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SCROLLAR SYZYGIES OF GENERAL CANONICAL CURVES
WITH GENUS ≤ 8

HANS-CHRISTIAN GRAF V. BOTHMER

Abstract. We prove that for a general canonical curve C ⊂ Zg−1 of genus g,

the space of � g−5
2

�th (last) scrollar syzygies is isomorphic to the Brill-Noether

locus C1
� g+2

2 �
. Schreyer has conjectured that these scrollar syzygies span the

space of all � g−5
2

�th (last) syzygies of C. Using Mukai varieties we prove this
conjecture for genus 6, 7 and 8.

1. Introduction

In this paper we study the syzygies of general canonical curves C ⊂ Pg−1 for
g ≤ 8.

In [GL84] Green and Lazarsfeld construct low-rank-syzygies of C from special
linear systems on C. More precisely linear systems of Clifford index c give a
(g − c− 3)rd syzygy. We call these syzygies geometric syzygies. Green’s conjecture
[Gre84a] paraphrased in this way is

Conjecture (Green). Let C be a canonical curve. Then

C has no geometric pth syzygies ⇐⇒ C has no pth syzygies at all.

This conjecture has received a lot of attention in the past few years, and it is now
known in many cases [Pet23], [Gre84a], [Sch86], [Sch88], [Voi88], [Sch91], [Ehb94],
[HR98], [Voi02], [TiB02], [Voi05].

Much less is known about the following natural generalization of Green’s conjec-
ture due to Schreyer.

Conjecture (Geometric Syzygy Conjecture). Let C be a canonical curve. Then
the geometric pth syzygies span the space of all pth syzygies.

Both conjectures are equivalent for p ≥ g−3
2 since a general canonical curve has

no linear systems of Clifford index c ≤ g−3
2 .

The geometric syzygy conjecture is therefore true, where Green’s conjecture is
known. Furthermore the case p = 0 (geometric quadrics) was proved by [AM67] for
general canonical curves, and by [Gre84b] for all canonical curves. The case p = 1
was done for general canonical curves of genus g ≥ 9 in [vB00].

In this paper we prove the conjecture in the cases p = 1, g = 6, 7 and p = 2,
g = 8 for general canonical curves. The easiest kind of geometric syzygies are those
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that come from complete pencils |D| of degree g − d. By looking at the scroll

S|D| =
⋃

D′∈|D|
span D′

and its minimal free resolution, one can construct (d − 2)nd syzygies of rank d.
Conversely every (d − 2)nd syzygy of rank d determines a scroll whose fibers cut
out a linear system of divisors on C. We call geometric syzygies of this type scrollar
syzygies. To prove the Geometric Syzygy Conjecture in our cases it turns out that
it is enough to consider scrollar syzygies. We conjecture that this is always true for
general canonical curves.

The starting point of our proof is:

Theorem (Mukai). Every general canonical curve of genus 7 ≤ g ≤ 9 is a general
linear section of an embedded rational homogeneous variety Mg. General canonical
curves of genus 6 are cut out by a general quadric on a general linear section of a
homogeneous variety M6.

Using this we first consider the schemes of last minimal rank linear syzygies of
the Mukai varieties M6, M7 and M8 using representation theory. It turns out that
all these schemes contain large rational homogeneous varieties.

Passing from Mukai varieties to canonical curves we describe their schemes of last
minimal rank syzygies as determinantal loci on the above homogeneous varieties
and show that they are scrollar.

Using the resolutions of Eagon-Northcott (for g = 6, 8) and Lascoux (for g =
7) we express the cohomology of the corresponding ideal sheafs in terms of the
cohomology of homogeneous bundles. The later cohomology is then calculated
with the theorem of Bott.

This calculation shows h0(I(1)) = 0, proving the geometric syzygy conjecture in
these cases. More precisely our results are:

Theorem A. The scheme Z of last scrollar syzygies of a general canonical curve
C ⊂ P

7 of genus 8 is a configuration of 14 skew conics that lie on a 2-uple embedded
P5 ↪→ P20. Z spans the whole P20 of second syzygies of C.
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Theorem B. The scheme Z of last scrollar syzygies of a general canonical curve
C ⊂ P6 of genus 7 is a linearly normal ruled surface of degree 84 on a spinor variety
S+

10 ⊂ P
15. This ruled surface spans the whole P

15 of first syzygies of C.

Theorem C. The scheme Z of last scrollar syzygies of a general canonical curve
C ⊂ P5 of genus 6 is a configuration of 5 skew lines in P4 that spans the whole P4

of first syzygies of C.

The paper is organized as follows.
In Section 2 we recall some facts about triple tensors and matrices of linear

forms. In particular we introduce the scheme of minimal rank rows Ymin and the
vector bundle of linear forms Lmin on its reduction Yred. Furthermore we study
the restriction of triple tensors.

In Section 3 we define the notion of minimal rank last linear syzygies using the
facts about triple tensors from Section 2.

In Section 4 we consider 1-generic triple tensors (matrices of linear forms) and
their associated determinantal varieties. In particular we calculate the rank filtra-
tion of their last syzygy spaces and determine their reduced scheme of minimal rank
last syzygies Yred. In particular pth syzygies of rank p + 2 can be constructed via
scrolls of degree p + 2.

In Section 5 we prove that conversely every pth syzygy of rank p+2 comes from
a scroll, and we call these syzygy scrollar. Here we also state a strong form of the
scrollar syzygy conjecture for general canonical curves.

Section 6 describes the connection between scrollar syzygies, scrolls and pencils
of divisors in the case of a general canonical curve C ⊂ Pg−1. In particular we
prove that their reduced spaces of last scrollar syzygies are isomorphic to certain
Brill-Noether loci.

Section 7 introduces Mukai varieties and calculates their linear strands. Some
large rational homogeneous subspaces of their spaces of minimal rank last syzygies
Ymin are identified, and the vector bundle of liner forms Lmin on these subspaces
is calculated.

In the last three sections we then calculate the spaces of last scrollar syzygies for
general canonical curves of genus 8, 7 and 6.

I would like to thank Kristian Ranestad for the many helpful discussions during
my stay at Oslo University. It was there where most of the ideas of this work were
born.

I dedicate this paper to the memory of my grandmother Lilly-Maria, who intro-
duced me to mathematics.

