately
conjugate if there exists two sequences of homeomorphisms σn, γn : X → X such
that

lim
n→∞

(σn ◦ α ◦ σ−1
n )(f) = β(f) and

lim
n→∞

(γn ◦ β ◦ γ−1
n )(f) = α(f) for all f ∈ C(X).

It easy to see (as in 3.2 of [45]) that there exists a sequentially asymptotic
morphism {φn} : Aα → Aβ and a sequentially asymptotic morphism {ψn} : Aβ →
Aα such that

lim
n→∞

‖φn(uα) − uβ‖ = 0, lim
n→∞

‖ψn(uβ) − uα‖ = 0,

lim
n→∞

‖φn(jα(f)) − jβ(f ◦ γn)‖ = 0 and lim
n→∞

‖ψn(jβ(f)) − jα(f ◦ σn)‖ = 0

for all f ∈ C(X).
It is proved in [45] that α and β are weakly approximate conjugate if α and β

have the same period spectrum, i.e., D(K0(Aα), 1) = D(K0(Aβ), 1), where

D(K0(C), 1) = {n ∈ N : nx = [1C ] for some x ∈ K0(C)+}.
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A much stronger version of it, called “approximately K-conjugacy” was intro-
duced in [45] for the Cantor set.

Definition 5.3. Let X be a compact metric space and let α, β : X → X be minimal
homeomorphisms. We say α and β are approximately K-conjugate, if α and β are
weakly approximately conjugate with the conjugate maps {σn} and {γn} such that
the induced sequentially asymptotic morphisms {φn} and {ψn} induce two elements
in KL(Aα, Aβ) and unit preserving order isomorphisms in Hom(K∗(Aα), K∗(Aβ)).
Furthermore, we require that [{φn}]× [{ψn}] = [idAα

] and [{ψn}]× [{φn}] = [idAβ
].

We say α and β are approximately flip K-conjugate, if α and β, or α and β−1,
or α−1 and β are approximately K-conjugate.

It should be noted that if α and β are actually flip conjugate, then the conjugate
map σ gives an isomorphism between Aα and Aβ. In particular, σ induces an
element in KL(Aα, Aβ) which gives a unit preserving order isomorphism.

Theorem 5.4. Let X be a compact metric space and let α, β : X → X be minimal
homeomorphisms. Suppose that TR(Aα) = TR(Aβ) = 0. Suppose that α and β are
approximately flip K-conjugate. Then α and β are C∗-strongly approximately flip
conjugate.

Proof. It is clear that it suffices to show that α and β are approximately K-
conjugate implies that they are C∗-strongly approximately flip conjugate.

Suppose that σn, γn : X → X are homeomorphisms such that

lim
n→∞

(σn ◦ α ◦ σ−1
n )(f) = β(f) and lim

n→∞
(γn ◦ β ◦ γ−1

n )(f) = α(f)

for all f ∈ C(X). Let {φn} : Aα → Aβ and {ψn} : Aβ → Aα be the sequentially
asymptotic morphisms induced by {σn} and {γn}. By the assumption, there is
z ∈ KL(Aα, Aβ) and ζ ∈ KL(Aβ, Aα) such that

[φn]|P = z|P
for any finite subset P ⊂ P(Aα) and all sufficiently large n, and

[ψn]|Q = ζ|Q
for any finite subset Q ⊂ P(Aβ) and all sufficiently large n. By the assumption, z
gives a unit preserving order isomorphism from Ki(Aα) to Ki(Aβ) (i = 0, 1). From

(e 5.30) lim
n→∞

‖φn ◦ jα(f) − jβ ◦ γn(f)‖ = 0 for all f ∈ C(X),

one concludes that

[jα] × z = [jβ ◦ γn] in KL(C(X), Aβ).

Moreover, by (e 5.30),

lim
n→∞

‖zρ ◦ ρAα
◦ jα(f) − ρAβ

◦ jβ ◦ γn(f)‖ = 0

for all f ∈ C(X). It follows from Theorem 3.8 that α and β are C∗-strongly ap-
proximately conjugate. �

The converse is also true, at least for the case when X is the Cantor set. It is
not known if the converse of Theorem 5.4 is true in general.
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Proof of Theorem 3.11. Most of the proof was given in [45]. In particular, the
equivalence of (iii), (iv) and (v) are given there. The equivalence of (iii) and (vi)
was given in [16]. That (ii) implies (i) follows from Theorem 5.4. Moreover, it is
obvious that (i) implies (iv). It follows from Lemma 3 of [56] that if σ ∈ [[β]], then
there is a unitary u ∈ Aβ such that u∗jβ(f)u = jβ(f ◦ σ)) for all f ∈ C(X). Then
an easy computation of ordered K-theory of Aα and Aβ shows that (v) implies
(ii). �

6. The Rokhlin property

Lemma 6.1. Let A be a unital simple separable C∗-algebra with stable rank one
and real rank zero and let α ∈ Aut(A) such that α∗0|G = idG for some subgroup
G ⊂ K0(A) for which ρA(G) = ρA(K0(A)). Then τ (a) = τ ◦ α(a) for all τ ∈ T (A)
and for all a ∈ A.

