Realizability of algebraic Galois extensions by strictly commutative ring spectra
HTML articles powered by AMS MathViewer
- by Andrew Baker and Birgit Richter PDF
- Trans. Amer. Math. Soc. 359 (2007), 827-857 Request permission
Abstract:
We discuss some of the basic ideas of Galois theory for commutative $\mathbb {S}$-algebras originally formulated by John Rognes. We restrict our attention to the case of finite Galois groups and to global Galois extensions. We describe parts of the general framework developed by Rognes. Central rôles are played by the notion of strong duality and a trace mapping constructed by Greenlees and May in the context of generalized Tate cohomology. We give some examples where algebraic data on coefficient rings ensures strong topological consequences. We consider the issue of passage from algebraic Galois extensions to topological ones by applying obstruction theories of Robinson and Goerss-Hopkins to produce topological models for algebraic Galois extensions and the necessary morphisms of commutative $\mathbb {S}$-algebras. Examples such as the complex $K$-theory spectrum as a $KO$-algebra indicate that more exotic phenomena occur in the topological setting. We show how in certain cases topological abelian Galois extensions are classified by the same Harrison groups as algebraic ones, and this leads to computable Harrison groups for such spectra. We end by proving an analogue of Hilbert’s theorem 90 for the units associated with a Galois extension.References
- J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0402720
- M. Ando, The units of a ring spectrum and Thom spectra, unpublished notes (2004).
- Maurice Auslander and Oscar Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409. MR 121392, DOI 10.1090/S0002-9947-1960-0121392-6
- Andrew Baker and Birgit Richter, On the $\Gamma$-cohomology of rings of numerical polynomials and $E_\infty$ structures on $K$-theory, Comment. Math. Helv. 80 (2005), no. 4, 691–723. MR 2182697, DOI 10.4171/CMH/31
- Andrew Baker and Birgit Richter, Invertible modules for commutative $\Bbb S$-algebras with residue fields, Manuscripta Math. 118 (2005), no. 1, 99–119. MR 2171294, DOI 10.1007/s00229-005-0582-1
- Maria Basterra and Birgit Richter, (Co-)homology theories for commutative ($S$-)algebras, Structured ring spectra, London Math. Soc. Lecture Note Ser., vol. 315, Cambridge Univ. Press, Cambridge, 2004, pp. 115–131. MR 2122156, DOI 10.1017/CBO9780511529955.007
- S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15–33. MR 195922
- Ethan S. Devinatz and Michael J. Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004), no. 1, 1–47. MR 2030586, DOI 10.1016/S0040-9383(03)00029-6
- A. Dold & D. Puppe, Duality, trace, and transfer, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), PWN (1980), 81–102; also appeared in Proc. Steklov Inst. Math. 154 (1985), 85–103.
- W. G. Dwyer, D. M. Kan, and J. H. Smith, Homotopy commutative diagrams and their realizations, J. Pure Appl. Algebra 57 (1989), no. 1, 5–24. MR 984042, DOI 10.1016/0022-4049(89)90023-6
- A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. MR 1417719, DOI 10.1090/surv/047
- Miguel Ferrero and Antonio Paques, Galois theory of commutative rings revisited, Beiträge Algebra Geom. 38 (1997), no. 2, 399–410. MR 1473117
- P. G. Goerss and M. J. Hopkins, Moduli spaces of commutative ring spectra, Structured ring spectra, London Math. Soc. Lecture Note Ser., vol. 315, Cambridge Univ. Press, Cambridge, 2004, pp. 151–200. MR 2125040, DOI 10.1017/CBO9780511529955.009
- J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995), no. 543, viii+178. MR 1230773, DOI 10.1090/memo/0543
- C. Greither, Cyclic Galois extensions and normal bases, Trans. Amer. Math. Soc. 326 (1991), no. 1, 307–343. MR 1014248, DOI 10.1090/S0002-9947-1991-1014248-8
- Cornelius Greither, Cyclic Galois extensions of commutative rings, Lecture Notes in Mathematics, vol. 1534, Springer-Verlag, Berlin, 1992. MR 1222646, DOI 10.1007/BFb0089165
- D. K. Harrison, Abelian extensions of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 1–14. MR 195921
- Mark Hovey, John H. Palmieri, and Neil P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997), no. 610, x+114. MR 1388895, DOI 10.1090/memo/0610
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- J. Peter May, $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Mathematics, Vol. 577, Springer-Verlag, Berlin-New York, 1977. With contributions by Frank Quinn, Nigel Ray, and Jørgen Tornehave. MR 0494077
- —, Equivariant Homotopy and Cohomology theories, CBMS Regional Conference Series in Mathematics 91 (1996).
- J. P. May, Picard groups, Grothendieck rings, and Burnside rings of categories, Adv. Math. 163 (2001), no. 1, 1–16. MR 1867201, DOI 10.1006/aima.2001.1996
- Alan Robinson, Gamma homology, Lie representations and $E_\infty$ multiplications, Invent. Math. 152 (2003), no. 2, 331–348. MR 1974890, DOI 10.1007/s00222-002-0272-5
- Alan Robinson, Classical obstructions and $S$-algebras, Structured ring spectra, London Math. Soc. Lecture Note Ser., vol. 315, Cambridge Univ. Press, Cambridge, 2004, pp. 133–149. MR 2122157, DOI 10.1017/CBO9780511529955.008
- Alan Robinson and Sarah Whitehouse, Operads and $\Gamma$-homology of commutative rings, Math. Proc. Cambridge Philos. Soc. 132 (2002), no. 2, 197–234. MR 1874215, DOI 10.1017/S0305004102005534
- J. Rognes, Galois extensions of structured ring spectra, preprint math.AT/0502183, to appear in the Memoirs of the Amer. Math. Soc.
- R. Schwänzl, R. M. Vogt, and F. Waldhausen, Adjoining roots of unity to $E_\infty$ ring spectra in good cases—a remark, Homotopy invariant algebraic structures (Baltimore, MD, 1998) Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 245–249. MR 1718085, DOI 10.1090/conm/239/03606
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
Additional Information
- Andrew Baker
- Affiliation: Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland
- MR Author ID: 29540
- ORCID: 0000-0002-9369-7702
- Email: a.baker@maths.gla.ac.uk
- Birgit Richter
- Affiliation: Fachbereich Mathematik der Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
- Email: richter@math.uni-hamburg.de
- Received by editor(s): December 23, 2004
- Published electronically: September 12, 2006
- Additional Notes: We would like to thank John Rognes, John Greenlees, Peter Kropholler, Stefan Schwede and the referee for helpful comments. We thank the Mathematics Departments of the Universities of Glasgow and Oslo for providing us with stimulating environments to pursue this work.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 827-857
- MSC (2000): Primary 55P42, 55P43, 55S35; Secondary 55P91, 55P92, 13B05
- DOI: https://doi.org/10.1090/S0002-9947-06-04201-2
- MathSciNet review: 2255198