2. Triple tensors and matrices of linear forms

Let A, B and C be finite-dimensional vector spaces of dimensions a, b and c
together with a map

γ : A ⊗ B → C.

γ can be interpreted as a triple tensor γ ∈ A∗ ⊗ B∗ ⊗ C or after choosing bases as
an a × b-matrix of linear forms on P(C).

Definition 2.1. A linear map C → A is called a generalized row of γ since it
induces a map

C ⊗ B → C
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which can be interpreted as a 1 × b row vector of linear forms. The the images of
such generalized rows C → A form a projective space P(A∗) which we call the row
space of γ. Similarly P(B∗) is the column space of γ.

On the row space P(A∗) the triple tensor γ induces a map of vector bundles

γA : OP(A∗)(−1) ⊗ B → C

by composing it with the first map of the twisted Euler sequence

0 → OP(A∗)(−1) ⊗ B → A ⊗ B → TP(A∗)(1) ⊗ B → 0

on P(A∗). Similarly we have

γB : A ⊗OP(B∗)(−1) → C

on the column space P(B∗). From now on we will restrict our discussion to the
row space P(A∗), leaving the analogous constructions for the column space P(B∗)
to the reader.

Given a generalized row α ∈ P(A∗) the restriction of γA to α,

γα : B → C,

is a map of vector spaces.

Definition 2.2. The rank of a generalized row α is defined as rank α := rank γα.
The image Im(γα) ⊂ C is called the space of linear forms involved in α.

Remark 2.3. The determinantal varieties associated to γA stratify the row space
P(A∗) according to the rank of the rows. In particular the minimal-rank-rows form
a closed subscheme Ymin ⊂ P(A∗).

Remark 2.4. In practice Ymin is often not of expected codimension, which makes
it hard to control as a determinantal variety. In this paper we will construct Ymin

via representation theory.

Definition 2.5. On the reduction Yred of Ymin, the image of γA restricted to Yred

is a vector bundle Lmin which we call the bundle of linear forms:

OYred
(−1) ⊗ B

γA|Yred

�� �������������
�� C ⊗OYred

Lmin

� �
ι

�����������

Example 2.6. Consider vector spaces A, B and C of dimension 2, 3 and 4 with
basis ai, bi and ci. The triple tensor

γ : A ⊗ B → C

with

γ(a1 ⊗ b1) = c1, γ(a1 ⊗ b2) = c2, γ(a1 ⊗ b3) = c3,

γ(a2 ⊗ b1) = c2, γ(a2 ⊗ b2) = c3, γ(a2 ⊗ b3) = c4,

can be represented by the matrix (
c1 c2 c3

c2 c3 c4

)
.
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In this basis we see two rows of rank 3. Generalized rows are linear combinations
of those two. The map

γA : OP(A∗)(−1) ⊗ B → C

can be represented by the matrix⎛
⎝a1 a2 0 0

0 a1 a2 0
0 0 a1 a2

⎞
⎠ .

Since this matrix has full rank everywhere on the row-space P(A∗) we see that all
generalized rows of γ have the same rank 3. In particular Yred = Ymin = Y3(γA) =
P(A∗). Since γA is injective on Ymin the bundle of linear forms Lmin is isomorphic
to OYmin

(−1) ⊗ B:

OYmin
(−1) ⊗ B

�����������

�����������
� � �� C ⊗OYmin

Lmin

� �

�����������

Definition 2.7. A map γ′ obtained by

A ⊗ B
γ �� ��

γ′

��C �� �� C ′

is called a restriction of γ.

We want to determine how the rank of generalized rows and columns changes
during restriction.

Definition 2.8. Consider the composition

OP(A∗)(−1) ⊗ B
γA �� ��

γ′
A

��C ⊗OP(A∗) �� �� C ′ ⊗OP(A∗)

For a generalized row α ∈ P(A∗) the rank of the restriction γ′
α is called the restricted

rank of α.

By definition the restricted rank of a generalized row is always smaller than or
equal to its rank.

Remark 2.9. The space Y ′
min′ of minimal restricted rank rows can be completely

different from the space Ymin of minimal unrestricted rank rows. Often however
Y ′

min′ is a subspace of Ymin.

On Yred we can calculate restricted ranks of minimal rank rows using the vector
bundle of linear forms:

Lemma 2.10. Consider the composition

Lmin
� � ι ��

ι′

��C ⊗OYred
�� �� C ′ ⊗OYred

on Yred. If α ∈ Ymin ⊂ P(A∗) is a generalized row of minimal rank, then its
restricted rank is the rank of ι′|α.

Proof. By definition the rank of α is the rank of ι|α. By composing with C → C ′

we obtain the restricted rank. �



470 HANS-CHRISTIAN GRAF V. BOTHMER

Remark 2.11. If L∗
min is globally generated, C = H0(L∗

min)∗ and C → C ′ general,
then ι′ drops rank in expected codimension. We will use this fact later to describe
the restricted rank filtration on Ymin with determinantal varieties. In particular we
can calculate the classes of these strata.

Example 2.12. Let γ be as in Example 2.6 and C → C ′ be the map that sends
c4 to zero. Then γ′ is represented by(

c1 c2 c3

c2 c3 0

)
.

In this basis we see one row that has restricted rank 2. γ′
A is represented by⎛

⎝a1 a2 0
0 a1 a2

0 0 a1

⎞
⎠ .

This matrix drops rank at (0 : 1), which corresponds to the bottom row. Y ′
min′ =

Y2(γ′
A) is therefore one triple point in Ymin = Y3(γA) = P(A∗).

For the map C → C ′ that sends c3 to zero γ′
A is represented by⎛

⎝a1 a2 0
0 a1 0
0 0 a2

⎞
⎠ ,

and we have two rows that drop rank. For a general map C → C ′ we expect 3
distinct generalized rows with restricted rank 2.