Proof. First we claim that α∗0(kerρA) = kerρA. Since α is an automorphism, it
suffices to show that α∗0(kerρA) ⊂ kerρA. Let z ∈ kerρA. Take x ∈ K0(A)+ \ {0}.
Then x ± nz ≥ 0 for all positive integer n. It follows that α∗0(x ± nz) ≥ 0. Thus
ρA(α∗0(x ± nz)) ≥ 0. It is then easy to see that ρA(α∗0(z)) = 0.

For any projection p ∈ A, there is x ∈ G such that x− [p] ∈ kerρA. It follows that
x ≥ 0. Since A has stable rank one, there is a projection q ∈ A such that [q] = x.
Thus τ (p) = τ (q) for all τ ∈ T (A). Since [q] ∈ G, by the above assumptions,
[α(q)] = [q]. Again since A has stable rank one, there is a partial isometry v ∈ A
such that

v∗v = q and vv∗ = α(q).
By the first part of the proof, α∗0([p]−[q]) ∈ kerρA. In particular, τ (α(p)) = τ (α(q))
for all τ ∈ T (A). It follows that

τ (p) = τ (q) = τ (α(q)) = τ (α(p)).(e 6.31)

In other words, [p] − [α(p)] ∈ kerρA.
Suppose that a =

∑n
i=1 λipi, where λi are scalars and p1, p2, ..., pn are mutually

orthogonal projections. Then α(a) =
∑n

i=1 λiα(pi). It follows from (e 6.31) that
τ (a) = τ ◦ α(a) for all τ ∈ T (A). Since A has real rank zero, it follows from [6]
that every self-adjoint element is a norm-limit of self-adjoint elements with finite
spectrum. It follows that τ (a) = τ ◦ α(a) for all self-adjoint elements. The lemma
then follows. �

Lemma 6.2. Let A be a unital simple separable C∗-algebra with TR(A) = 0 and
let α ∈ Aut(A) such that α∗0|G = idG for some subgroup G of K0(A) for which
ρA(G) = ρA(K0(A)). Suppose that {pj} is a central sequence of projections such
that [pj ] ∈ G and define φj(a) = pjapj and ψn(a) = α(pj)aα(pj), j = 1, 2, ....
Then {φn} and {ψn} are two sequentially asymptotic morphisms. Suppose also
that there are finite-dimensional C∗-subalgebras Bj and Cj = α(Bj) with 1Bj

= pj

and 1Cj
= α(pj) such that [pj,i] ∈ G for each minimal central projection pj,i of

Bj (1 ≤ i ≤ k(j)) and there are sequentially asymptotic morphisms {φ′
j} and {ψ′

j}
such that

φ′
j(a) ⊂ Bj , ψ′

j(a) ⊂ Cj ,

lim
j→∞

‖φj(a) − φ′
j(a)‖ = 0 and lim

j→∞
‖ψj(a) − ψ′

j(a)‖ = 0

for all a ∈ A.
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Then, for any ε > 0 and for any finite subset G ⊂ A and a finite subset of
projections P0 ⊂ Mk(A) for which [p] ∈ G for all p ∈ P0, there exists an integer
J > 0 such that

|τ ◦ φj(a) − τ ◦ ψj(a)| < ε/τ (pj) for all a ∈ G
and for all τ ∈ T (A), and, for all j > J,

[φj(p)] = [ψj(p)] in K0(A).

Proof. Let q ∈ Mk(A) be a projection such that [q] ∈ G. Put β = α ⊗ idMk
. By

replacing A by Mk(A), α by β, φj by φj ⊗ idMk
and ψj by ψ⊗ idMk

, respectively, to
simplify notation, we may assume that q ∈ A. By the assumption, there is a partial
isometry v ∈ A such that vv∗ = q and vv∗ = α−1(q). Define Bj,i = pj,iBj , i =
1, 2, ..., k(j). Keep in mind that Bj,i is a simple finite-dimensional C∗-subalgebra.
Define

φj,i = pj,iφjpj,i, φ′
j,i = pj,iφ

′
j , ψj,i = α(pj,i)ψjα(pj,i) and ψ′

j,i = α(pj,i)ψ′
j ,

i = 1, 2, ..., k(j).
By replacing ψj by adwj ◦ ψj for some suitable unitaries wj , if necessary, we

may assume that Bj is orthogonal to Cj . There is a partial isometry zj,i ∈ A such
that

z∗j,izj,i = pj,i and zj,iz
∗
j,i = α(pj,i).

