The classification of singly periodic minimal surfaces with genus zero and Scherk-type ends
HTML articles powered by AMS MathViewer
- by Joaquín Pérez and Martin Traizet PDF
- Trans. Amer. Math. Soc. 359 (2007), 965-990 Request permission
Abstract:
Given an integer $k\geq 2$, let ${\mathcal S}(k)$ be the space of complete embedded singly periodic minimal surfaces in $\mathbb {R}^3$, which in the quotient have genus zero and $2k$ Scherk-type ends. Surfaces in ${\mathcal S}(k)$ can be proven to be proper, a condition under which the asymptotic geometry of the surfaces is well known. It is also known that ${\mathcal S}(2)$ consists of the $1$-parameter family of singly periodic Scherk minimal surfaces. We prove that for each $k\geq 3$, there exists a natural one-to-one correspondence between ${\mathcal S}(k)$ and the space of convex unitary nonspecial polygons through the map which assigns to each $M\in {\mathcal S}(k)$ the polygon whose edges are the flux vectors at the ends of $M$ (a special polygon is a parallelogram with two sides of length $1$ and two sides of length $k-1$). As consequence, ${\mathcal S}(k)$ reduces to the saddle towers constructed by Karcher.References
- Pascal Collin, Topologie et courbure des surfaces minimales proprement plongées de $\mathbf R^3$, Ann. of Math. (2) 145 (1997), no. 1, 1–31 (French). MR 1432035, DOI 10.2307/2951822
- Claudio Cosín and Antonio Ros, A Plateau problem at infinity for properly immersed minimal surfaces with finite total curvature, Indiana Univ. Math. J. 50 (2001), no. 2, 847–879. MR 1871392, DOI 10.1512/iumj.2001.50.1829
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Howard Jenkins and James Serrin, Variational problems of minimal surface type. II. Boundary value problems for the minimal surface equation, Arch. Rational Mech. Anal. 21 (1966), 321–342. MR 190811, DOI 10.1007/BF00282252
- H. Karcher, Embedded minimal surfaces derived from Scherk’s examples, Manuscripta Math. 62 (1988), no. 1, 83–114. MR 958255, DOI 10.1007/BF01258269
- Hippolyte Lazard-Holly and William H. Meeks III, Classification of doubly-periodic minimal surfaces of genus zero, Invent. Math. 143 (2001), no. 1, 1–27. MR 1802791, DOI 10.1007/PL00005796
- Francisco J. López and Antonio Ros, On embedded complete minimal surfaces of genus zero, J. Differential Geom. 33 (1991), no. 1, 293–300. MR 1085145
- William H. Meeks III, The theory of triply periodic minimal surfaces, Indiana Univ. Math. J. 39 (1990), no. 3, 877–936. MR 1078743, DOI 10.1512/iumj.1990.39.39043
- William H. Meeks III, Joaquín Pérez, and Antonio Ros, Uniqueness of the Riemann minimal examples, Invent. Math. 133 (1998), no. 1, 107–132. MR 1626477, DOI 10.1007/s002220050241
- William H. Meeks III and Harold Rosenberg, The minimal lamination closure theorem, Duke Math. J. 133 (2006), no. 3, 467–497. MR 2228460, DOI 10.1215/S0012-7094-06-13332-X
- William H. Meeks III and Harold Rosenberg, The geometry of periodic minimal surfaces, Comment. Math. Helv. 68 (1993), no. 4, 538–578. MR 1241472, DOI 10.1007/BF02565835
- William H. Meeks III and Harold Rosenberg, The uniqueness of the helicoid, Ann. of Math. (2) 161 (2005), no. 2, 727–758. MR 2153399, DOI 10.4007/annals.2005.161.727
- Joaquín Pérez, M. Magdalena Rodríguez, and Martin Traizet, The classification of doubly periodic minimal tori with parallel ends, J. Differential Geom. 69 (2005), no. 3, 523–577. MR 2170278
- Joaquín Pérez and Antonio Ros, Some uniqueness and nonexistence theorems for embedded minimal surfaces, Math. Ann. 295 (1993), no. 3, 513–525. MR 1204835, DOI 10.1007/BF01444900
- Joaquín Pérez and Antonio Ros, The space of properly embedded minimal surfaces with finite total curvature, Indiana Univ. Math. J. 45 (1996), no. 1, 177–204. MR 1406689, DOI 10.1512/iumj.1996.45.2053
- Joaquín Pérez and Antonio Ros, Properly embedded minimal surfaces with finite total curvature, The global theory of minimal surfaces in flat spaces (Martina Franca, 1999) Lecture Notes in Math., vol. 1775, Springer, Berlin, 2002, pp. 15–66. MR 1901613, DOI 10.1007/978-3-540-45609-4_{2}
- Antonio Ros, Embedded minimal surfaces: forces, topology and symmetries, Calc. Var. Partial Differential Equations 4 (1996), no. 5, 469–496. MR 1402733, DOI 10.1007/s005260050050
- H. F. Scherk, Bemerkungen über die kleinsteFläche innerhalb gegebener Grenzen, J. R. Angew. Math. 13 (1835), 185–208, ERAM 013.0481cj.
- Martin Traizet, An embedded minimal surface with no symmetries, J. Differential Geom. 60 (2002), no. 1, 103–153. MR 1924593
- Fu Sheng Wei, Some existence and uniqueness theorems for doubly periodic minimal surfaces, Invent. Math. 109 (1992), no. 1, 113–136. MR 1168368, DOI 10.1007/BF01232021
Additional Information
- Joaquín Pérez
- Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
- Email: jperez@ugr.es
- Martin Traizet
- Affiliation: Faculte des Sciences et Techniques, Universite François Rabelais, Parc de Grandmont, 37200, Tours, France
- Email: martin.traizet@lmpt.univ-tours.fr
- Received by editor(s): September 29, 2004
- Published electronically: October 16, 2006
- Additional Notes: The research of the first author was partially supported by a MEC/FEDER grant no. MTM2004-02746.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 965-990
- MSC (2000): Primary 53A10; Secondary 49Q05, 53C42
- DOI: https://doi.org/10.1090/S0002-9947-06-04094-3
- MathSciNet review: 2262839