3. Last linear syzygies

Let X ⊂ Pn−1 be any projective variety. We denote its minimal free resolution
by

F• → IX or F•[1] → OPn−1 → OX

where we consider F• as a bounded chain complex

F• : 0 → · · · → F2 → F1 → F0

with homology IX concentrated in degree 0.
If F• is any free chain complex with Fi =

⊕
j Fij ⊗ O(−i − j) and Fij vector

spaces, the dimensions
βij = dimFij

are called graded Betti numbers of F•. Sometimes we will write it more shortly as

Fi =
⊕

j

O(−i − j)βij

or collect the graded Betti numbers βij in a so-called Betti diagram:

β00 β10 . . .
β01 β11

...
βij

For better readability we will write a dash (“-”) if βij = 0.
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Example 3.1. The rational normal curve X ⊂ P3 of degree 3 has minimal free
resolution

0 → O(−3)2 → O(−2)3 → O → OX → 0.

The corresponding Betti diagram is therefore

1 − −
− 3 2

Note that this notation yields diagrams as calculated by the computer program
Macaulay [GS02].

To study the minimal free resolution F• → IX of a variety X it is often useful
to linearize its information. We will look at particular subcomplexes of F• whose
differentials can be given as matrices of linear forms.

Definition 3.2. Let IX be an ideal sheaf on Pn−1, and

F• → IX

a minimal free resolution of IX . Let d be the smallest degree, such that β0d 	= 0.
We define the complex F•(d) by

Fi(d) = Fid ⊗O(−i − d) = O(−i − d)βid

with the differentials induced from F•. We call

F•(d) → IX

the degree d linear strand of IX , since the differentials of F•(d) are given by matrices
of linear forms, and the map to IX is defined by polynomials of degree d.

Example 3.3. Let F• → IX be the minimal free resolution of the rational normal
curve in P3. Since IX is generated by quadrics, its linear strand is F•(2). Its Betti
diagram is

− −
3 2

Remark 3.4. F•(d) → IX is a subcomplex of F• → IX .

Definition 3.5. Let F• → IX be the minimal free resolution of IX . If F• = F•(d)
we say that IX has a linear free resolution of degree d.

Remark 3.6. The most important examples of schemes with linear free resolution
are maximal determinantal varieties of expected codimension. These are discussed
in the next section.

In this paper we apply the discussion of the preceding section to the study of
last linear syzygies.

Definition 3.7. Let C be a finite-dimensional C vector space and F•(d) → IX the
linear strand of a variety X ⊂ P(C). Then the maximal l with βld 	= 0 is called the
length of the linear strand. The space P(F ∗

ld) is called the space of last syzygies of
X.

We now observe that the last map in the linear strand F•(d),

Fld ⊗O(−d − l)
φl−→ Fl−1,d ⊗O(−d − l + 1),

induces a triple tensor
γ : Fld ⊗ F ∗

l−1,d → C.
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Remark 3.8. Since a last syzygy s ∈ Fld defines a generalized row C
s−→ Fld of γ,

the row space P(F ∗
ld) of γ is just the space of last syzygies.

Definition 3.9. The rank of a last syzygy s ∈ Fld is defined as the rank of the
corresponding generalized row C → Fld of γ. In this setting we will call Ymin ⊂
P(F ∗

ld) the space of last minimal rank syzygies.

4. 1-generic spaces

In this section we consider the last syzygies of certain determinantal varieties
and describe their ranks.

Definition 4.1 (1-generic spaces). A triple tensor

Γ: A ⊗ B → C

is called 1-generic, if all generalized rows have rank b and all generalized columns
have rank a. Usually one assumes a ≥ b.

1-generic triple tensors have many interesting properties. See Eisenbud [Eis88]
for a discussion. In particular the induced map

ΓC : A ⊗OP(C)(−1) → B∗

on P(C) drops rank in expected codimension, and this determinantal locus X =
Xb−1(ΓC) is resolved by the Eagon-Northcott complex

E• → IX

with E• linear of degree b and

Ei = Eib ⊗O(−i − b), Eib = Λb+iA ⊗ ΛbB ⊗ SiB.

The maps of E• are induced by triple tensors

Eib ⊗ E∗
i−1,b

�� C

(Λb+iA ⊗ Λb+i−1A∗) ⊗ (SiB ⊗ Si−1B
∗)

µΛ⊗µS �� A ⊗ B

Γ

��

with µΛ and µS the usual contractions.

Lemma 4.2. The space P(E∗
a−b,b) of last syzygies of X is isomorphic to P(Sa−bB

∗).
The rank filtration of last syzygies is given by

A ⊗ Sa−b−1B
∗ ⊗OP(Sa−bB∗)(−1)

id⊗µ ��

γSa−bB∗

��A ⊗ B �� C

where µ is induced by

µS : Sa−b−1B
∗ ⊗ Sa−bB → B.

Proof. A last syzygy s ∈ Ea−b,b = ΛaA ⊗ ΛbB ⊗ Sa−bB defines a polynomial in
Sa−bB up to a constant. Therefore P(E∗

a−b,b) ∼= P(Sa−bB
∗).
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Now the last triple tensor γ is given by

Ea−b,b ⊗ E∗
a−b−1,b

γ �� C

ΛaA ⊗ Λa−1A∗ ⊗ Sa−bB ⊗ Sa−b−1B
∗

A ⊗ Sa−bB ⊗ Sa−b−1B
∗ id⊗µS �� A ⊗ B

Γ

��

in particular the rank filtration of P(E∗
a−b,b) given by

γEa−b,b
: OP(E∗

a−b,b)
(−1) ⊗ E∗

a−b−1,b → C

is the same as the rank filtration of P(Sa−bB
∗) given by

A ⊗ Sa−b−1B
∗ ⊗OP(Sa−bB∗)(−1)

id⊗µ ��

γSa−bB∗

��A ⊗ B �� C

with µ as claimed. �
With this we can describe the space of minimal rank last syzygies in the Eagon-

Northcott complex:

Proposition 4.3. Let Γ: A ⊗ B → C be 1-generic. Then the reduced space of
minimal rank last syzygies of the associated determinantal variety is

Yred
∼= Ya

∼= P
b−1 ∼= P(B∗) ↪→ P(Sa−bB

∗)

with the embedding given by the (a − b)-uple map. If b = 2 all syzygies outside of
Yred have maximal rank.

Proof. Let s ∈ Sa−bB
∗ be a last syzygy. The linear forms involved in s are deter-

mined by the image of µ restricted to s,

µs : Sa−b−1B
∗ → B.

Let Bs ⊂ B be the image of µs; then rank of s is the rank of

Im(A ⊗ Bs → A ⊗ B → C).