Then zj,i, Bj,i, Cj,i generate a C∗-subalgebra Dj,i
∼= M2(Bj,i) which is a simple

finite-dimensional C∗-algebra.
There are projections ej,i ∈ Bj,i and e′j,i ∈ Cj,i such that

lim
j→∞

‖ej,i − φj,i(q)‖ = 0 and lim
j→∞

‖e′j,i − ψj,i(q)‖ = 0.

Moreover,

lim
j→∞

‖pj,iv
∗pj,ivpj,i − ej,i‖ = 0 and lim

j→∞
‖pj,ivpj,iv

∗pj,i − ψj,i(α−1(q))‖ = 0.

Thus
[ej,i] = [ψj,i(α−1(q))]

for all large j. On the other hand,

α(pj,i)qα(pj,i) = α(pj,iα
−1(q)pj,i).

Therefore
[e′j,i] = [α(ej,i)]

for all large j. But [α(ej,i)] − [ej,i] ∈ kerρA. So, for any τ ∈ T (A),

τ (ej,i) = τ (α(ej,i)) for all large j.

However, for each trace τ ∈ T (A), there is λj,i > 0 such that τ |Dj,i
= λj,iTr, where

Tr is the standard trace on Dj,i. Hence

Tr(ej,i) = Tr(e′j,i) for all large j.

It follows that
[ej,i] = [e′j,i] in K0(Dj,i) for all large j.

Thus

[φj(q)] = [ψj(q)] in K0(A) for all large j.(e 6.32)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CLASSIFICATION OF HOMOMORPHISMS AND DYNAMICAL SYSTEMS 885

Since [pj ] ∈ G, there is a unitary Zj such that

Z∗
j α(pj)Zj = pj .

Suppose that a =
∑m

k=1 λkek, where λk are scalars and e1, e2, ..., em are mutually
orthogonal projections. Then, since A has stable rank one (since TR(A) = 0), by
(e 6.32), there is a sequence of unitaries {Uj} in pjApj such that

lim
j→∞

‖U∗
j φj(a)Uj − ad Zj ◦ ψj(a)‖ = 0.

It follows that there is an integer J0 > 0 such that

|τ (φj(a)) − τ (ψj(a))| < ε

for all τ ∈ T (pjApj) and for all j ≥ J. Since TR(A) = 0, the set of self-adjoint
elements with finite spectrum is dense in As.a.. The lemma follows. �

Lemma 6.3. Let A be a unital separable simple amenable C∗-algebra with TR(A) =
0 satisfying the UCT, and let α ∈ Aut(A) be such that α∗0|G = idG for some
subgroup G of K0(A) for which ρA(G) = ρA(K0(A)). Suppose also that {pj(l)},
l = 0, 1, 2, ..., L, are central sequences of projections in A such that

pj(l)pj(l′) = 0 if l �= l′ and lim
j→∞

‖pj(l) − αl(pj(0))‖ = 0, 1 ≤ l ≤ L.

Then there exist central sequences of projections {qj(l)} and central sequences of
partial isometries {uj(l)} such that qj(l) ≤ pj(l),

uj(l)∗uj(l) = qj(l), uj(l)u∗
j (l) = αl(qj(0)),

for all large j,

lim
j→∞

‖αl(qj(0)) − qj(l)‖ = 0

and
lim

j→∞
τ (pj(l) − qj(l)) = 0

uniformly on T (A).

Proof. It follows from Theorem 5.2 of [39] and Theorem 4.18 of [13] that we may
assume that A =

⋃
n An, where each An has the form PnMk(n)(C(X))Pn, where

each X is a finite-dimensional compact metric space and Pn ∈ Mk(n)(C(X)) is a
projection. We may further assume that φn are injective. Fix a finite subset F ⊂ A

and ε > 0. Let F1 =
⋃L

l=0 α−l(F). Without loss of generality, we may assume that
F1 ⊂ C, where C = PnMk(n)(C(X))Pn.

Note that {α(pj)} is also a central sequence. Since limj→∞ ‖pj(l)−αl(pj(0))‖ =
0, there are unitaries wj ∈ A such that

(e 6.33) lim
j→∞

‖wj − 1‖ = 0 and w∗
j αl(pj(0))wj = pj(l).

Let βj = adwj ◦ α.
Let P ⊂ P(C) be a finite subset. Choose an integer k0 > 0 such that

(e 6.34) P ∩ Ki(C, Z/jZ) = {0}, j ≥ k0.

