Martingale property of empirical processes
HTML articles powered by AMS MathViewer
- by Sergio Albeverio, Yeneng Sun and Jiang-Lun Wu PDF
- Trans. Amer. Math. Soc. 359 (2007), 517-527 Request permission
Abstract:
It is shown that for a large collection of independent martingales, the martingale property is preserved on the empirical processes. Under the assumptions of independence and identical finite-dimensional distributions, it is proved that a large collection of stochastic processes are martingales essentially if and only if the empirical processes are also martingales. These two results have implications on the testability of the martingale property in scientific modeling. Extensions to submartingales and supermartingales are given.References
- Sergio Albeverio, Raphael Høegh-Krohn, Jens Erik Fenstad, and Tom Lindstrøm, Nonstandard methods in stochastic analysis and mathematical physics, Pure and Applied Mathematics, vol. 122, Academic Press, Inc., Orlando, FL, 1986. MR 859372
- Robert M. Anderson, A non-standard representation for Brownian motion and Itô integration, Israel J. Math. 25 (1976), no. 1-2, 15–46. MR 464380, DOI 10.1007/BF02756559
- Richard F. Bass, Probabilistic techniques in analysis, Probability and its Applications (New York), Springer-Verlag, New York, 1995. MR 1329542
- Josef Berger, Horst Osswald, Yeneng Sun, and Jiang-Lun Wu, On nonstandard product measure spaces, Illinois J. Math. 46 (2002), no. 1, 319–330. MR 1936091
- Yuan Shih Chow and Henry Teicher, Probability theory, 3rd ed., Springer Texts in Statistics, Springer-Verlag, New York, 1997. Independence, interchangeability, martingales. MR 1476912, DOI 10.1007/978-1-4612-1950-7
- Kai Lai Chung and Zhong Xin Zhao, From Brownian motion to Schrödinger’s equation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 312, Springer-Verlag, Berlin, 1995. MR 1329992, DOI 10.1007/978-3-642-57856-4
- Claude Dellacherie and Paul-André Meyer, Probabilities and potential. C, North-Holland Mathematics Studies, vol. 151, North-Holland Publishing Co., Amsterdam, 1988. Potential theory for discrete and continuous semigroups; Translated from the French by J. Norris. MR 939365
- J. L. Doob, Stochastic processes depending on a continuous parameter, Trans. Amer. Math. Soc. 42 (1937), no. 1, 107–140. MR 1501916, DOI 10.1090/S0002-9947-1937-1501916-1
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5
- D. Duffie, Dynamic asset pricing theory (3rd edition), Princeton University Press, Princeton, N.J., 2001.
- Richard Durrett, Probability, The Wadsworth & Brooks/Cole Statistics/Probability Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991. Theory and examples. MR 1068527
- William Feller, An introduction to probability theory and its applications. Vol. I, 3rd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0228020
- Hans Föllmer and Alexander Schied, Stochastic finance, De Gruyter Studies in Mathematics, vol. 27, Walter de Gruyter & Co., Berlin, 2002. An introduction in discrete time. MR 1925197, DOI 10.1515/9783110198065
- Douglas N. Hoover and H. Jerome Keisler, Adapted probability distributions, Trans. Amer. Math. Soc. 286 (1984), no. 1, 159–201. MR 756035, DOI 10.1090/S0002-9947-1984-0756035-8
- H. Jerome Keisler, Hyperfinite model theory, Logic Colloquium 76 (Oxford, 1976) Studies in Logic and Found. Math., Vol. 87, North-Holland, Amsterdam, 1977, pp. 5–110. MR 0491155
- H. Jerome Keisler, Infinitesimals in probability theory, Nonstandard analysis and its applications (Hull, 1986) London Math. Soc. Stud. Texts, vol. 10, Cambridge Univ. Press, Cambridge, 1988, pp. 106–139. MR 971065
- H. Jerome Keisler and Yeneng Sun, A metric on probabilities, and products of Loeb spaces, J. London Math. Soc. (2) 69 (2004), no. 1, 258–272. MR 2025340, DOI 10.1112/S0024610703004794
- Peter A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113–122. MR 390154, DOI 10.1090/S0002-9947-1975-0390154-8
- Peter A. Loeb, A nonstandard functional approach to Fubini’s theorem, Proc. Amer. Math. Soc. 93 (1985), no. 2, 343–346. MR 770550, DOI 10.1090/S0002-9939-1985-0770550-9
- Manfred Wolff and Peter A. Loeb (eds.), Nonstandard analysis for the working mathematician, Mathematics and its Applications, vol. 510, Kluwer Academic Publishers, Dordrecht, 2000. MR 1790871, DOI 10.1007/978-94-011-4168-0
- Edwin Perkins, A global intrinsic characterization of Brownian local time, Ann. Probab. 9 (1981), no. 5, 800–817. MR 628874
- K. D. Stroyan and José Manuel Bayod, Foundations of infinitesimal stochastic analysis, Studies in Logic and the Foundations of Mathematics, vol. 119, North-Holland Publishing Co., Amsterdam, 1986. MR 849100
- Yeneng Sun, A theory of hyperfinite processes: the complete removal of individual uncertainty via exact LLN, J. Math. Econom. 29 (1998), no. 4, 419–503. MR 1627287, DOI 10.1016/S0304-4068(97)00036-0
- Yeneng Sun, The almost equivalence of pairwise and mutual independence and the duality with exchangeability, Probab. Theory Related Fields 112 (1998), no. 3, 425–456. MR 1660898, DOI 10.1007/s004400050196
Additional Information
- Sergio Albeverio
- Affiliation: Institut für Angewandte Mathematik der Universität Bonn, Wegelerstr. 6, D-53115 Bonn, Germany
- Email: albeverio@uni-bonn.de
- Yeneng Sun
- Affiliation: Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
- Email: matsuny@nus.edu.sg
- Jiang-Lun Wu
- Affiliation: Department of Mathematics, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, United Kingdom
- Email: j.l.wu@swansea.ac.uk
- Received by editor(s): September 16, 2004
- Published electronically: September 19, 2006
- © Copyright 2006 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 359 (2007), 517-527
- MSC (2000): Primary 60G42, 60G44; Secondary 03H05, 28E05, 60F15
- DOI: https://doi.org/10.1090/S0002-9947-06-04055-4
- MathSciNet review: 2255184