A SKEIN-LIKE MULTIPLICATION ALGORITHM FOR UNIPOTENT HECKE ALGEBRAS

NATHANIEL THIEM

Abstract. Let G be a finite group of Lie type (e.g. $GL_n(F_q)$) and U a maximal unipotent subgroup of G. If ψ is a linear character of U, then the unipotent Hecke algebra is $H_{\psi} = \text{End}_{C^G}(\text{Ind}_{G}^{C}(\psi))$. Unipotent Hecke algebras have a natural basis coming from double cosets of U in G. This paper describes relations for reducing products of basis elements, and gives a detailed description of the implications in the case $G = GL_n(F_q)$.

1. Introduction

Unipotent Hecke algebras interpolate between two classical Hecke algebras, the Gelfand-Graev Hecke algebra [St, Yo1] and the Yokonuma algebra [Yo2] (a generalization of the Iwahori-Hecke algebra). These two classical algebras have not generally been studied from the same perspective, and an underlying philosophy of this paper is that techniques employed in the study of one classical algebra not only apply to the other, but also to all unipotent Hecke algebras.

The Gelfand-Graev Hecke algebra is a commutative algebra that has connections with Chevalley group representation theory [DM], unipotent orbits [Ka1], and Kloosterman sums [CS]. Despite being commutative, computing products in the standard double-coset basis is a challenging problem. The definition of a Hecke algebra implies [CR] that if T_h and T_k are two basis elements, then

$$(\star) \quad T_k T_h = \sum_v c_{kh}^v T_v, \quad \text{where} \quad c_{kh}^v = \frac{1}{|U|^2} \sum_{u_1, u_2, u_3, u_4 \in U} \psi_{\mu}(u_1^{-1} u_2^{-1} u_3 u_4),$$

but this formula is unhelpful for many applications. Using a geometric approach in [Cu], Curtis analyzed which elements appear in the sums of (\star), but computing products in the Gelfand-Graev algebra still remains difficult.

This paper provides a uniform solution to the multiplication problem for Yokonuma Hecke algebras, Gelfand-Graev Hecke algebras, and all unipotent Hecke algebras. The idea is that in a unipotent Hecke algebra the c_{kh}^v in (\star) are determined by generalizations of the braid-like relations of the Iwahori-Hecke algebra, and that the multiplication in any unipotent Hecke algebra can be done in a manner directly analogous to the way it is done in the Iwahori-Hecke algebra.

Received by the editors June 15, 2004 and, in revised form, January 21, 2005.
2000 Mathematics Subject Classification. Primary 20C08; Secondary 05Exx.
Key words and phrases. Hecke algebra, Gelfand-Graev representation, unipotent Hecke algebra, Yokonuma Hecke algebra.

©2006 American Mathematical Society
Reverts to public domain 28 years from publication
Let \(G \) be a finite Chevalley group with a maximal unipotent subgroup \(U \). Suppose \(\psi_\mu : U \to \mathbb{C}^* \) is a linear character of \(U \). Then the unipotent Hecke algebra \(\mathcal{H}(G, U, \psi_\mu) \) is
\[
\mathcal{H}_\mu = \text{End}_{\mathbb{C}G}(\text{Ind}^G_U(\psi_\mu)) \cong e_\mu \mathbb{C}Ge_\mu, \quad \text{where} \quad e_\mu = \frac{1}{|U|} \sum_{u \in U} \psi_\mu(u^{-1})u.
\]
Fix a subgroup \(N \subseteq G \) of double coset representatives
\[
G = \bigsqcup_{v \in N} UvU, \quad \text{and let} \quad N_\mu = \{v \in N \mid e_\mu ve_\mu \neq 0\}.
\]
Then the set \(\{e_\mu ve_\mu \mid v \in N_\mu\} \) is a basis for \(\mathcal{H}_\mu \) [CR Prop. 11.30].

Examples.