Fix η > 0, and let {x1, x2, ..., xK} be an η/2-net in X. Suppose that s > 0 is an
integer so that Oi ∩ Oj = ∅, if i �= j, i, j, = 1, 2, ..., K, where

Oi = {x ∈ X : dist(x, xi) < η/2s}, i = 1, 2, ..., K.
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Let fi be a non-negative continuous function in C(X) such that 0 ≤ fi ≤ 1,
fi(y) = 1 if dist(y, xi) ≤ ε/4 and fi(y) = 0 if dist(y, xi) ≥ η/2. Let ai = fiPn ∈ C.
Since A is simple, there are bi,k ∈ A such that

m(i)∑
k=1

b∗ikaibik = 1A.

Let c = max{b∗ikbik : 1 ≤ k ≤ K} and M0 = max{m(k) : k = 1, 2, ..., K}. Put
σ = 1/4cM0η.

Since {pj(l)} is central,

lim
j→∞

‖
m(k)∑
k=1

pj(l)b∗ikpj(l)aipj(l)bikpj(l) − pj(l)‖ = 0,(e 6.35)

i = 1, 2, ..., K.
Since TR(A) = 0, there is a central sequence of projections {en} and a sequence

of finite-dimensional C∗-subalgebra Bn ⊂ A with 1Bn
= en, such that

(i) enxen ⊂εn
Bn for all x ∈ A, where εn > 0 and

∑∞
n=1 εn < ∞, and

(ii) limn→∞ τ (1 − en) = 0 uniformly on T (A).
There is a subsequence {n(j)} and projections Qj(l) ≤ pj(l) (l = 0, 1, ..., L) such

that
lim

j→∞
‖Qj(l) − pj(l)ej(n)‖ = 0.

Note also that, by (i),
lim

j→∞
dist(pjen(j), Bn(j)) = 0.

There are also sequences of projections En(j),l ∈ Bn(j) such that En(j),lEn(j),l′ = 0,
if l �= l′,

lim
j→∞

‖En(j),l − Qj(l)‖ = 0.

Let zn be a sequence of unitaries such that

lim
n→∞

‖zj − 1‖ = 0, z∗j En(j),lzj = Qj(l) and z∗j E′
n(j),lzj = Qj(l), 0 ≤ l ≤ L.

Set Dn(j) = Qj(0)z∗nBn(j)znQj(0), n = 1, 2, .... Note Dn(j) is of finite dimension.
Write Dn(j) =

⊕M(j,n)
t Dn(j),t, where each Dn(j),t is simple and has rank R(n(j), t).

Let dn(j),t be a minimal projection in Dn(j),t. Since TR(A) = 0, by Theorem 7.1
of [36], A has real rank zero, stable rank one and weakly unperforated K0(A). It
follows from [2] that ρA(K0(A)) is dense in Aff(T (A)). Consequently, one has (k0)!
many mutually orthogonal and mutually equivalent projections dn(j),t,s ≤ dn(j),t

(s = 1, 2, ..., (k0)!) such that [dn(j),t,s] ∈ G and

(e 6.36) τ (dn(j),t −
(k0)!∑
s=1

dn(j),t,s) <
τ (dn(j),t)
2jM(j, n)

for all τ ∈ T (A).

Put

gn(j),s,t = diag(

R(n(j),t)︷ ︸︸ ︷
dn(j),t,s, dn(j),t,s, ..., dn(j),t,s),

gn(j),s =
M(j,n)⊕

t=1

gn(j),s,t and gn(j) =
(k0)!∑
s=1

gn(j),s.
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Note that gn(j),s commutes with every element in Dn(j). Put Cn(j),s = gn(j),sDn(j)

and Cn(j) = gn(j)Dn(j). Then Cn(j),s and Cn(j) are finite-dimensional C∗-subalge-
bras, and the image of each minimal central projection of Cn(j),s and Cn(j) in K0(A)
are in G.

Combining (i) above, we note that {gn(j),s} and {gn(j)} are central (as j → ∞)
and

(1) dist(gn(j),sxgn(j),s, Cn(j),s) → 0 and dist(gn(j)xgn(j), Cn(j)) → 0 as j → ∞,
(2) τ (Qj − gn(j)) → 0 as j → ∞ (by (e 6.36)).
For each x ∈ F and l = 0, 1, ..., L, there are yj(l) ∈ Cn(j) such that

‖gn(j)α
−l(x)gn(j) − yj(l)‖ → as j → ∞.

Thus
‖βl

j(gn(j))xβl
j(gn(j)) − βl

j(yj(l))‖ → 0 as j → ∞.

