Growth and ergodicity of context-free languages II: The linear case
HTML articles powered by AMS MathViewer
- by Tullio Ceccherini-Silberstein PDF
- Trans. Amer. Math. Soc. 359 (2007), 605-618 Request permission
Abstract:
A language $L$ over a finite alphabet $\bf \Sigma$ is called growth-sensitive if forbidding any non-empty set $F$ of subwords yields a sub-language $L^F$ whose exponential growth rate is smaller than that of $L$. Say that a context-free grammar (and associated language) is ergodic if its dependency di-graph is strongly connected. It is known that regular and unambiguous non-linear context-free languages which are ergodic are growth-sensitive. In this note it is shown that ergodic unambiguous linear languags are growth-sensitive, closing the gap that remained open.References
- Martin R. Bridson and Robert H. Gilman, Context-free languages of sub-exponential growth, J. Comput. System Sci. 64 (2002), no. 2, 308–310. MR 1906807, DOI 10.1006/jcss.2001.1804
- Tullio Ceccherini-Silberstein, On the growth of linear languages, Adv. in Appl. Math. 35 (2005), no. 3, 243–253. MR 2164918, DOI 10.1016/j.aam.2005.01.002
- Tullio Ceccherini-Silberstein, Francesca Fiorenzi, and Fabio Scarabotti, The Garden of Eden theorem for cellular automata and for symbolic dynamical systems, Random walks and geometry, Walter de Gruyter, Berlin, 2004, pp. 73–108. MR 2087780
- Tullio Ceccherini-Silberstein, Antonio Machi, and Fabio Scarabotti, On the entropy of regular languages, Theoret. Comput. Sci. 307 (2003), no. 1, 93–102. Words. MR 2022842, DOI 10.1016/S0304-3975(03)00094-X
- Tullio Ceccherini-Silberstein and Wolfgang Woess, Growth and ergodicity of context-free languages, Trans. Amer. Math. Soc. 354 (2002), no. 11, 4597–4625. MR 1926891, DOI 10.1090/S0002-9947-02-03048-9
- Tullio Ceccherini-Silberstein and Wolfgang Woess, Growth-sensitivity of context-free languages, Theoret. Comput. Sci. 307 (2003), no. 1, 103–116. Words. MR 2022843, DOI 10.1016/S0304-3975(03)00095-1
- N. Chomsky and M. P. Schützenberger, The algebraic theory of context-free languages, Computer programming and formal systems, North-Holland, Amsterdam, 1963, pp. 118–161. MR 0152391
- Samuel Eilenberg, Automata, languages, and machines. Vol. A, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York, 1974. MR 0530382
- Seymour Ginsburg, The mathematical theory of context-free languages, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0211815
- R. Grigorchuk and P. de la Harpe, On problems related to growth, entropy, and spectrum in group theory, J. Dynam. Control Systems 3 (1997), no. 1, 51–89. MR 1436550, DOI 10.1007/BF02471762
- Michael A. Harrison, Introduction to formal language theory, Addison-Wesley Publishing Co., Reading, Mass., 1978. MR 526397
- John E. Hopcroft and Jeffrey D. Ullman, Introduction to automata theory, languages, and computation, Addison-Wesley Series in Computer Science, Addison-Wesley Publishing Co., Reading, Mass., 1979. MR 645539
- Roberto Incitti, The growth function of context-free languages, Theoret. Comput. Sci. 255 (2001), no. 1-2, 601–605. MR 1819093, DOI 10.1016/S0304-3975(00)00152-3
- Werner Kuich, On the entropy of context-free languages, Information and Control 16 (1970), 173–200. MR 269447
- Werner Kuich, Semirings and formal power series: their relevance to formal languages and automata, Handbook of formal languages, Vol. 1, Springer, Berlin, 1997, pp. 609–677. MR 1470001
- Douglas Lind and Brian Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. MR 1369092, DOI 10.1017/CBO9780511626302
- William Ogden, A helpful result for proving inherent ambiguity, Math. Systems Theory 2 (1968), 191–194. MR 233645, DOI 10.1007/BF01694004
- Fabio Scarabotti, On a lemma of Gromov and the entropy of a graph, European J. Combin. 23 (2002), no. 5, 631–633. MR 1931946, DOI 10.1006/eujc.2002.0567
- E. Seneta, Nonnegative matrices and Markov chains, 2nd ed., Springer Series in Statistics, Springer-Verlag, New York, 1981. MR 719544, DOI 10.1007/0-387-32792-4
- V. I. Trofimov, Growth functions of some classes of languages, Kibernetika (Kiev) 6 (1981), i, 9–12, 149 (Russian, with English summary). MR 689421
- V. A. Ufnarovskiĭ, Criterion for the growth of graphs and algebras given by words, Mat. Zametki 31 (1982), no. 3, 465–472, 476 (Russian). MR 652851
Additional Information
- Tullio Ceccherini-Silberstein
- Affiliation: Dipartimento di Ingegneria, Università del Sannio, C.so Garibaldi 108, 82100 Benevento, Italy
- Address at time of publication: Dipartimento di Matematica “G. Castelnuovo”, Università di Roma “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
- Email: tceccher@mat.uniroma1.it
- Received by editor(s): November 4, 2004
- Published electronically: June 13, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 605-618
- MSC (2000): Primary 68Q45; Secondary 05A16, 05C20, 68Q42
- DOI: https://doi.org/10.1090/S0002-9947-06-03958-4
- MathSciNet review: 2255188
Dedicated: To Wolfgang Woess on his 50th anniversary