1. **The Yokonuma Hecke algebra.** If \(\psi_\mu = 1 \) is the trivial character, then \(N_1 = N \). Let \(W = \{s_1, s_2, \ldots, s_\ell\} \) be the Weyl group of \(G \) and let \(T = \langle h_i(t) \mid 1 \leq i \leq \ell, t \in \mathbb{F}_q^* \rangle \) be a maximal torus so that \(N \cong T \times W \). For \(w \in W \) and \(h \in T \), let \(T_{hw} = e_1 hwe_2 \). By [Yo2], the Yokonuma algebra \(\mathcal{H}_1 \) has a basis \(\{T_v \mid v \in N\} \) with relations
\[
T_s T_w = \begin{cases}
T_{s_i w}, & \text{if } \ell(s_i w) = \ell(w) + 1, \\
q^{-1} T_{h_i (-1) s_i w} + q^{-1} \sum_{t \in \mathbb{F}_q^*} T_{h_i(t) w}, & \text{if } \ell(s_i w) = \ell(w) - 1, \\
1 \leq i \leq \ell, w \in W,
\end{cases}
\]
\[
T_h T_w = T_{hw}, \quad h \in T, w \in W,
\]
\[
T_h T_k = T_{hk}, \quad h, k \in T,
\]
where if \(w = s_{i_1} s_{i_2} \ldots s_{i_r} \in W \) for \(r \) minimal, then \(\ell(w) = r \). These relations give an “efficient” way to compute arbitrary products \((e_1 u e_2)(e_1 v e_3)\) in \(\mathcal{H}_1 \).

2. **The Gelfand-Graev Hecke algebra.** If \(\psi_\mu \) is in general position, then the Gelfand-Graev module \(\text{Ind}^G_U(\psi_\mu) \) is multiplicity free as a \(G \)-module ([Yo1, S9 Theorem 49]). The corresponding Hecke algebra \(\mathcal{H}_\mu \) is therefore commutative. However, decomposing the product \((e_\mu u e_\mu)(e_\mu v e_\mu)\) into basis elements is more challenging than in the Yokonuma case [Ch, Ca, Ra].

Section 3 describes some of the subalgebra structure of unipotent Hecke algebras. The main results of the paper are in Section 4:

Theorem 4.1 and Corollary 8 give relations similar to those of the Yokonuma algebra (Example 1, above) for evaluating the product \((e_\mu u e_\mu)(e_\mu v e_\mu)\), with \(u, v \in N_\mu \), in any unipotent Hecke algebra \(\mathcal{H}_\mu \).

Section 5 applies the main results to the special case when \(G = GL_n(\mathbb{F}_q) \), the general linear group over a finite field \(\mathbb{F}_q \) with \(q \) elements. Readers unfamiliar with the discourse of Chevalley groups may skip ahead to Section 5 (which is independent of Sections 3 and 4).

There are several natural ways to generalize unipotent Hecke algebras. In a series of papers [Ka1, Ka2, Ka3], Kawanaka has analyzed a family of modules obtained by relaxing the maximality condition on \(U \). There has also recently been a growing interest in a larger family of characters known as super characters [An, ACDS]. Seeing which aspects of the techniques associated with unipotent Hecke algebras extend to the Hecke algebras of these characters would be an interesting continuation of this work.
2. Preliminaries

2.1. Finite Chevalley groups. Let $\mathfrak{g} = Z(\mathfrak{g}) \oplus \mathfrak{g}_s$ be a reductive Lie algebra, where $Z(\mathfrak{g})$ is the center of \mathfrak{g} and $\mathfrak{g}_s = [\mathfrak{g}, \mathfrak{g}]$ is semisimple. If \mathfrak{h}_s is a Cartan subalgebra of \mathfrak{g}_s, then $\mathfrak{h} = Z(\mathfrak{g}) \oplus \mathfrak{h}_s$ is a Cartan subalgebra of \mathfrak{g}. Let $\mathfrak{h}^* = \text{Hom}_\mathbb{C}(\mathfrak{h}, \mathbb{C})$ and $\mathfrak{h}_s^* = \text{Hom}_\mathbb{C}(\mathfrak{h}_s, \mathbb{C})$.

As an \mathfrak{h}_s-module, \mathfrak{g}_s decomposes as

$$\mathfrak{g}_s \cong \mathfrak{h}_s \oplus \bigoplus_{\alpha \in R} (\mathfrak{g}_s)_\alpha,$$

where $(\mathfrak{g}_s)_\alpha = \{ X \in \mathfrak{g}_s \mid [H, X] = \alpha(H)X, H \in \mathfrak{h}_s \}$, and $R = \{ \alpha \in \mathfrak{h}_s^* \mid \alpha \neq 0, (\mathfrak{g}_s)_\alpha \neq 0 \}$ is the set of roots of \mathfrak{g}_s. Choose a set of simple roots $\{\alpha_1, \alpha_2, \ldots, \alpha_\ell\}$. This choice splits the set of roots R into positive roots R^+ and negative roots R^- with $R^- = -R^+$.