Since A ⊗ Bs → C is also 1-generic,

rank s ≥ rank A + rank Bs − 1 ≥ a

with equality if and only if rank Bs = 1. This happens only if s = βa−b for some
β ∈ B. This proves the first assertion. If rankB = 2 the only other possibility is
Bs = B, and therefore rank s = rank Im(A ⊗ B → C). �
Example 4.4. A rational normal scroll X ⊂ P(C) of degree a and codimension
a − 1 is cut out by the maximal minors of a 1-generic a × 2-matrix

Γ: A ⊗ B → C.

By the proposition above the last linear syzygies of X have minimal rank a, and
the space of minimal rank last syzygies

Yred
∼= Ya

∼= P(B∗) ∼= P
1 ⊂ P

a−2
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Figure 4.5. Minimal rank last syzygies of a degree 4 rational
normal scroll in P5

is a rational normal curve of degree a − 2. The isomorphisms show that there is
a 1 : 1 correspondence between minimal rank last syzygies s ∈ Ymin generalized
columns C → B of Γ. Since each fiber of X is cut out by the linear forms of a
generalized column of Γ, we also have a 1 : 1 correspondence between minimal rank
syzygies and fibers of X.

5. Scrollar syzygies

In Example 4.4 we have seen that every scroll of degree a has (a− 2)nd syzygies
of rank a. In this section we show that in a certain sense this is the only way that
such syzygies can arise.

Proposition 5.1. Let X ⊂ Pn be a non degenerate irreducible scheme with a linear
strand of degree 2

F•(2) → IX

and let s ∈ Fp2 be a pth syzygy of rank p + 2. Then there exists the subcomplex

E•(2) ��
� �

��

IS� �

��
F≤p(2) �� IX

that resolves the ideal sheaf IS of a scroll S of degree p + 2 and codimension p + 1
that contains X. Furthermore there is a minimal rank last syzygy s′ ∈ Ep2 of IS

that maps to s ∈ Fp2.
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Proof. s ∈ Fp2 induces a diagram

Fp2 ⊗ F ∗
p−1,2

γ �� C

C ⊗ F ∗
p−1,2

�� ��
��

s⊗id

��

Cs

��
κ

��

where γ is the pth triple tensor of F•(2) and dimCs = rank s = p + 2. Consider
now the Koszul complex

K• → Λl+1C∗
s ⊗O(−1)

with Ki = Ki2 ⊗O(−i− 2) and Ki2 = Λp−iC∗
s induced by κ∗. The diagram above

induces maps

Fp2 ⊗O(−p − 2) �� Fp−1,2 ⊗O(−p − 1)

O(−p − 2) κ∗
��

s

��

C∗
s ⊗O(−l − 1)

��

��

that lift to a map of complexes

F≤p(2) �� IX

K•

��

κ∗
�� Λp+1C∗

s ⊗O(−1)

λ

��

since F• is a complex and K• is exact. The lifting is even unique, since F• and K•
are minimal complexes. Since κ and λ are of degree 1 they can be described by
matrices of linear forms κ∗ = (c1, . . . , cl+2) and λ = (c′1, . . . , c

′
l+2) after choosing

a basis of C∗
s . A straightforward computation shows that the image of κ∗ ◦ λ is

generated by the 2 × 2 minors of

M =

⎛
⎜⎝

c1 c′1
...

...
cp+2 c′p+2

⎞
⎟⎠ .

M is 1-generic. If it was not, we can assume after row and column transformations

M =

⎛
⎜⎝

c1 0
c2 c′2
...

...

⎞
⎟⎠

and the first minor degenerates to c1c
′
2. This is impossible since c1c

′
2 ∈ IX and X is

irreducible and nondegenerate. So the minors of M cut out a scroll S that contains
X, i.e. Im(κ∗ ◦λ) = IS . The Eagon-Northcott complex E•(2) → IS that resolves S
is then a subcomplex of F• → IX . The syzygy s′ ∈ El2 is the minimal rank syzygy
associated to the first column of M . �
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Example 5.2. A general canonical curve of C genus 8 has a minimal free resolution
with graded Betti numbers

1 − − − − − −
− 15 35 21 − − −
− − − 21 35 15 −
− − − − − − 1

A second syzygy of rank 4 is an element in 21-dimensional second syzygy space
above, that is mapped to a 4-dimensional subspace of the 35-dimensional space of
first syzygies:

1 − − −
− 15 35 21

∪ ∪
4 1

comparing the Koszul complex of s with the linear stand C yields 6 special quadrics
in the ideal of C:

1 − − −
− 15 35 21

∪ ∪ ∪
1 4 6 4 1

In the proof above we have seen that these 6 quadrics are the 2 × 2-minors of a
4 × 2 matrix with linear entries. Therefore they cut out a scroll of degree 4 that
contains C. Its minimal free resolution is a Eagon-Northcott subcomplex of the
linear strand of C:

1 − − −
− 15 35 21

∪
1 − − −
− 6 8 3

The above proposition suggest the following definition.

Definition 5.3. Let IX be an ideal sheaf with a linear strand of degree 2

F•(2) → IX

of length l. A syzygy s ∈ Fp2 of rank p + 2 is called a scrollar pth syzygy. A last
syzygy l ∈ Fl2 of rank l + 2 is called scrollar last syzygy.

Example 5.4. A rational normal scroll X ⊂ P5 of degree 4 has a linear strand of
length 2 and a conic of last syzygies of rank 4. These minimal rank last syzygies
are scrollar (see Figure 4.5).

Remark 5.5. Scrollar syzygies are the easiest examples of the geometric syzygies
constructed by Green and Lazarsfeld in [GL84].

We can now make a precise statement of the Geometric Syzygy Conjecture for
general canonical curves.

Conjecture 5.6 (Scrollar Syzygy Conjecture). Let C ⊂ Pg−1 be a general canonical
curve of genus g. Then all minimal rank syzygies are scrollar, and the spaces of
scrollar syzygies are nondegenerate.
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Remark 5.7. Equivalently one can conjecture that the scrollar syzygies span the
space of all syzygies or that every syzygy of a general canonical curve can be written
as a sum of scrollar syzygies. Since, as explained in the next section, scrollar
syzygies are closely connected to special pencils on C, this would give a geometric
interpretation for all syzygies of a general canonical curve.

