Scrollar syzygies of general canonical curves with genus $\le 8$
HTML articles powered by AMS MathViewer
- by Hans-Christian Graf v. Bothmer PDF
- Trans. Amer. Math. Soc. 359 (2007), 465-488 Request permission
Abstract:
We prove that for a general canonical curve $C \subset \mathbb {Z}^{g-1}$ of genus $g$, the space of ${\lceil \frac {g-5}{2}\rceil }$th (last) scrollar syzygies is isomorphic to the Brill-Noether locus $C^1_{\lceil \frac {g+2}{2} \rceil }$. Schreyer has conjectured that these scrollar syzygies span the space of all ${\lceil \frac {g-5}{2} \rceil }$th (last) syzygies of $C$. Using Mukai varieties we prove this conjecture for genus $6$, $7$ and $8$.References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- Enrico Arbarello and Joseph Harris, Canonical curves and quadrics of rank $4$, Compositio Math. 43 (1981), no. 2, 145–179. MR 622446
- A. Andreotti and A. L. Mayer, On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 21 (1967), 189–238. MR 220740
- Stefan Ehbauer, Syzygies of points in projective space and applications, Zero-dimensional schemes (Ravello, 1992) de Gruyter, Berlin, 1994, pp. 145–170. MR 1292482
- David Eisenbud, Linear sections of determinantal varieties, Amer. J. Math. 110 (1988), no. 3, 541–575. MR 944327, DOI 10.2307/2374622
- M. Green and R. Lazarsfeld. The non-vanishing of certain Koszul cohomology groups. J. Diff. Geom., 19:168–170, 1984.
- Mark L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125–171. MR 739785
- M. L. Green, Quadrics of rank four in the ideal of a canonical curve, Invent. Math. 75 (1984), no. 1, 85–104. MR 728141, DOI 10.1007/BF01403092
- Daniel R. Grayson and Michael E. Stillman. Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2 , 2002.
- Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR 1182558, DOI 10.1007/978-1-4757-2189-8
- A. Hirschowitz and S. Ramanan, New evidence for Green’s conjecture on syzygies of canonical curves, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 2, 145–152 (English, with English and French summaries). MR 1603255, DOI 10.1016/S0012-9593(98)80013-X
- T. Józefiak, P. Pragacz, and J. Weyman. Resolutions of determinantal varieties and tensor complexes associated with symmetric and antisymmetric matrices, 1981.
- George Kempf and Linda Ness, Tensor products of fundamental representations, Canad. J. Math. 40 (1988), no. 3, 633–648. MR 960599, DOI 10.4153/CJM-1988-027-1
- Alain Lascoux, Syzygies des variétés déterminantales, Adv. in Math. 30 (1978), no. 3, 202–237 (French). MR 520233, DOI 10.1016/0001-8708(78)90037-3
- Shigeru Mukai, Curves and symmetric spaces, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 1, 7–10. MR 1158012
- Shigeru Mukai, Fano $3$-folds, Complex projective geometry (Trieste, 1989/Bergen, 1989) London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 255–263. MR 1201387, DOI 10.1017/CBO9780511662652.018
- G. Ottaviani. Rational Homogeneous Varieties. Lecture notes for the summer school in Algebraic Geometry in Cortona, 1995.
- K. Petri, Über die invariante Darstellung algebraischer Funktionen einer Veränderlichen, Math. Ann. 88 (1923), no. 3-4, 242–289 (German). MR 1512130, DOI 10.1007/BF01579181
- Frank-Olaf Schreyer, Syzygies of canonical curves and special linear series, Math. Ann. 275 (1986), no. 1, 105–137. MR 849058, DOI 10.1007/BF01458587
- Frank-Olaf Schreyer, Green’s conjecture for general $p$-gonal curves of large genus, Algebraic curves and projective geometry (Trento, 1988) Lecture Notes in Math., vol. 1389, Springer, Berlin, 1989, pp. 254–260. MR 1023403, DOI 10.1007/BFb0085937
- Frank-Olaf Schreyer, A standard basis approach to syzygies of canonical curves, J. Reine Angew. Math. 421 (1991), 83–123. MR 1129577, DOI 10.1515/crll.1991.421.83
- Montserrat Teixidor I Bigas, Green’s conjecture for the generic $r$-gonal curve of genus $g\geq 3r-7$, Duke Math. J. 111 (2002), no. 2, 195–222. MR 1882133, DOI 10.1215/S0012-7094-02-11121-1
- H.-Chr. Graf v. Bothmer. Geometrische Syzygien von kanonischen Kurven. Dissertation, Universität Bayreuth, 2000.
- Claire Voisin, Courbes tétragonales et cohomologie de Koszul, J. Reine Angew. Math. 387 (1988), 111–121 (French). MR 946352, DOI 10.1515/crll.1988.387.111
- Claire Voisin, Green’s generic syzygy conjecture for curves of even genus lying on a $K3$ surface, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 4, 363–404. MR 1941089, DOI 10.1007/s100970200042
- Claire Voisin, Green’s canonical syzygy conjecture for generic curves of odd genus, Compos. Math. 141 (2005), no. 5, 1163–1190. MR 2157134, DOI 10.1112/S0010437X05001387
Additional Information
- Hans-Christian Graf v. Bothmer
- Affiliation: Laboratoire J.-A. Dieudonné, Université de Nice, Parc Valrose, 06108 Nice cedex 2, France
- Address at time of publication: Institiut für Algebraische Geometrie, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
- MR Author ID: 724323
- Email: bothmer@math.uni-hannover.de
- Received by editor(s): November 12, 2002
- Published electronically: September 12, 2006
- Additional Notes: This work was supported by the Schwerpunktprogramm “Global Methods in Complex Geometry” of the Deutsche Forschungs Gemeinschaft and Marie Curie Fellowship HPMT-CT-2001-001238
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 465-488
- MSC (2000): Primary 13D02, 14H45, 14C20
- DOI: https://doi.org/10.1090/S0002-9947-06-04353-4
- MathSciNet review: 2255182