For each pair of roots $\alpha, -\alpha$, there exists a Lie algebra isomorphism $\phi_\alpha : \mathfrak{sl}_2 \to \langle \mathfrak{g}_s, \mathfrak{g}_s - \alpha \rangle$. Choose these isomorphisms such that if

$$X_\alpha = \phi_\alpha \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right) \in (\mathfrak{g}_s)_\alpha, \quad H_\alpha = \phi_\alpha \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \in \mathfrak{h}_s, \quad X_{-\alpha} = \phi_\alpha \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right) \in (\mathfrak{g}_s)_{-\alpha},$$

then $\{X_\alpha, H_\alpha, X_{-\alpha} \mid \alpha \in R, 1 \leq i \leq \ell\}$ is a Chevalley basis of \mathfrak{g}_s. [Hu, Theorem 25.2].

Let V be a finite-dimensional \mathfrak{g}-module such that V has a \mathbb{C}-basis $\{v_1, v_2, \ldots, v_r\}$ that satisfies

(a) There exists a \mathbb{C}-basis $\{H_1, \ldots, H_n\}$ of \mathfrak{h} such that

1. $H_\alpha \in \mathbb{Z}_{\geq 0}$-$\text{span}\{H_1, \ldots, H_n\}$,
2. $H_\alpha v_j \in \mathbb{Z}_-$-$\text{span}\{v_1, \ldots, v_n\}$ for all $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, r$,
3. $\dim_{\mathbb{Z}}(\mathbb{Z}$-$\text{span}\{H_1, H_2, \ldots, H_n\}) \leq \dim_{\mathbb{C}}(\mathfrak{h})$.

(b) $\sum_{i=1}^n v_i \in \mathbb{Z}$-$\text{span}\{v_1, v_2, \ldots, v_r\}$ for $\alpha \in R$, $n \in \mathbb{Z}_{\geq 0}$ and $i = 1, 2, \ldots, r$.

(c) $\dim_{\mathbb{Z}}(\mathbb{Z}$-$\text{span}\{v_1, v_2, \ldots, v_r\}) \leq \dim_{\mathbb{C}}(V)$.

(Condition (a) guarantees that $Z(\mathfrak{g})$ acts diagonally. If $Z(\mathfrak{g}) = 0$, then the existence of such a basis is guaranteed by a theorem of Kostant [Hu, Theorem 27.1].)

Let

$$\mathfrak{h}_Z = \mathbb{Z}$-$\text{span}\{H_1, H_2, \ldots, H_n\}.$$

The finite field \mathbb{F}_q with q elements has a multiplicative group \mathbb{F}_q^* and an additive group \mathbb{F}_q. Let

$$V_q = \mathbb{F}_q$-$\text{span}\{v_1, v_2, \ldots, v_r\}.$$

The finite reductive Chevalley group

$$G_V = \langle x_\alpha(a), h_H(b) \mid \alpha \in R, H \in \mathfrak{h}_Z, a \in \mathbb{F}_q, b \in \mathbb{F}_q^* \rangle$$

is the subgroup of $GL(V_q)$ generated by the elements

$$x_\alpha(a) = \sum_{n \geq 0} \frac{a^n X_\alpha^n}{n!}, \quad \text{and}$$

$$h_H(b) = \text{diag}(b^{\lambda_1(H)}, b^{\lambda_2(H)}, \ldots, b^{\lambda_\ell(H)}), \quad \text{where } H v_i = \lambda_i(H) v_i.$$

Remark. If $\mathfrak{g} = \mathfrak{g}_s$, then $G_V = \langle x_\alpha(t) \mid \alpha \in R, t \in \mathbb{F}_q \rangle$.