Remark 5.8. For special canonical curves it is important to consider the nonreduced
scheme structure on the space of scrollar syzygies as can be seen in the case of a
curve of genus 6 with only one g1

4 [AH81, p. 174].

Remark 5.9. There are geometric pth syzygies in the sense of Green and Lazarsfeld
[GL84] which are not of rank p + 2. These must also be considered in the case of
special curves. The easiest example of this phenomenon is exhibited by a plane
quintic curve of genus 6 [vB00].

6. Pencils

We now turn to the connection between scrolls and pencils. Here we restrict
ourselves to the case of a canonical curve C ⊂ Pg−1. Let |D| be a complete pencil
of degree d on C. Then we can consider the union

S|D| =
⋃

D′∈|D|
span D′ ⊂ P

g−1,

where span D′ is the linear space spanned by D′ in P
g−1.

Proposition 6.1. S|D| is a rational normal scroll of codimension g− d containing
C.

Proof. Since C is canonically embedded, Pg−1 = P(H0(K)) with K a canonical
divisor on C. The set of hyperplanes in Pg−1 vanishing on D′ is therefore

H0(K − D′) = H1(D′)∗,

and the codimension of span D′ is correspondingly h1(D′) = g−d+1 by Riemann-
Roch. This is the same for all D′ ∈ |D|. So S|D| is a rational scroll of codimension
g − d. Its equations are given by the 2 × 2-minors of the (g − d + 1) × 2-matrix
obtained from the triple tensor

H0(K − D) ⊗ H0(D) → H0(K).

S|D| contains C since D moves in a pencil. �
Conversely consider a scroll containing C. Its fibers cut out a pencil of divisors

on C. These pencils are not always complete.

Proposition 6.2. Let C ⊂ Pg−1 be a nonhyperelliptic canonical curve of genus g
contained in a scroll S of codimension c. Let F be a fiber of S and D = C.F . Then
|D| is a gr

d with r ≥ 1 and d ≤ g + r − c − 1.

Proof. The fibers of S cut out a pencil of divisors linearly equivalent to D. Therefore
r = dim |D| ≥ 1.

The codimension of a fiber F is c+1, so h0(K −D) ≥ c+1. Riemann-Roch now
gives

d = h0(D) − h0(K − D) − 1 + g ≤ r + 1 − (c + 1) − 1 + g = g + r − c − 1.

�
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In particular these linear systems have low Clifford index.

Corollary 6.3. In the situation above we have cliff(D) ≤ g − c − 2. If the corre-
sponding complete linear system |D| is not a pencil, we even have cliff(D) ≤ g−c−3.

Proof.

cliff(D) = d − 2r ≤ g − c − 1 − r ≤
{

g − c − 2 if r = 1,
g − c − 3 if r > 1.

�
Corollary 6.4. A general canonical curve C ⊂ P

g−1 has no pth scrollar syzygies
for p ≥ 
 g−5

2 �.
Proof. Let s ∈ Fp2 be a pth scrollar syzygy. Then the corresponding scroll Ss has
codimension p + 1 by Proposition 5.1. The divisor D cut out by a fiber of S has
Clifford index

cliff(D) ≤ g − p − 3.

On the other hand it is well known that on a general canonical curve all divisors
have Clifford index at least 
 g−2

2 �. Therefore

p ≤ g − 3 −
⌈g − 2

2

⌉
=

⌈g − 5
2

⌉
.

�
Corollary 6.5. The scrollar syzygy conjecture implies Green’s conjecture for gen-
eral canonical curves.

Proof. Assume the scrollar syzygy conjecture. Then every pth syzygy can be writ-
ten as a sum of pth scrollar syzygies. By the corollary above there are no pth
scrollar syzygies for p > 
 g−5

2 �. Therefore there can be no p syzygies at all for
p > 
 g−5

2 �. This is Green’s conjecture for the general canonical curve. �
We now want to consider the last step in the resolution of a general canonical

curve that still allows scrollar syzygies.

Definition 6.6. Let C ⊂ P
g−1 be a general canonical curve. Then the scrollar


 g−5
2 �th syzygies of C are called the last scrollar syzygies of C.

Remark 6.7. Last scrollar syzygies are last syzygies in the sense of Definition 3.7
since Green’s conjecture holds for general curves by [Voi02] and [Voi05].

For the last scrollar syzygies everything is as nice as possible. First we calculate
the degree of the corresponding divisors.

Lemma 6.8. Let C ⊂ Pg−1 be a general canonical curve, s a last scrollar syzygy,
Ss the corresponding scroll and Ds the divisor cut out by the fiber Fs corresponding
to s. Then |Ds| is a complete pencil of degree 
 g+2

2 �.
Proof. Suppose |Ds| was not a complete pencil. Then by Corollary 6.3 we would
have

cliff Ds ≤ g −
⌈g − 5

2

⌉
− 4 =

⌈g − 4
2

⌉
,

which is impossible for a general canonical curve. Consequently we have r = 1 and
cliff Ds = 
 g−2

2 �, the minimum possible value. In particular

d = cliff(Ds) + 2r =
⌈g + 2

2

⌉
. �
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This allows us to construct a morphism from the space of last scrollar syzygies
to the corresponding Brill-Noether locus.

Proposition 6.9. Let C ⊂ P
g−1 be a general canonical curve, and Yred its reduced

scheme of last scrollar syzygies. Then there exists an isomorphism

ζ : Yred → C1
� g+2

2 �.

In particular Yred is a disjoint union of

2
g + 2

(
g
g
2

)

rational curves if g is even, and an irreducible ruled surface over W 1
� g+2

2 � if g is
odd.

Proof. Consider the vector bundle of linear forms L on the variety of Yred of last
scrollar syzygies. Let Q be the cokernel of the natural inclusion

0 → L → H0(K) ⊗OYred
→ Q → 0.

Q is globally generated and has rank 
 g
2�. It therefore induces a morphism

α : Yred → G,
s → Fs,

where G := G(H0(K), 
 g
2�) is the Grassmannian of 
 g

2�-dimensional quotient spaces
of H0(K), or equivalently the Grassmannian of 
 g−2

2 �-dimensional linear subspaces
of P

g−1. Fs is the fiber corresponding to a scrollar syzygy s.
Now consider the incidence variety

I = {(F, c) | c ∈ F ∩ C ⊂ P
g−1} ⊂ G × C

and the diagram

D ��

��

I ��

��

C

Yred
α �� G

obtained by base change. D is a family of divisors. The fiber over a scrollar syzygy
s is the divisor Ds cut out by the fiber Fs corresponding to s. Lemma 6.8 shows
that these divisors all have degree d = 
 g+2

2 � and r = 1. By the universal property
of Cr

d we obtain a morphism

ζ : Yred → C1
� g+2

2 �.