Therefore

dist(βl
j(dn(j))xβl

j(dn(j)), βl
j(Cn(j))) → 0, l = 1, 2, ..., L,

as j → ∞. Define

Φ′
j,s(x) = gn(j),sxgn(j),s, Φ′

j(x) = gn(j)xgn(j),

Ψ′
j,s,l(x) = βl

j(gn(j),s)xβl
j(gn(j),s) and Ψ′

j,l(x) = βl
j(gn(j))xβl

j(gn(j))

for x ∈ A. Let

Lj,s,0 : gn(j),sAgn(j),s → Cn(j),s, Lj : gn(j)Agn(j) → Cn(j),

Lj,s,l : βl
j(gn(j),s)Aβl

j(gn(j),s) → βl
j(Cn(j),s) and

Lj,l : βl
j(gn(j))Aβl

j(gn(j)) → βl
j(Cn(j))

be contractive completely positive linear maps which are extensions of idCn(j),s
,

idCn(j) , idβl
j(Cn(j),s) and idβl

j(Cn(j))
, l = 1, 2, ..., L, respectively. Put

Φj,s = Lj,s,0 ◦ Φj,s, Φj = Lj ◦ Φj , Ψj,s,l = Lj,s,l ◦ Ψj,s,l and Ψj,l = Lj,l ◦ Ψ′
j,l.

Note that {Φj,s}, {Φj}, {Ψj,s,l} and {Ψj,l} are sequentially asymptotic morphisms
(1 ≤ s ≤ (k0)!). We also have

(e 6.37) Φj =
(k0)!⊕

s

Φj,s and Ψj,l =
(k0)!⊕

s

Ψj,s,l, l = 1, 2, ..., L.

Let Hj = ıj◦Φj◦ı, where ı : C → A and ıj : Cn(j) → gn(j)Agn(j) are embeddings (we
may also omit ı and ıj when there will be no confusion). There is a unitary Zj,l ∈ A
such that Z∗

j,lgn(j)Zj,l = βl
j(gn(j)), l = 1, 2, ..., L. Define Hj,l = ad Zj,l ◦ ıj,l ◦Ψj,l ◦ ı,

where ıj,l : βl
j(Cj(n) → βl

j(gn(j))Aβl
j(gn(j)) is an embedding.

Therefore, for all sufficiently large j, by (e 6.37),

(e 6.38) [Hj ]|P∩Ki(C(X),Z/jZ) = 0 and [H ′
j ]|P∩Ki(C(X),Z/jZ) = 0

for i = 0, 1, 0 < j ≤ k0. Since both Hj and Hj,l factor through a finite-dimensional
C∗-subalgebra one has

[Hj ]|P∩K1(C(X) = 0 and [Hj,l]|P∩K1(C(X)) = 0.(e 6.39)

By applying Lemma 6.2, one computes that, for all sufficiently large j,

[Hj ]|P∩K0(C(X)) = [Hj,l]|P∩K0(C(X)).(e 6.40)
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Combining (e 6.40), (e 6.37), (e 6.39) and (e 6.34), one has, if j is sufficiently large,

[Hj ]|P = [Hj,l]|P .(e 6.41)

It follows from 6.2 that

(e 6.42) lim
j→∞

(sup{|τ ◦ Φj(a) − τ ◦ ad Zj ◦ Ψj,l(a)| : τ ∈ T (gn(j)Agn(j))}) = 0

for all a ∈ A. Hence

lim
j→∞

(sup{|τ ◦ Hj(x) − τ ◦ Hj,l(x)| : τ ∈ T (gn(j)Agn(j))}) = 0 for all x ∈ C.

It follows from (e 6.35) that

lim
j→∞

‖
m(i)∑
k=1

gn(j)b
∗
ikgn(j)aign(j)b

∗
ikgn(j) − gn(j)‖ = 0 and(e 6.43)

lim
j→∞

‖
m(i)∑
k=1

βl
j(gn(j))b∗ikβl

j(gn(j))aiβ
l
j(gn(j))bikβl

j(gn(j)) − βl
j(gn(j))‖ = 0.(e 6.44)

It follows from (e 6.44), when j is sufficiently large, that

(e 6.45) µτ (Ok) ≥ ση/2 for all τ ∈ T (gn(j)Agn(j)), k = 1, 2, ..., K.

Therefore, by 4.8, there is unitary vj,l ∈ gn(j)Agn(j) such that

(e 6.46) lim
j→∞

‖advj,l ◦ Hj,l(x) − Hj(x)‖ = 0 for all x ∈ F .

Define zj,l = gn(j)v
∗
j,lZ

∗
j,lβ

l
j(gn(j)). Then

(e 6.47) zj,l(Hj(x) + Ψj,l(x)) = zj,lΨj,l(x) and (Hj(x) + Ψj,l(x))zj = Hj(x)zj .

Thus, by (e 6.46),

lim
j→∞

‖zj,lΨj,l(x) − Hj(x)zj,l‖

= lim
j→∞

‖zj,lΨj,l(x) − Hj(x)v∗j,lZ
∗
j,lβ

l
j(gn(j))‖

= lim
j→∞

‖zj,lΨj,l(x) − v∗j,lHj,l(x)Z∗
j,lβ

l
j(gn(j))‖

= lim
j→∞

‖zj,lΨj,l(x) − v∗j,lZ
∗
j,l(Zj,lHj,l(x)Z∗

j,lβ
l
j(gn(j)))‖

= lim
j→∞

‖zj,lΨj,l(x) − v∗j,lZ
∗
j,lΨj,l(x)‖ = 0

for all x ∈ F . In other words,

(e 6.48) lim
j→∞

‖zj,lΨj,l(x) − Hj(x)zj,l‖ = 0 for all x ∈ F .