Example. Suppose $\mathfrak{g} = \mathfrak{gl}_2$ and let

$$V = \mathbb{C}$-$\text{span}\left\{ \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \right\}$$
be the natural \mathfrak{g}-module \mathbb{C}^2 given by matrix multiplication. Then \mathfrak{h} has a basis
\[\mathfrak{h} = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in \mathbb{C} \right\} = \mathbb{C}\text{-span} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}. \]
By direct computation,
\[x_\alpha(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad h_{\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}}(t) = \begin{pmatrix} t^a & 0 \\ 0 & t^b \end{pmatrix} \quad \text{for} \quad a, b \in \mathbb{Z}, \]
and $G_V = GL_2(F_q)$ (the general linear group).

2.2. Important subgroups of a Chevalley group. Let $G = G_V$ be a Chevalley group defined with a \mathfrak{g}-module V as above. The group G contains a subgroup U given by
\[U = \langle x_\alpha(t) \mid \alpha \in R^+, t \in F_q \rangle, \]
which decomposes as
\[U = \prod_{\alpha \in R^+} U_\alpha, \quad \text{where} \quad U_\alpha = \langle x_\alpha(t) \mid t \in F_q \rangle, \]
with uniqueness of expression for any fixed ordering of the positive roots [St, Lemma 18]. For each $\alpha \in R^+$, the map
\[U_\alpha \xrightarrow{\sim} F_q^+ \]
is a group isomorphism.
For $\alpha, \beta \in R$, define the maps
\[s_\alpha : \mathfrak{h}^* \rightarrow \mathfrak{h}^* \quad \gamma \mapsto \gamma - \gamma(H_\alpha) \alpha \quad \text{and} \]
\[s_\alpha : \mathfrak{h} = Z(\mathfrak{g}) \oplus \mathfrak{h}_s \rightarrow \mathfrak{h} \quad H + H_\beta \mapsto H + H_\beta - (H_\alpha)H_\alpha. \]

The Weyl group of G is $W = \langle s_\alpha \mid \alpha \in R \rangle$ and has a presentation
\[W = \langle s_1, s_2, \ldots, s_t \mid s_i^2 = 1, (s_is_j)^{m_{ij}} = 1, 1 \leq i \neq j \leq t \rangle, \quad m_{ij} \in \mathbb{Z}_{>0}, \quad s_i = s_{\alpha_i}. \]
If $w = s_{i_1}s_{i_2}\cdots s_{i_r}$ with r minimal, then the length of w is $\ell(w) = r$.

Let \mathfrak{h}_Z be as in [24]. If $q > 3$, then the subgroup
\[T = \langle h_H(t) \mid H \in \mathfrak{h}_Z, t \in F_q^+ \rangle \]
has its normalizer in G given by
\[N = \langle w_\alpha(t), h \mid \alpha \in R, h \in T, t \in F_q^+ \rangle, \quad \text{where} \quad w_\alpha(t) = x_\alpha(t)x_{-\alpha}(-t^{-1})x_\alpha(t). \]
If $\alpha \in R$, then $h_{H_\alpha}(t) = w_\alpha(t)w_\alpha(1)^{-1}$. Write $h_{H_\alpha}(t) = h_{H_\alpha}(t)$ and $h_i(t) = h_{\alpha_i}(t)$.

There is a natural surjection from N onto the Weyl group W with kernel T given by
\[\pi : N \rightarrow W \]
\[w_\alpha(t) \mapsto s_\alpha, \quad \text{for} \quad \alpha \in R, t \in F_q^+, \]
\[h \mapsto 1, \quad \text{for} \quad h \in T. \]
Suppose $v \in N$. Then for each minimal expression
\[\pi(v) = s_{i_1}s_{i_2}\cdots s_{i_r}, \quad \text{with} \quad \ell(\pi(v)) = r, \]
there is a unique $v_T \in T$ such that
\begin{equation}
(2.7) \quad v = w_i_1(1)w_i_2(1)\cdots w_i_r(1)v_T.
\end{equation}
To simplify some notation in later sections, write
\begin{equation}
(2.8) \quad v = v_1v_2\cdots v_r v_T, \quad \text{where } v_{i_k} = w_{i_k}(1).
\end{equation}

2.3. **Unipotent Hecke algebras.** Let G be a finite Chevalley group. Fix a non-trivial homomorphism $\psi : \mathbb{F}_q^+ \to \mathbb{C}^\ast$. If
\begin{equation}
(2.9) \quad \mu : \mathbb{R}^+ \to \mathbb{F}_q \quad \text{satisfies } \mu_\alpha = 0 \text{ for all } \alpha \text{ not simple,}
\end{equation}
then the map
\begin{equation}
(2.10) \quad \psi_\mu : U \to \mathbb{C}^\ast \quad \text{where } \psi_\mu(\mu_\alpha t) = \psi(\mu_\alpha t)
\end{equation}
is a linear character of U. With the exception of a few degenerate special cases of G (which can be avoided if $q > 3$), all linear characters of U are of this form [Yo1.5, Theorem 1].

