Characterizations of function spaces on the sphere using frames
HTML articles powered by AMS MathViewer
- by Feng Dai PDF
- Trans. Amer. Math. Soc. 359 (2007), 567-589 Request permission
Abstract:
In this paper we introduce a polynomial frame on the unit sphere $\mathbb {S}^{d-1}$ of $\mathbb {R}^d$, for which every distribution has a wavelet-type decomposition. More importantly, we prove that many function spaces on the sphere $\mathbb {S}^{d-1}$, such as $L^p$, $H^p$ and Besov spaces, can be characterized in terms of the coefficients in the wavelet decompositions, as in the usual Euclidean case $\mathbb {R}^d$. We also study a related nonlinear $m$-term approximation problem on $\mathbb {S}^{d-1}$. In particular, we prove both a Jackson–type inequality and a Bernstein–type inequality associated to wavelet decompositions, which extend the corresponding results obtained by R. A. DeVore, B. Jawerth and V. Popov (“Compression of wavelet decompositions”, Amer. J. Math. 114 (1992), no. 4, 737–785).References
- A. Askari-Khemmat, M. A. Degkhan, and M. A. Skopina, Polynomial wavelet-type expansions of functions on a sphere, Mat. Zametki 74 (2003), no. 2, 292–300 (Russian, with Russian summary); English transl., Math. Notes 74 (2003), no. 1-2, 278–285. MR 2023771, DOI 10.1023/A:1025016510773
- J.-P. Antoine and P. Vandergheynst, Wavelets on the $n$-sphere and related manifolds, J. Math. Phys. 39 (1998), no. 8, 3987–4008. MR 1633175, DOI 10.1063/1.532481
- Aline Bonami and Jean-Louis Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223–263 (French). MR 338697, DOI 10.1090/S0002-9947-1973-0338697-5
- Gavin Brown and Feng Dai, Approximation of smooth functions on compact two-point homogeneous spaces, J. Funct. Anal. 220 (2005), no. 2, 401–423. MR 2119285, DOI 10.1016/j.jfa.2004.10.005
- Leonardo Colzani, Hardy spaces on unit spheres, Boll. Un. Mat. Ital. C (6) 4 (1985), no. 1, 219–244 (English, with Italian summary). MR 805216
- Leonardo Colzani, Mitchell H. Taibleson, and Guido Weiss, Maximal estimates for Cesàro and Riesz means on spheres, Indiana Univ. Math. J. 33 (1984), no. 6, 873–889. MR 763947, DOI 10.1512/iumj.1984.33.33047
- Stephan Dahlke, Wolfgang Dahmen, Ilona Weinreich, and Eberhard Schmitt, Multiresolution analysis and wavelets on $S^2$ and $S^3$, Numer. Funct. Anal. Optim. 16 (1995), no. 1-2, 19–41. MR 1322896, DOI 10.1080/01630569508816605
- Ronald A. DeVore, Björn Jawerth, and Vasil Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992), no. 4, 737–785. MR 1175690, DOI 10.2307/2374796
- R. A. DeVore and V. A. Popov, Interpolation spaces and nonlinear approximation, Function spaces and applications (Lund, 1986) Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 191–205. MR 942269, DOI 10.1007/BFb0078875
- R. A. DeVore, P. Petrushev, and X. M. Yu, Nonlinear wavelet approximation in the space $C(\textbf {R}^d)$, Progress in approximation theory (Tampa, FL, 1990) Springer Ser. Comput. Math., vol. 19, Springer, New York, 1992, pp. 261–283. MR 1240786, DOI 10.1007/978-1-4612-2966-7_{1}1
- W. Freeden, T. Gervens, and M. Schreiner, Constructive approximation on the sphere, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1998. With applications to geomathematics. MR 1694466
- Michael Frazier and Björn Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. MR 1070037, DOI 10.1016/0022-1236(90)90137-A
- Jochen Göttelmann, Locally supported wavelets on manifolds with applications to the 2D sphere, Appl. Comput. Harmon. Anal. 7 (1999), no. 1, 1–33. MR 1699606, DOI 10.1006/acha.1999.0259
- Sandrine Grellier and Philippe Jaming, Harmonic functions on the real hyperbolic ball. II. Hardy-Sobolev and Lipschitz spaces, Math. Nachr. 268 (2004), 50–73. MR 2054532, DOI 10.1002/mana.200310159
- Eugenio Hernández and Guido Weiss, A first course on wavelets, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1996. With a foreword by Yves Meyer. MR 1408902, DOI 10.1201/9781420049985
- Rong Qing Jia, A Bernstein-type inequality associated with wavelet decomposition, Constr. Approx. 9 (1993), no. 2-3, 299–318. MR 1215774, DOI 10.1007/BF01198008
- K. Kolarov and W. Lynch, Compression of functions defined on surfaces of 3D objects, Data Compression Conference (DCC 97), March 25–27 (1997), 281–290.