Note that, for all x ∈ A,

zj,lx = zj,lβ
l
j(gn(j))x and xzj,l = xgn(j)zj,l.

Therefore, since {gn(j)} and {βl
j(gn(j))} are central, we have, for x ∈ F ,

limj→∞ ‖zj,lx − xzj,l‖ = limj→∞ ‖zj,lβ
l
j(gn(j))x − xgn(j)zj,l‖

= limj→∞ ‖zj,lβ
l
j(gn(j))xβl

j(gn(j)) − gn(j)xgn(j)zj,l‖
= limj→∞ ‖zj,lΨj,l(x) − Hj(x)zj,l)‖ = 0.

On the other hand, we have

z∗j,lzj,l = gn(j) and zj,lz
∗
j,l = βl

j(gn(j)).(e 6.49)
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Recall that βl
j(gn(j)) = w∗

j αl(gn(j))wj . Define uj(l) = w∗
j zj,l. Then

(e 6.50) (uj(l))∗uj(l) = z∗j,lwjw
∗
j zj,l = gn(j) and uj(l)(uj(l))∗ = αl(gn(j)).

Denote qj(0) = gn(j) and qj(l) = βl
j(gn(j)), l = 1, 2, ..., L. We also have, by (i) and

(2) above,

(e 6.51) qj(l) ≤ Qj(l) ≤ pj(l) and τ (pj(l) − qj(l)) → 0

as j → ∞ uniformly on T (A).

Finally, since (e 6.33),

(e 6.52) lim
j→∞

‖ujx − xuj‖ = 0 for all x ∈ F .

�

The following lemma is taken from [47] that has its origin in [24].

Lemma 6.4. Let A be a unital separable simple C∗-algebra with TR(A) = 0 and
with unique tracial state and let α ∈ Aut(A) such that αr

∗0|G = idG for some
subgroup G ⊂ K0(A) for which ρA(G) = ρA(K0(A)) and for some integer r ≥ 1.
Let m ∈ N, m0 ≥ m, be the smallest integer such that m0 = 0 mod r and l =
m + (r − 1)(m0 + 1).

Suppose that {e(n)
i }, i = 0, 1, ..., l, n = 1, 2, ..., are l + 1 sequences of projections

in A satisfying the following:

‖α(e(n)
i ) − e

(n)
i+1‖ < δn, lim

n→∞
δn = 0,

e
(n)
i e

(n)
j = 0, if i �= j,

and for each i, {e(n)
i } is a central sequence. Then for each i = 0, 1, 2, . . . , m, there

are central sequences of projections {p(n)
i } (i = 0, 1, 2, ..., m) and a central sequence

of partial isometries {w(n)
i } such that

(w(n)
i )∗w(n)

i = p
(n)
i and w

(n)
i (w(n)

i )∗ = p
(n)
i+1, i = 0, 1, ..., m − 1,

where p
(n)
i ≤

∑r−1
j=0 e

(n)
i+j(m0+1) and

τ (
l∑

i=0

e
(n)
i −

m∑
i=0

p
(n)
i ) → 0

as n → ∞ uniformly on T (A). Moreover, for each i,

lim
n→∞

‖α(p(n)
i ) − p

(n)
i+1‖ = 0.

Proof. Since αr
∗0|G = idG, it follows from Lemma 6.2 that there is a central sequence

of projections {q(n)
0 } and a central sequence of partial isometries {z(0, j, n)} and

q
(n)
0 ≤ e

(n)
0 ,

z(0, j, n)∗ = q
(n)
0 , z(0, j, n)z(0, j, n)∗ = αrj(q(n)

0 )

and
τ (e(n)

0 − q
(n)
0 ) → 0.
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Moreover, there are central sequences of projections {q(n)
rj } such that q

(n)
rj ≤ e

(n)
rj

and
lim

n→∞
‖q(n)

rj − αrj(q(n)
0 )‖ = 0, j = 1, 2, ..., [l/r].

Since q
(n)
0 ≤ e

(n)
0 and ‖α(e(n)

0 ) − e
(n)
1 ‖ < δn, there exists a projection q

(n)
1 ≤ e

(n)
1

such that
‖α(q(n)

0 ) − q
(n)
1 ‖ < 2δn.

Similarly, we obtain projections q
(n)
i ≤ e

(n)
i such that

lim
n→∞

‖α(q(n)
i−1) − q

(n)
i ‖ = 0, i = 2, 3, ..., r − 1.