To prove the surjectivity of ζ let D ∈ C1
� g+2

2 � be any divisor. The scroll S|D|

spanned by |D| has codimension g−
 g+2
2 � by Proposition 6.1, and the fiber span D

corresponds to a scrollar 
 g−5
2 �th (last) syzygy s with Fs = span D as in Example

4.4. This implies D ⊂ Fs.C. Equality follows since they have the same degree by
Lemma 6.8.

We are left to prove that ζ is injective. Assume s, t are two last scrollar syzygies,
whose fibers Fs and Ft in their respective scrolls Ss and St cut out the same divisor
D = Fs.C = Ft.C. Then the scroll S|D| obtained from the complete pencil |D| is
contained in Ss and St. Now all these scrolls are of the same dimension, so they
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have to be equal. Since there is a 1 : 1 correspondence between divisors D′ ∈ |D|,
fibers span D′ and scrollar syzygies of S|D| = Ss = St, we must have s = t.

So ζ is bijective. Now Yred is reduced by definition, and since C is a general
canonical curve, C1

� g+2
2 � is normal. So by Zariski’s Main Theorem ζ is an isomor-

phism.
The description of Yred

∼= C1
� g+2

2 � is obtained from Brill-Noether theory: For a

general canonical curve the dimension of C1
� g+2

2 � is given by [ACGH85, p. 214]:

dimC1
� g+2

2 � = ρ + 1

= g − 2
(

g −
⌈g + 2

2

⌉
+ 1

)
+ 1

= 2
⌈g + 2

2

⌉
− 1 − g

=
{

1 for g even,
2 for g odd.

Now the Abel-Jacobi map

α : C1
� g+2

2 � → W 1
� g+2

2 �
D �→ |D|

has P
1-fibers, so C1

� g+2
2 � is a disjoint union of finitely many P

1’s for g even and a

ruled surface over W 1
� g+2

2 � for g odd.

In the even case the number of P1’s can be calculated by a formula of Castelnuovo
[ACGH85, p. 211]:

deg W 1
� g+2

2 � = g!
1∏

i=0

i!
(g − 
 g+2

2 � + 1 + i)!
=

2
g + 2

(
g
g
2

)
.

�

Example 6.10. A general canonical curve of genus 8 has 14 complete pencils |Di|
of degree 5. Each such g1

5 defines a scroll S|Di| of degree 8−5+1 = 4 that contains C.
The corresponding minimal free resolutions are subcomplexes of the linear strand
of C:

1 − − −
− 6 8 3 ⊂ 1 − − −

− 15 35 21

The last syzygy space of each scroll S|Di| is a P2 ∼= P(3∗) that contains a conic
of rank 4 syzygies that are in 1 : 1 correspondence with the fibers of Si and the
elements of |Di|. So we obtain 14 conics in the last syzygy space P(21∗) ∼= P

20 of
C. We will show later that this configuration of conics is nondegenerate and lies
on a 2-uple embedded P5 ↪→ P20 (see Figure 8.3).

7. Mukai varieties

By a construction of Mukai one can construct general canonical curves of low
genus by taking general sections of certain rational homogeneous varieties.

Theorem 7.1 (Mukai). Every general canonical curve of genus 7 ≤ g ≤ 9 is a
general linear section of an embedded rational homogeneous (Mukai) variety Mg.
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General canonical curves of genus 6 are cut out by a general quadric on a general
linear section of a homogeneous (Mukai) variety M6.

More explicitly we have
g Mg

6 the Grassmannian G(2, 5) ⊂ P9

7 the Spinor-Variety S+
10 ⊂ P

15

8 the Grassmannian G(2, 6) ⊂ P14

9 the symplectic Grassmannian Gr(3, 6, η) ⊂ P13

Proof. [Muk92b], [Muk92a]. �
Our idea is now to use representation theory to calculate the linear strand, the

variety of minimal rank syzygies and the vector bundle of linear forms for M6, M7

and M8, and to then use the restriction methods developed in section 2 to obtain
results about general canonical curves.

Let us start with the linear strands.

Proposition 7.2. The linear strand of G(V, 2) is

F•(2) → IG(V,2)

with Fi2 = Λ4+i,1iV , where ΛλV denotes the Schur functor of the partition λ.
The linear strand of S+

10 is

spin−
5 ⊗O(−3) → Λ1 ⊗O(−2) → IS+

10

where spin−
5 and Λ1 are irreducible representations of SO(10) of dimension 16 and

10, respectively.

Proof. The ideal of G(V, 2) is generated by the 4 × 4-Pfaffians of the generic skew
symmetric matrix

V ⊗ V → Λ2V

[Har92, Ex. 9.20]. The minimal free resolution of Pfaffian ideals is calculated by
Józefiak, Pragacz and Weyman in [JPW81, Thm 3.14].

The Betti numbers of S+
10 are calculated for example in [Muk92a]:

1 − − − − −
− 10 16 − − −
− − − 16 10 −
− − − − − 1

This gives the linear strand as

F12 ⊗O(−3) → F02 ⊗O(−2) → IS+
10

with dim F12 = 16 and dimF02 = 10. Now F02 is an SO(10) invariant subset of
quadrics in P(spin+

5 ):

F02 ⊂ S2(spin+
5 ) ⊂ spin+

5 ⊗ spin+
5 = Λ+

5 ⊕ Λ3 ⊕ Λ1,

where Λ+
5 is the irreducible representation corresponding to the maximal weight

vector L1 + · · ·+ L5. The representations have dimension 126, 120 and 10, respec-
tively. Therefore F02 = Λ1. (For the decomposition of the tensor products see
[KN88].)

