Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On Lorentz dynamics: From group actions to warped products via homogeneous spaces
HTML articles powered by AMS MathViewer

by A. Arouche, M. Deffaf and A. Zeghib PDF
Trans. Amer. Math. Soc. 359 (2007), 1253-1263 Request permission

Abstract:

We show a geometric rigidity of isometric actions of non-compact (semisimple) Lie groups on Lorentz manifolds. Namely, we show that the manifold has a warped product structure of a Lorentz manifold with constant curvature by a Riemannian manifold.
References
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53C50, 54H15
  • Retrieve articles in all journals with MSC (2000): 53C50, 54H15
Additional Information
  • A. Arouche
  • Affiliation: Faculté des Mathématiques, Université des Sciences et de la Technologie Houari Boumediene, BP 32 El’Alia, Bab Ezzouar, Alger, Algeria
  • Email: arouche@math.usthb.dz
  • M. Deffaf
  • Affiliation: Faculté des Mathématiques, Université des Sciences et de la Technologie Houari Boumediene, BP 32 El’Alia, Bab Ezzouar, Alger, Algeria
  • Email: deffaf1@yahoo.fr
  • A. Zeghib
  • Affiliation: CNRS, UMPA, École Normale Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon cedex 07, France
  • Email: Zeghib@umpa.ens-lyon.fr
  • Received by editor(s): December 14, 2004
  • Published electronically: October 17, 2006
  • © Copyright 2006 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 359 (2007), 1253-1263
  • MSC (2000): Primary 53C50, 54H15
  • DOI: https://doi.org/10.1090/S0002-9947-06-04279-6
  • MathSciNet review: 2262849