Moreover, it is easy to check that

lim
n→∞

‖αi(q(n)
0 ) − q

(n)
i ‖ = 0, i = 1, 2, ..., r − 1.

Since {q(n)
0 } is central, {αi(q(n)

0 )} is also central for each i. It follows that {q(n)
i }

are central for i = 1, 2, ..., r − 1 and for i = rj, j = 1, 2, ..., [l/r]. Again, there are
projections q

(n)
i+rj ≤ e

(n)
i+rj such that

lim
n→∞

‖αi+rj(q(n)
0 ) − q

(n)
i+rj‖ = 0, i = 1, 2, ..., r − 1.

Define z′i,j,n = αi(z′0,j,n). Then

(z′i,j,n)∗z′i,j,n = αi(z∗0,j,nz0,j,n) = αi(q(n)
0 ) and

z′i,j,n(z′i,j,n)∗ = αi(z0,j,nz∗0,j,n) = αi+rj(q(n)
0 ).

In particular, {zi,j,n} is central, since {z0,j,n} is central. Because

lim
n→∞

‖αi(q(n)
0 ) − q

(n)
i ‖ = 0 and lim

n→∞
‖αi+rj(q(n)

0 ) − αrj(q(n)
i )‖ = 0

for i = 1, 2, ..., r − 1, one obtains sequences of unitaries {Z(n)
j } and {U (n)

j } such
that

lim
n→∞

‖Z(n)
j − 1‖ = 0, (Zn

j )∗αi(q(n)
0 )Z(n)

j = q
(n)
j , and

lim
n→∞

‖U (n)
j − 1‖ = 0, U

(n)
j αi+rj(q(n)

0 )(U (n)
j )∗ = αrj(q(n)

i ),

j = 1, 2, ..., r − 1. Define zi,j,n = U
(n)
j z′i+1,j,nZ

(n)
j . Then {zi,j,n} is central and

z∗i,j,nzi,j,n = q
(n)
i and zi,j,nz∗i,j,n = αrj(q(n)

i ).

Now put

p
(n)
i =

r−1∑
j=0

q
(n)
i+j(m0+1), i = 0, 1, 2, ..., m.

Note that

τ (
l∑

i=0

e
(n)
i −

m∑
i=0

p
(n)
i ) <

l∑
i=0

τ (e(n)
i − q

(n)
i ) = l · τ (e(n)

0 − q
(n)
0 ) → 0.

To prove that the so defined p
(n)
i meets the requirements, one checks exactly the

same way as in the proof of Lemma 3.2 of [47]. �
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Let {Ei,j} be a system of matrix units and let K be the compact operators on
�2(Z) where we identify Ei,i with the one-dimensional projection onto the functions
supported by {i} ⊂ Z. Let S be the canonical shift operator on �2(Z). Define an
automorphism σ of K by σ(x) = SxS∗ for all x ∈ K. Then σ(Ei,j) = Ei+1,j+1. For
any N ∈ N let PN =

∑N−1
i=0 Ei,i.

To prove Theorem 3.14, we quote the following lemma.

Lemma 6.5 (Kishimoto, 2.1 of [24]). For any η > 0 and n ∈ N there exist N ∈ N

and projections e0, e1, . . . , en−1 in K such that
n−1∑
i=0

ei ≤ PN ,

‖σ(ei) − ei+1‖ < η, i = 0, . . . , n − 1, en = e0,

n dim e0

N
> 1 − η.

Proof of Theorem 3.16. We use a modified argument of Theorem 3.4 in [47] by
applying Lemma 6.4. We proceed as follows.

Let ε > 0. Let ε/2 > η > 0 and m ∈ N be given. Choose N which satisfies the
conclusion of Lemma 6.5 (with this η and n = m). Identify PNKPN with MN . Let
G = {Ei+1,i : i = 0, 1, ..., N − 1} be a set of generators of MN . Let e0, e1, ..., em−1

be as in the conclusion of Lemma 6.5. For any ε > 0, there is δ > 0 that depends
only on N , such that if ‖ag − ga‖ < δ for g ∈ G, then

‖aei − eia‖ < ε/2, i = 0, 1, ..., n.

We assume that δ < η. Fix a finite subset F0 ⊂ A. Choose m0 ∈ N such that
m0 ≥ m is the smallest integer with m0 = 0 mod r. Let L = N + (r − 1)(m0 + 1).

Since α has the tracial Rokhlin property, there exists a sequence of projections
{e(k)

i : i = 0, 1, ..., L} satisfying the following:

‖α(e(k)
i ) − e

(k)
i+1‖ <

δ

(2k)4N
, e

(k)
i e

(k)
j = 0, if i �= j,

lim
k→∞

‖e(k)
i a − ae

(k)
i ‖ = 0 for all a ∈ A, i = 0, 1, ..., L, and

τ (1 −
L−1∑
i=0

e
(k)
i ) < η/2 for all τ ∈ T (A), k = 1, 2, ....