The **unipotent Hecke algebra** $\mathcal{H}(G, U, \psi_\mu)$ is
\begin{equation}
(2.11) \quad \mathcal{H}_\mu = \text{End}_{\mathbb{C}G}(\text{Ind}_U^G(\psi_\mu)),
\end{equation}
or viewed as a subset of C_G,
\begin{equation}
(2.12) \quad \mathcal{H}_\mu = e_\mu C_G e_\mu, \quad \text{where } e_\mu = \frac{1}{|U|} \sum_{u \in U} \psi_\mu(u^{-1})u.
\end{equation}

Remark. Since T is in the normalizer of U in G, T acts on the linear characters of U by
\begin{equation}
(2.13) \quad h^\chi(u) = \chi(huh^{-1}), \quad \text{where } u \in U, h \in T, \text{ and } \chi : U \to \mathbb{C}^\ast.
\end{equation}
If two linear characters χ and γ are in the same T-orbit, then $\mathcal{H}(G, U, \chi) \cong \mathcal{H}(G, U, \gamma)$ (although the converse does not necessarily hold).

The group G has a double-coset decomposition
\begin{equation}
(2.14) \quad G = \bigsqcup_{v \in N} UvU \quad \text{[St, Theorem 4]},
\end{equation}
and if
\begin{equation}
N_\mu = \{v \in N \mid e_\mu v e_\mu \neq 0\} = \{v \in N \mid u, vuv^{-1} \in U \text{ implies } \psi_\mu(u) = \psi_\mu(vuv^{-1})\},
\end{equation}
then the set $\{e_\mu v e_\mu \mid v \in N_\mu\}$ is a basis for \mathcal{H}_μ [CR Prop. 11.30].

Examples (see also the Introduction).

1. **The Yokonuma Hecke algebra.** If $\mu_\alpha = 0$ for all positive roots α, then $\psi_\mu = \mathbb{1}$ is the trivial character and $N_1 = N$. Let $T_v = e_1 v e_1$ for $v \in N$, with $T_i = T_{w_i(1)}$ and $T_H(t) = T_{\mu_H(t)}$. If $v = v_1 v_2 \cdots v_r v_T \in N$ according to a minimal expression $s_1 s_2 \cdots s_i \in W$ (as in (2.8)), then
\begin{equation}
T_v = T_{v_1} T_{v_2} \cdots T_{v_r} T_{v_T}.
\end{equation}
Thus, the Yokonuma algebra H_1 has generators $\{T_i, T_h \mid 1 \leq i \leq \ell, h \in T\}$ (see [Yo2]) with relations

$$T_i^2 = q^{-1}T_{H_{\alpha_i}}(-1) + q^{-1}\sum_{t \in S_q^i} T_{H_{\alpha_i}}(t^{-1})T_i, \quad 1 \leq i \leq \ell,$$

$$T_iT_jT_i\cdots = T_jT_iT_j\cdots$$

with m_{ij} terms

$$T_iT_h = T_{s_ih}T_i, \quad h \in T,$$

$$T_hT_k = T_{hk}, \quad h, k \in T.$$

These relations give an “efficient” way to compute arbitrary products T_uT_v in H_1. There is a surjective map from the Yokonuma algebra onto the Iwahori-Hecke algebra that sends $T_h \mapsto 1$ for all $h \in T$. “Setting $T_h = 1$” in the Yokonuma algebra relations recovers relations for the Iwahori-Hecke algebra,

$$T_i^2 = q^{-1} + q^{-1}(q - 1)T_i, \quad T_iT_jT_i\cdots = T_jT_iT_j\cdots$$

Furthermore, there is a surjective map from the Iwahori Hecke algebra onto the group algebra of the Weyl group given by $T_i \mapsto s_i$ and $q \mapsto 1$. Thus, by “setting $T = s_i$ and $q = 1$” we retrieve the Coxeter relations of W,

$$s_i^2 = 1, \quad s_is_j\cdots = s_js_i\cdots$$

2. The Gelfand-Graev Hecke algebra. By definition, if $\mu_\alpha \neq 0$ for all simple roots α, then ψ_μ is in general position. The Gelfand-Graev Hecke algebra H_μ is commutative ([Yo1], [St, Theorem 49]).

