A homotopy principle for maps with prescribed Thom-Boardman singularities
HTML articles powered by AMS MathViewer
- by Yoshifumi Ando PDF
- Trans. Amer. Math. Soc. 359 (2007), 489-515 Request permission
Abstract:
Let $N$ and $P$ be smooth manifolds of dimensions $n$ and $p$ ($n\geq p\geq 2$) respectively. Let $\Omega ^{I}(N,P)$ denote an open subspace of $J^{\infty }(N,P)$ which consists of all Boardman submanifolds $\Sigma ^{J}(N,P)$ of symbols $J$ with $J\leq I$. An $\Omega ^{I}$-regular map $f:N\rightarrow P$ refers to a smooth map such that $j^{\infty }f(N)\subset \Omega ^{I}(N,P)$. We will prove what is called the homotopy principle for $\Omega ^{I}$-regular maps on the existence level. Namely, a continuous section $s$ of $\Omega ^{I}(N,P)$ over $N$ has an $\Omega ^{I}$-regular map $f$ such that $s$ and $j^{\infty }f$ are homotopic as sections.References
- Yoshifumi Ando, On the elimination of Morin singularities, J. Math. Soc. Japan 37 (1985), no. 3, 471–487. MR 792988, DOI 10.2969/jmsj/03730471
- Yoshifumi Ando, An existence theorem of foliations with singularities $A_k,\;D_k$ and $E_k$, Hokkaido Math. J. 20 (1991), no. 3, 571–578. MR 1134991, DOI 10.14492/hokmj/1381413990
- Yoshifumi Ando, The homotopy type of the space consisting of regular jets and folding jets in $J^2(n,n)$, Japan. J. Math. (N.S.) 24 (1998), no. 1, 169–181. MR 1630137, DOI 10.4099/math1924.24.169
- Yoshifumi Ando, Fold-maps and the space of base point preserving maps of spheres, J. Math. Kyoto Univ. 41 (2001), no. 4, 693–737. MR 1891672, DOI 10.1215/kjm/1250517595
- Yoshifumi Ando, Invariants of fold-maps via stable homotopy groups, Publ. Res. Inst. Math. Sci. 38 (2002), no. 2, 397–450. MR 1903746
- Yoshifumi Ando, Existence theorems of fold-maps, Japan. J. Math. (N.S.) 30 (2004), no. 1, 29–73. MR 2070370, DOI 10.4099/math1924.30.29
- Y. Ando, The homotopy principle in the existence level for maps with only singularities of types $A$, $D$ and $E$, submitted to Nagoya Math. J. in 2003, http://front.math.ucdavis. edu/math.GT/0411399.
- Y. Ando, Cobordisms of maps without prescribed singularities, http://front.math. ucdavis.edu/math.GT/0412234.
- J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 21–57. MR 231390
- Daniel S. Chess, A note on the classes $[S^{k}_{1}(f)]$, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 221–224. MR 713061
- Andrew du Plessis, Maps without certain singularities, Comment. Math. Helv. 50 (1975), no. 3, 363–382. MR 397779, DOI 10.1007/BF02565756
- Ja. M. Èliašberg, Singularities of folding type, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 1110–1126 (Russian). MR 0278321
- Ja. M. Èliašberg, Surgery of singularities of smooth mappings, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1321–1347 (Russian). MR 0339261
- Sidnie Dresher Feit, $k$-mersions of manifolds, Acta Math. 122 (1969), 173–195. MR 243541, DOI 10.1007/BF02392010
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 0341518
- M. L. Gromov, Stable mappings of foliations into manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 707–734 (Russian). MR 0263103
- Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505, DOI 10.1007/978-3-662-02267-2
- Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242–276. MR 119214, DOI 10.1090/S0002-9947-1959-0119214-4
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- Harold I. Levine, Elimination of cusps, Topology 3 (1965), no. suppl, suppl. 2, 263–296. MR 176484, DOI 10.1016/0040-9383(65)90078-9
- H. I. Levine, Singularities of differentiable maps, Proc. Liverpool Singularities Symposium, I, Springer Lecture Notes in Math. Vol. 192, Springer-Verlag, 1971, 1-85.
- John N. Mather, Stability of $C^{\infty }$ mappings. III. Finitely determined mapgerms, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 279–308. MR 275459
- John N. Mather, On Thom-Boardman singularities, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 233–248. MR 0353359
- Yozo Matsushima, Differentiable manifolds, Pure and Applied Mathematics, vol. 9, Marcel Dekker, Inc., New York, 1972. Translated from the Japanese by E. T. Kobayashi. MR 0346831
- Bernard Morin, Formes canoniques des singularités d’une application différentiable, C. R. Acad. Sci. Paris 260 (1965), 6503–6506. MR 190944
- Anthony Phillips, Submersions of open manifolds, Topology 6 (1967), 171–206. MR 208611, DOI 10.1016/0040-9383(67)90034-1
- Rustam Sadykov, The Chess conjecture, Algebr. Geom. Topol. 3 (2003), 777–789. MR 1997337, DOI 10.2140/agt.2003.3.777
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
- R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 43–87 (French). MR 87149
Additional Information
- Yoshifumi Ando
- Affiliation: Department of Mathematical Sciences, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
- Email: andoy@yamaguchi-u.ac.jp
- Received by editor(s): September 15, 2003
- Published electronically: September 19, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 489-515
- MSC (2000): Primary 58K30; Secondary 57R45, 58A20
- DOI: https://doi.org/10.1090/S0002-9947-06-04326-1
- MathSciNet review: 2255183