In the next step we know

F12 ⊂ Λ1 ⊗ spin+
5 = λ1 · spin+

5 ⊕ spin−
5
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where λ1 · spin+
5 denotes the irreducible representation obtained by adding the

maximal weights of Λ1 and spin+
5 . The irreducible summands have dimensions 144

and 16 so that F12 must be equal to spin−
5 . �

Representation theory also helps in determining the spaces of minimal rank last
syzygies.

Proposition 7.3. For G(V, 2) we have

P(V ∗) ↪→ Ymin ⊂ P(Λv,1v−4V ∗) ∼= P(Sv−4V
∗)

where v = dimV and the inclusion is the (v − 4)-uple embedding.
For S+

10 we have

S+
10 ↪→ Ymin ⊂ P((spin−

5 )∗).

Proof. The rank of a last syzygy s ∈ P(Λv,1v−4V ∗) is invariant under the action of
GL(V ). Consequently Ymin is also invariant. Since Ymin is compact and Λv,1v−4V
is an irreducible GL(V )-representation, Ymin has to contain the minimal orbit of
GL(V ) in P(Λv,1v−4V ∗) ∼= P(Sv−4V

∗). This is the (v−4)-uple embedding of P(V ∗).
A similar line of reasoning gives the result for S+

10. �

The last result in this section determines the vector bundle of linear forms Lmin

on the minimal orbits of the above proposition.

Proposition 7.4. Let Lmin be the vector bundle of linear forms on the space of
last minimal rank syzygies Ymin ⊂ P(Λv,1v−4V ∗) of G(V, 2). Then we have

Lmin ⊗OP(V ∗) = TP(V ∗)(−2)

where P(V ∗) is the minimal orbit of GL(V ) in P(Λv,1v−4V ∗).
If Lmin is the vector bundle of linear forms on the space of last minimal rank

syzygies Ymin ⊂ P((spin−
5 )∗) of S+

10, then

Lmin ⊗OS+
10

= B(−1),

where B is the universal quotient bundle on S+
10.

Proof. Consider the last triple tensor of the linear strand of G(V, 2):

γ : Λv,1v−4V ⊗ (Λv−1,1v−5V )∗ → Λ2V.

Let s ∈ P(V ∗) ↪→ P(Λv,1v−4V ∗) be a syzygy in the minimal orbit. After choosing a
suitable basis {v1, . . . , vv} we can assume that s = v1 and its image in P(Λv,1v−4V ∗)
is represented by the Young tableau of minimal weight

1

v−4︷ ︸︸ ︷
1 · · · 1 1

2
...

v−1

v
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The Littlewood-Richardson decomposition

1

v−4︷ ︸︸ ︷
1 · · · 1 1

2
...

v−1

v

=
1

v−5︷ ︸︸ ︷
1 · · · 1

2
...

v−1

⊗ 1
v

± · · · ±
1

v−5︷ ︸︸ ︷
1 · · · 1

3
...
v

⊗ 1
2

then shows that the image of

γΛv,1v−4V ∗ : O(−1) ⊗ (Λv−1,1v−5V )∗ → Λ2V

over s = v1 is 〈v1∧vv, . . . , v1∧v2〉 = v1∧V . On P(V ∗) we therefore have a diagram

OP(V ∗)(−v + 4) ⊗ (Λv−1,1v−5V )∗
γ ��

��

Λ2V ⊗OP(V ∗)

OP(V ∗)(−1) ⊗ V ∧V �� Λ2V ⊗OP(V ∗)

Now by the definition of Lmin the image of the top map is Lmin ⊗ OP(V ∗). The
image of the lower map is TP(V ∗)(−2) since its kernel is O(−2). This proves the first
claim. The second claim follows by a slightly more complicated reasoning using the
representation theory of SO(10). �

8. Genus 8

In this section we will describe the spaces of last scrollar syzygies for general
canonical curves of genus 8.

Consider a general canonical curve C ⊂ P7 = P(W ) of genus g = 8. By Mukai’s
Theorem there is an embedding of P7 ⊂ P14 = P(Λ2V ) given by a projection

Λ2V → W

such that
C = G(6, 2) ∩ P

7.

Since this intersection is of expected codimension and G(6, 2) is ACM, C will have
the same Betti numbers as G(6, 2). In particular its linear strand will be

Λ611V ⊗O(−4) → Λ51V ⊗O(−3) → Λ4V ⊗O(−2) → IC

with the last differential given by the restricted triple tensor

Λ611V ⊗ (Λ51V )∗
γ �� ��

γ′

��Λ2V �� �� W.

So we can use the vector bundle of linear forms Lmin = TP5(−2) on the minimal
orbit P5 ⊂ P(Λ611V

∗) = P20 to calculate the restricted ranks of syzygies in the
minimal orbit.

Proposition 8.1. Consider the map of vector bundles

ι′ : TP5(−2) → Λ2V ⊗OP5 → W ⊗OP5
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on the minimal orbit P5 ↪→ P20 of GL(6) in the space of last linear syzygies of C.
Then the rank 4 locus Z4(i′) is reduced and of expected dimension 1. It is contained
in the space of scrollar last syzygies of C.

Proof. Since TP5(−2)∗ is globally generated by Λ2V = H0(TP5(−2)∗) and the pro-
jection Λ2V → W is general, the determinantal scheme Z4(ι′) is reduced and of
expected dimension

dimZ4(ι′) ≥ 5 − (rank TP5 − 4)(rankW − 4) = 1.

All syzygies in Z4(i′) are 2nd syzygies of restricted rank 4, i.e. by definition are
last scrollar syzygies of C. �
Corollary 8.2. Z4(ι′) is the space of last scrollar syzygies of C, i.e. a union of 14
skew conics on the 2-uple embedding of P5 in P20.

Proof. By Corollary 6.9 the space of scrollar last syzygies of C is isomorphic to

C1
5 =

14⋃
i=1

P
1.

This shows that Z4(ι′) is the union of at most 14 disjoint P1’s. Each of these P1 is
the scheme of second minimal rank syzygies of a scroll. These schemes are rational
normal curves of degree 2 as calculated in Example 4.4. Since they lie on the 2-uple
embedding of P

5 in P
20 they are the images of lines in P

5.
Now Z4(ι′) is of expected codimension, and we can calculate its class using the

Porteous formula [ACGH85, p. 86]:

z4(ι′) = ∆8−4,5−4

(
ct(8OP5)

ct(TP5(−2))

)
= 14H3,

i.e. z4(ι′) is the class of 14 lines in P5. Since Z4(ι′) is reduced, the desired equality
follows. �

From this we can finally prove the scrollar syzygy conjecture for the last syzygies
of C.