3. PARABOLIC SUBALGEBRAS OF H_μ

Let $\psi_\mu : U \to G$ be as in (2.10). Fix a subset $J \subseteq \{\alpha_1, \alpha_2, \ldots, \alpha_\ell\}$ such that

$$J \supseteq \{\alpha_i \text{ simple root} \mid \mu_\alpha \neq 0\}.$$

For example, if ψ_μ is in general position, then $J = \{\alpha_1, \alpha_2, \ldots, \alpha_\ell\}$, but if ψ_μ is trivial, then J could be any subset.

Let

$$W_J = \langle s_i \in W \mid \alpha_i \in J \rangle, \quad P_J = \langle U, T, W_J \rangle, \quad \text{and} \quad R_J = \text{Z-span}\{\alpha_i \in J\} \cap R.$$

Then P_J has subgroups

$$L_J = \langle T, W_J, U_\alpha \mid \alpha \in R_J \rangle \quad \text{and} \quad U_J = \langle U_\alpha \mid \alpha \in R^+ - R_J \rangle$$

(a Levi subgroup and the unipotent radical of P_J, respectively). Note that

$$U_JL_J = P_J, \quad U_J \cap L_J = 1, \quad \text{and, in fact,} \quad P_J = U_J \times L_J.$$

Define the idempotents of CU,

$$e_\mu = \frac{1}{\left| L_J \cap U \right|} \sum_{u \in L_J \cap U} \psi_\mu(u^{-1})u \quad \text{and} \quad e'_J = \frac{1}{\left| U_J \right|} \sum_{u \in U_J} u,$$

so that $e_\mu = e_\mu e'_J$ is the decomposition of e_μ with respect to $P = L_JU_J$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The group homomorphisms
\[P_J \quad \mapsto \quad L_J \quad \text{and} \quad P_J \quad \mapsto \quad G \quad \text{for} \quad l \in L_J, \quad u \in U_J, \]
induce functors
\[\text{Ind}_{L_J}^P : \{L_J-\text{modules}\} \quad \mapsto \quad \{P_J-\text{modules}\} \]
\[M \quad \mapsto \quad e'_j M \]
and
\[\text{Ind}_G^J : \{P_J-\text{modules}\} \quad \mapsto \quad \{G-\text{modules}\} \]
\[M' \quad \mapsto \quad \mathbb{C}G \otimes_{\mathbb{C}P_j} M' \]
whose composition is the functor \(\text{Ind}_G^J \). In the special case when \((\mathbb{C}L_J)e\) is an \(L_J\)-module with corresponding idempotent \(e\),
\[\text{Ind}_G^J : \{L_J-\text{modules}\} \quad \mapsto \quad \{G-\text{modules}\} \]
\[\mathbb{C}L_J e \quad \mapsto \quad \mathbb{C}Ge_e'. \]

The map \(\psi : U \rightarrow \mathbb{C}^* \) restricts to a linear character \(\text{Res}_{U \cap L_J}^U(\psi) \) : \(L_J \cap U \rightarrow \mathbb{C}^* \). To make the notation less heavy-handed, write \(\psi : L_J \cap U \rightarrow \mathbb{C}^* \), for \(\text{Res}_{U \cap L_J}^U(\psi) \).

Lemma 3.1. Let \(\psi \) be as in (2.10). Then
\[\text{Ind}_G^J(\psi) \cong \text{Ind}_G^J(\text{Ind}_{U \cap L_J}^L(\psi)) \]

Proof. Recall \(\text{Ind}_G^J(\psi) \cong \mathbb{C}Ge_{\mu} \). On the other hand,
\[\text{Ind}_{U \cap L_J}^L(\psi) \cong \mathbb{C}L_J e_{\mu, j} \quad \text{implies} \quad \text{Ind}_G^J(\text{Ind}_{U \cap L_J}^L(\psi)) \cong \mathbb{C}Ge_{\mu, j}e'_j, \]
where \(e_{\mu, j} \) is as in (3.3). But \(e_{\mu, j}e'_j = e_{\mu} \), so
\[\text{Ind}_G^J(\psi) \cong \mathbb{C}Ge_{\mu} \cong \mathbb{C}e_{\mu, j}e'_j \cong \text{Ind}_G^J(\text{Ind}_{U \cap L_J}^L(\psi)) \]

