The strong relaxation limit of the multidimensional isothermal Euler equations
HTML articles powered by AMS MathViewer
- by Jean-François Coulombel and Thierry Goudon PDF
- Trans. Amer. Math. Soc. 359 (2007), 637-648 Request permission
Abstract:
We construct global smooth solutions to the multidimensional isothermal Euler equations with a strong relaxation. When the relaxation time tends to zero, we show that the density converges towards the solution to the heat equation.References
- Serge Alinhac and Patrick Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, Savoirs Actuels. [Current Scholarship], InterEditions, Paris; Éditions du Centre National de la Recherche Scientifique (CNRS), Meudon, 1991 (French). MR 1172111
- B. Hanouzet and R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Arch. Ration. Mech. Anal. 169 (2003), no. 2, 89–117. MR 2005637, DOI 10.1007/s00205-003-0257-6
- S. Junca and M. Rascle, Strong relaxation of the isothermal Euler system to the heat equation, Z. Angew. Math. Phys. 53 (2002), no. 2, 239–264. MR 1900673, DOI 10.1007/s00033-002-8154-7
- Tosio Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58 (1975), no. 3, 181–205. MR 390516, DOI 10.1007/BF00280740
- A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR 748308, DOI 10.1007/978-1-4612-1116-7
- Pierangelo Marcati and Albert Milani, The one-dimensional Darcy’s law as the limit of a compressible Euler flow, J. Differential Equations 84 (1990), no. 1, 129–147. MR 1042662, DOI 10.1016/0022-0396(90)90130-H
- Takaaki Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics, Publications Mathématiques d’Orsay, No. 78-02, Université de Paris-Sud, Département de Mathématiques, Orsay, 1978. MR 0481578
- Thomas C. Sideris, Becca Thomases, and Dehua Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Comm. Partial Differential Equations 28 (2003), no. 3-4, 795–816. MR 1978315, DOI 10.1081/PDE-120020497
- Jacques Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4) 146 (1987), 65–96. MR 916688, DOI 10.1007/BF01762360
- Wen-An Yong, Entropy and global existence for hyperbolic balance laws, Arch. Ration. Mech. Anal. 172 (2004), no. 2, 247–266. MR 2058165, DOI 10.1007/s00205-003-0304-3
Additional Information
- Jean-François Coulombel
- Affiliation: Team SIMPAF–INRIA Futurs, CNRS & Université Lille 1, Laboratoire Paul Painlevé, UMR CNRS 8524, Cité Scientifique, 59655 Villeneuve D’Ascq Cedex, France
- MR Author ID: 703478
- Email: jfcoulom@math.univ-lille1.fr
- Thierry Goudon
- Affiliation: Team SIMPAF–INRIA Futurs, CNRS & Université Lille 1, Laboratoire Paul Painlevé, UMR CNRS 8524, Cité Scientifique, 59655 Villeneuve D’Ascq Cedex, France
- MR Author ID: 617261
- Email: thierry.goudon@math.univ-lille1.fr
- Received by editor(s): November 19, 2004
- Published electronically: July 21, 2006
- Additional Notes: The research of the authors was supported by the EU financed network HYKE, HPRN-CT-2002-00282.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 637-648
- MSC (2000): Primary 35L25; Secondary 35L65, 35L45, 76N15
- DOI: https://doi.org/10.1090/S0002-9947-06-04028-1
- MathSciNet review: 2255190