- Pierre Gilles Lemarié, Base d’ondelettes sur les groupes de Lie stratifiés, Bull. Soc. Math. France 117 (1989), no. 2, 211–232 (French, with English summary). MR 1015808
- H. N. Mhaskar and J. Prestin, Polynomial frames: a fast tour, Approximation theory XI: Gatlinburg 2004, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2005, pp. 287–318. MR 2126687
- H. N. Mhaskar, F. J. Narcowich, and J. D. Ward, Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature, Math. Comp. 70 (2001), no. 235, 1113–1130. MR 1710640, DOI 10.1090/S0025-5718-00-01240-0
- H. N. Mhaskar, F. J. Narcowich, J. Prestin, and J. D. Ward, Polynomial frames on the sphere, Adv. Comput. Math. 13 (2000), no. 4, 387–403. MR 1826335, DOI 10.1023/A:1016639802349
- Francis J. Narcowich and Joseph D. Ward, Nonstationary wavelets on the $m$-sphere for scattered data, Appl. Comput. Harmon. Anal. 3 (1996), no. 4, 324–336. MR 1420501, DOI 10.1006/acha.1996.0025
- F. J. Narcowich, P. Petrushev and J. D. Ward, Localized tight frames on spheres, preprint.
- Kh. P. Rustamov, On the approximation of functions on a sphere, Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), no. 5, 127–148 (Russian, with Russian summary); English transl., Russian Acad. Sci. Izv. Math. 43 (1994), no. 2, 311–329. MR 1252759, DOI 10.1070/IM1994v043n02ABEH001566
- P. Schröder and W. Sweldens, Spherical wavelets: Efficiently representing functions on a sphere, Computer Graphics (SIGGRAPH 95 Proceedings) (1995), 161-172.
- P. Schröder and W. Sweldens, Spherical Wavelets: Texture Processing, In P. Hanrahan and W. Purgathofer, editors, Rendering Techniques 95, pp. 252-263, Springer-Verlag, Wien, New York, 1995.
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Robert S. Strichartz, Multipliers for spherical harmonic expansions, Trans. Amer. Math. Soc. 167 (1972), 115–124. MR 306823, DOI 10.1090/S0002-9947-1972-0306823-9
- Gabor Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1959. Revised ed. MR 0106295
- V. N. Temlyakov, The best $m$-term approximation and greedy algorithms, Adv. Comput. Math. 8 (1998), no. 3, 249–265. MR 1628182, DOI 10.1023/A:1018900431309
- V. N. Temlyakov, Nonlinear methods of approximation, Found. Comput. Math. 3 (2003), no. 1, 33–107. MR 1951502, DOI 10.1007/s102080010029
Additional Information
- Feng Dai
- Affiliation: Department of Mathematical and Statistical Sciences, CAB 632, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- MR Author ID: 660750
- Email: dfeng@math.ualberta.ca
- Received by editor(s): October 20, 2004
- Published electronically: June 13, 2006
- Additional Notes: The author was supported in part by the NSERC Canada under grant G121211001.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 567-589
- MSC (2000): Primary 41A63, 42C15; Secondary 41A17, 46E35
- DOI: https://doi.org/10.1090/S0002-9947-06-04030-X
- MathSciNet review: 2255186