By applying Lemma 6.4, we obtain a central sequence {w(k)
i } in A such that

(w(k)
i )∗w(k)

i = P
(k)
0 and

w
(k)
i (w(k)

i )∗ = P
(k)
i , k = 0, 1, ..., i = 0, 1, . . . , N,

P
(k)
i P

(k)
j = 0, i �= j,

‖α(P (k)
i ) − P

(k)
i+1‖ <

δ

4L
, k = 0, 1, ..., i = 0, 1, . . . , N − 1,

τ (
L−1∑
i=0

e
(k)
i −

N−1∑
i=0

P
(k)
i ) < η/2, for all τ ∈ T (A),

where P
(k)
i ≤

∑r−1
j=0 e

(k)
i+(m0+1)j for i = 0, 1, . . . , N .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



892 HUAXIN LIN

It follows that {αl(w(k))}, l = 0, 1, ..., N , are all central sequences. As in the
same argument in Lemma 6.4 there is a unitary uk ∈ U(A) with ‖uk − 1‖ < δ/2N

such that aduk ◦ α(P (k)
i ) = P

(k)
i+1, i = 0, 1, ..., N − 1. Put βk = ad uk ◦ α, and

w(k) = w
(k)
0 . Choose a large k, such that

‖βl
k(w(k))a − aβl

k(w(k))‖ < δ for all a ∈ F0,

l = 0, 1, ..., N.
Now let C1 and C2 be the C∗-algebras generated by w(k), β1

k(w(k)), ..., βN−1
k (w(k))

and by w(k), β1
k(w(k)), ..., βN

k (w(k)), respectively. Note that C1
∼= MN , C2

∼= MN+1.
Define a homomorphism Φ : C1 → K by

Φ(βi
k(w(k))) = Ei+1,i, i = 0, 1, ..., N − 1

(see Lemma 6.5). Then one has σ ◦ Φ|C1 = Φ ◦ βk|C1 and Φ(C1) = PNKPN . Now
we apply Lemma 6.5 to obtain mutually orthogonal projections e0, e1, ..., em−1 in
MN such that

‖σ(ei) − ei−1‖ < η and
m dim e0

N
> 1 − η.

Let pi = Φ−1(ei), i = 0, 1, ..., m − 1. One estimates that

τ (
N−1∑
i=0

P
(k)
i −

m−1∑
i=0

pi) < 1 −
m−1∑
i=0

dim(e0)
N

= 1 − m dim(e0)
N

< η <
ε

2

for all τ ∈ T (A). So one has mutually orthogonal projections p0, p1, p2, ..., pm−1

such that
‖βk(pi) − pi+1‖ <

ε

2
, i = 0, 1, 2, ..., m − 1, pm = p0.

By the choice of δ, one also has

‖api − pia‖ < ε, i = 0, 1, ..., m − 1, for all a ∈ F0 and

τ (1 −
m−1∑
i=0

pi) < τ (1 −
L−1∑
i=0

e
(k)
i ) + τ (

L−1∑
i=0

e
(k)
i −

N−1∑
i=0

P
(k)
i ) +

ε

2
< η/2 + η/2 +

ε

2
< ε,

for all τ ∈ T (A). Since
‖βk − α‖ < δ/2 < ε/2,

one finally has

‖α(pi) − pi+1‖ < ε, i = 0, 1, ..., m − 1, pm = p0.

In other words, α has the tracial cyclic Rokhlin property. �

Proof of Theorem 3.15. This follows from Theorem 3.14 and Theorem 3.4 of [47].
�

Proof of Theorem 3.16. The fact that (i), (ii) and (iii) are equivalent (without as-
suming that αr

∗0|G = idG) is established in [50].
That (iv) ⇒ (v) is given by Theorem 2.9 in [47] (see also [44]). It is known that

(v) ⇒ (iv).
Thus we have shown that (i), (ii), (iii), (iv) and (v) are equivalent.
To see these imply (vi), we apply the classification theorem in [39]. It follows

that A �α Z is a unital simple AH-algebra with no dimension growth and with real
rank zero. By (ii), it has a unique tracial state.

It is obvious that (vi) implies (iii). �
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Proof of Theorem 3.18. It follows from Theorem 8.3 in [50] that αθ,γ,d,f has the
tracial Rokhlin property. It also follows from Corollary 8.4 in [50] that Aθ �α Z

is a unital simple C∗-algebra with real rank zero and with unique tracial state.
It follows from Theorem 3.16 that Aθ �α Z is an AH-algebra with no dimension
growth and with real rank zero. This proves (1). To see (2), since d = 0, by Lemma
1.7 of [50], K0(Aθ �α Z) is torsion free. It follows that it is an AT-algebra. �
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