Every real ellipsoid in $\mathbb {C}^2$ admits CR umbilical points
HTML articles powered by AMS MathViewer
- by Xiaojun Huang and Shanyu Ji PDF
- Trans. Amer. Math. Soc. 359 (2007), 1191-1204 Request permission
Abstract:
We prove that every real ellipsoid $M\subset \mathbb {C}^2$ admits at least four umbilical points, which can be compared to the result of Webster that a generic real ellipsoid in $\mathbb {C}^n$ with $n\ge 3$ does not admit any umbilical point.References
- M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, Real submanifolds in complex space and their mappings, Princeton Mathematical Series, vol. 47, Princeton University Press, Princeton, NJ, 1999. MR 1668103, DOI 10.1515/9781400883967
- É. Cartan, Sur les variétés pseudo-conformal des hypersurfaces de l’espace de deux variables complexes, Ann. Mat. Pura Appl. (4) 11, 17-90(1932).
- Shiing Shen Chern, On the projective structure of a real hypersurface in $C_{n+1}$, Math. Scand. 36 (1975), 74–82. MR 379910, DOI 10.7146/math.scand.a-11563
- Shiing Shen Chern and Shanyu Ji, Projective geometry and Riemann’s mapping problem, Math. Ann. 302 (1995), no. 3, 581–600. MR 1339928, DOI 10.1007/BF01444509
- Shiing-Shen Chern and Shanyu Ji, On the Riemann mapping theorem, Ann. of Math. (2) 144 (1996), no. 2, 421–439. MR 1418903, DOI 10.2307/2118596
- S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, DOI 10.1007/BF02392146
- James John Faran, Segre families and real hypersurfaces, Invent. Math. 60 (1980), no. 2, 135–172. MR 586425, DOI 10.1007/BF01405151
- Hans Hamburger, Beweis einer Carathéodoryschen Vermutung. Teil I, Ann. of Math. (2) 41 (1940), 63–86 (German). MR 1052, DOI 10.2307/1968821
- Xiaojun Huang, Local equivalence problems for real submanifolds in complex spaces, Real methods in complex and CR geometry, Lecture Notes in Math., vol. 1848, Springer, Berlin, 2004, pp. 109–163. MR 2087582, DOI 10.1007/978-3-540-44487-9_{3}
- X. Huang and S. Ji, Cartan-Chern-Moser theory on algebraic hypersurfaces and an application to the study of automorphism groups of algebraic domains, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 6, 1793–1831 (English, with English and French summaries). MR 1954325, DOI 10.5802/aif.1935
- Xiaojun Huang, Shanyu Ji, and Stephen S. T. Yau, An example of a real analytic strongly pseudoconvex hypersurface which is not holomorphically equivalent to any algebraic hypersurface, Ark. Mat. 39 (2001), no. 1, 75–93. MR 1821083, DOI 10.1007/BF02388792
- Howard Jacobowitz, An introduction to CR structures, Mathematical Surveys and Monographs, vol. 32, American Mathematical Society, Providence, RI, 1990. MR 1067341, DOI 10.1090/surv/032
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532830
- S. M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), no. 1, 53–68. MR 463482, DOI 10.1007/BF01390203
- S. M. Webster, Holomorphic differential invariants for an ellipsoidal real hypersurface, Duke Math. J. 104 (2000), no. 3, 463–475. MR 1781479, DOI 10.1215/S0012-7094-00-10435-8
- S. M. Webster, A remark on the Chern-Moser tensor, Houston J. Math. 28 (2002), no. 2, 433–435. Special issue for S. S. Chern. MR 1898199
Additional Information
- Xiaojun Huang
- Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
- Email: huangx@math.rutgers.edu
- Shanyu Ji
- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204
- Email: shanyuji@math.uh.edu
- Received by editor(s): December 9, 2004
- Published electronically: August 15, 2006
- Additional Notes: The first author was supported in part by NSF-0500626
- © Copyright 2006 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 359 (2007), 1191-1204
- MSC (2000): Primary 32V40
- DOI: https://doi.org/10.1090/S0002-9947-06-04069-4
- MathSciNet review: 2262847
Dedicated: To the memory of Professor S. S. Chern