Theorem A. The scheme Z of last scrollar syzygies of a general canonical curve
C ⊂ P7 of genus 8 is a configuration of 14 skew conics that lie on a 2-uple embedded
P

5 ↪→ P
20. Z spans the whole P

20 of second syzygies of C.

Proof. We have to prove that Z = Z4(ι′) does not lie on any quadric. Since Z4(ι′)
is the determinantal locus where ι′ drops rank by 1, its ideal is resolved by the
Eagon-Northcott complex

E• → IZ4(ι′)

with

Ei = Λ5+kW ∗ ⊗ Si(TP5(−2)) =
(

8
k

)
Si(TP5(−2)).

Using the theorem of Bott [Ott95, Theorem 11.4] one finds

Hj(Ei(2)) = 0

for all i, j except for (i, j) = (3, 4). By a diagram chase this implies

Hj(IZ4(ι′)(2)) = 0

for j 	= 1. In particular there exists no quadric that contains Z4(ι′). �
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Figure 8.3. A general canonical curve of genus 8 lies on 14 scrolls
of degree 4. These scrolls define 14 pencils of degree 5 and 14 conics
of rank 4 syzygies. These conics all lie on a 2-uple embedded P5 of
rank ≤ 5 syzygies.

Remark 8.4. A calculation similar to the one above is also contained in [Voi02], but
with a different aim.

Remark 8.5. Note that H1(IZ4(ι′)) 	= 0. In particular the scheme of last scrollar
syzygies is not linearly normal.

9. Genus 7

In this section we describe the space of scrollar syzygies of general canonical
curves C ⊂ P

6 of genus 7. Since the reasoning is quite similar to the last section
we only sketch the proofs and leave the details to the reader.

In this case Mukai’s Theorem implies that the linear strand of C is

spin−
5 ⊗O(−3) → Λ1 ⊗O(−2) → IC

with the last differential given by a restricted triple tensor

spin−
5 ⊗ (Λ1)∗

γ �� ��

γ′

��spin+
5

�� �� W

with P6 = P(W ).

Proposition 9.1. Consider the map of vector bundles

ι′ : B(−1) → spin+
5 ⊗O → W ⊗O
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on the minimal orbit S+
10 ↪→ P15 of SO(10) in the space of last linear syzygies of C.

Then the rank 3 locus Z3(i′) is the space of scrollar last syzygies of C.

Proof. Since B(−1)∗ is globally generated and the projection spin+
5 → W is general,

the determinantal scheme Z3(ι′) is reduced and of expected dimension

dimZ3(ι′) ≥ 5 − (rankB − 3)(rankW − 3) = 2.

All syzygies in Z3(i′) are first syzygies of restricted rank 3, i.e. by definition are
last scrollar syzygies of C. Since the space of scrollar last syzygies in this case is
isomorphic to the ruled surface C1

5 which is in particular reduced and irreducible,
the two spaces are the same. �

Theorem B. The scheme Z of last scrollar syzygies of a general canonical curve
C ⊂ P6 of genus 7 is a linearly normal ruled surface of degree 84 on a spinor variety
S+

10 ⊂ P15. This ruled surface spans the whole P15 of first syzygies of C.

Proof. Z = Z3(ι′) is a ruled surface, since it is isomorphic to C1
5 . By the Porteous

formula the class of Z3(ι′) in S+
10 is 7H8. Since the degree of S+

10 is 12, the degree
of Z3(ι′) is 84.

To show that Z3(ι′) is nondegenerate, we have to show that IZ3(ι′) contains
no elements of degree 1. Since Z3(ι′) is the locus where ι′ drops rank by 2, the
resolution of its ideal sheaf can be calculated by the methods of Lascoux [Las78,
Thm 3.3] to be:

0 → Λ77 ⊗ S44222 → Λ76 ⊗ S43222

→ Λ75 ⊗ S42222 + Λ66 ⊗ S33222

→ Λ71 ⊗ S41111 + Λ65 ⊗ S32222

→ Λ7 ⊗ S4111 + Λ61 ⊗ S31111 + Λ55 ⊗ S22222

→ Λ6 ⊗ S3111 + Λ51 ⊗ S21111

→ Λ5 ⊗ S2111 + Λ41 ⊗ S11111 → Λ4 ⊗ S1111 → IZ3(ι′),

where Λλ = ΛλW ∗ and Sµ = Sµ

(
B(−1)

)
. (This is resolution k(α, 2, 0) in the

notation of Lascoux.) Again using the theorem of Bott and a diagram chase one
calculates that

Hj(IZ3(ι′)(1)) = 0
for j 	= 2. In particular Z3(ι′) is nondegenerate and linearly normal. �

Remark 9.2. The degree of this ruled surface can also be obtained via Brill-Noether
theory [vB00, p. 54, Satz 5.1].

10. Genus 6

In this section we describe the last scrollar syzygies of a general curve of genus
6. This is well known; we only include it because it also follows from our methods.

By Mukai’s Theorem we obtain a general canonical curve C ⊂ P5 = P(W ) of
genus 6 by a general intersection

C = G(5, 2) ∩ P
5 ∩ Q

where Q is a general quadric in P5. As above G(5, 2) ∩ P5 has the same Betti
numbers as G(5, 2), in particular a linear strand

Λ51V ⊗O(−3) → Λ4V ⊗O(−2) → IG(5,2)∩P5
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with the last differential given by the restricted triple tensor

Λ611V ⊗ (Λ51V )∗
γ �� ��

γ′

��Λ2V �� �� W.

Since Q intersects G(5, 2) ∩ P
5 transversally the linear strand of C is

Λ51V ⊗O(−3) → (Λ4V ⊕ C) ⊗O(−2) → IC ,

in particular the last differential is still given by the same triple tensor. From this
a completely analogous reasoning as in the case g = 8 gives

Theorem C. The scheme Z of last scrollar syzygies of a general canonical curve
C ⊂ P

5 of genus 6 is a configuration of 5 skew lines in P
4 that spans the whole P

4

of first syzygies of C.

Remark 10.1. The space of last scrollar syzygies is again not linearly normal in this
case.
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