Toric hypersymplectic quotients
HTML articles powered by AMS MathViewer
- by Andrew Dancer and Andrew Swann PDF
- Trans. Amer. Math. Soc. 359 (2007), 1265-1284 Request permission
Abstract:
We study the hypersymplectic spaces obtained as quotients of flat hypersymplectic space $\mathbb {R}^{4d}$ by the action of a compact Abelian group. These $4n$-dimensional quotients carry a multi-Hamilitonian action of an $n$-torus. The image of the hypersymplectic moment map for this torus action may be described by a configuration of solid cones in $\mathbb {R}^{3n}$. We give precise conditions for smoothness and non-degeneracy of such quotients and show how some properties of the quotient geometry and topology are constrained by the combinatorics of the cone configurations. Examples are studied, including non-trivial structures on $\mathbb {R}^{4n}$ and metrics on complements of hypersurfaces in compact manifolds.References
- Adrián Andrada and Isabel G. Dotti, Double products and hypersymplectic structures on $\Bbb R^{4n}$, Comm. Math. Phys. 262 (2006), no. 1, 1–16. MR 2200879, DOI 10.1007/s00220-005-1472-9
- Roger Bielawski and Andrew S. Dancer, The geometry and topology of toric hyperkähler manifolds, Comm. Anal. Geom. 8 (2000), no. 4, 727–760. MR 1792372, DOI 10.4310/CAG.2000.v8.n4.a2
- Thomas Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France 116 (1988), no. 3, 315–339 (French, with English summary). MR 984900, DOI 10.24033/bsmf.2100
- Anna Fino, Henrik Pedersen, Yat-Sun Poon, and Marianne Weye Sørensen, Neutral Calabi-Yau structures on Kodaira manifolds, Comm. Math. Phys. 248 (2004), no. 2, 255–268. MR 2073135, DOI 10.1007/s00220-004-1108-5
- K. Galicki, A generalization of the momentum mapping construction for quaternionic Kähler manifolds, Comm. Math. Phys. 108 (1987), no. 1, 117–138. MR 872143, DOI 10.1007/BF01210705
- K. Galicki and H. B. Lawson Jr., Quaternionic reduction and quaternionic orbifolds, Math. Ann. 282 (1988), no. 1, 1–21. MR 960830, DOI 10.1007/BF01457009
- Victor Guillemin, Kaehler structures on toric varieties, J. Differential Geom. 40 (1994), no. 2, 285–309. MR 1293656
- Megumi Harada and Nicholas Proudfoot, Properties of the residual circle action on a hypertoric variety, Pacific J. Math. 214 (2004), no. 2, 263–284. MR 2042933, DOI 10.2140/pjm.2004.214.263
- N. J. Hitchin, A. Karlhede, U. Lindström, and M. Roček, Hyper-Kähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), no. 4, 535–589. MR 877637, DOI 10.1007/BF01214418
- N. J. Hitchin. Hypersymplectic quotients. Acta Acad. Sci. Tauriensis, supplemento al numero 124 (1990) 169–180.
- C. M. Hull, Actions for $(2,1)$ sigma models and strings, Nuclear Phys. B 509 (1998), no. 1-2, 252–272. MR 1601779, DOI 10.1016/S0550-3213(97)00492-6
- Hiroyuki Kamada, Neutral hyper-Kähler structures on primary Kodaira surfaces, Tsukuba J. Math. 23 (1999), no. 2, 321–332. MR 1715481, DOI 10.21099/tkbjm/1496163875
- L. J. Mason and G. A. J. Sparling, Nonlinear Schrödinger and Korteweg-de Vries are reductions of self-dual Yang-Mills, Phys. Lett. A 137 (1989), no. 1-2, 29–33. MR 995226, DOI 10.1016/0375-9601(89)90964-X
Additional Information
- Andrew Dancer
- Affiliation: Jesus College, Oxford, OX1 3DW, United Kingdom
- Email: dancer@maths.ox.ac.uk
- Andrew Swann
- Affiliation: Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- MR Author ID: 268267
- ORCID: 0000-0002-1812-1009
- Email: swann@imada.sdu.dk
- Received by editor(s): September 29, 2004
- Received by editor(s) in revised form: December 21, 2004
- Published electronically: August 24, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 1265-1284
- MSC (2000): Primary 53C25; Secondary 53D20, 53C55, 57S15
- DOI: https://doi.org/10.1090/S0002-9947-06-03925-0
- MathSciNet review: 2262850