Theorem 3.1. The map
\[\theta : \quad \text{End}_{\mathbb{C}L_J}(\text{Ind}_{U \cap L_J}^L(\psi)) \quad \mapsto \quad \mathcal{H}_\mu \]
\[e_{\mu, j}v_{\mu, j} \quad \mapsto \quad e_{\mu}v_{\mu}, \quad \text{for} \quad v \in L_J \cap N_\mu, \]

is an injective algebra homomorphism.

Proof. Since \(L_J \) normalizes \(U_J \) and \(e'_je_{\mu, j} = e_{\mu} \),
\[e_{\mu}v_{\mu} = e'_je_{\mu, j}v_{\mu, j} = e'_je_{\mu, j}v_{\mu, j}, \]
so the map \(\theta \) is given by multiplying \(e_{\mu, j}v_{\mu, j} \) on the left by \(e'_j \). Thus, \(\theta \) is well defined and injective. Because \(e'_j \) commutes with \(e_{\mu, j}v_{\mu, j} \) for \(v \in L_J \), \(\theta \) is also a homomorphism. \(\square \)

Write
\[(3.4) \quad \mathcal{L}_J = \theta(\text{End}_{\mathbb{C}L_J}(\text{Ind}_{U \cap L_J}^L(\psi))) \subseteq \mathcal{H}_\mu. \]

The \(\mathcal{L}_J \) are “parabolic” subalgebras of \(\mathcal{H}_\mu \), in that they have a similar role in the representation theory of \(\mathcal{H}_\mu \) as parabolic subgroups \(P_J \) have in the representation theory of \(G \).
3.1. Weight space decompositions for H_μ-modules. An important special case of Theorem 3.1 is when

$$J = J_\mu = \{ \alpha_i \text{ simple root } \mid \mu_{\alpha_i} \neq 0 \},$$

so that J_μ is minimal satisfying (3.1). Write $L_\mu = L_{J_\mu}$, $W_\mu = W_{J_\mu}$, etc.

Corollary 1. The algebra L_μ is a nonzero commutative subalgebra of H_μ.

Proof. As a character of $U \cap L_\mu$, ψ_μ is in general position, so $\text{Ind}^{L_\mu}_{U \cap L_\mu}(\psi_\mu)$ is a Gelfand-Graev module and L_μ is a Gelfand-Graev Hecke algebra (see Example 2 in Section 2.3).

Since L_μ is commutative, all the irreducible L_μ-modules are one-dimensional. Let \hat{L}_μ be an indexing set for the irreducible modules of L_μ. Suppose V is an H_μ-module. Since $L_\mu \cong \text{End}_{L_\mu}(\text{Ind}^{L_\mu}_{U \cap L_\mu}(\psi_\mu))$, L_μ is semisimple, and as an L_μ-module,

$$V \cong \bigoplus_{\gamma \in \hat{L}_\mu} V_\gamma,$$

where $V_\gamma = \{ v \in V \mid xv = \gamma(x)v, x \in L_\mu \}$.

If $\gamma \in \hat{L}_\mu$, then V_γ is the γ-weight space of V, and γ is a weight of V if $V_\gamma \neq 0$.

Examples.

1. In the Yokonuma algebra $\psi_\mu = 1$, $J_1 = \emptyset$ and $L_1 = e_1 \mathbb{C}T e_1 \cong \mathbb{C}T$.

2. In the Gelfand-Graev Hecke algebra case, $J_\mu = \{ \alpha_1, \alpha_2, \ldots, \alpha_\ell \}$ and $L_\mu = H_\mu$.

Remark. Since $\dim(V_\gamma)$ can be greater than one, L_μ is not in general a maximal commutative subalgebra of H_μ.

4. Multiplication of basis elements

This section examines the decomposition of products in terms of the natural basis

$$(e_\mu ue_\mu)(e_\mu ve_\mu) = \sum_{v' \in \hat{N}_\mu} c^{v'}_{v e_\mu} (e_\mu v' e_\mu).$$

In particular, Theorem 4.1 below, gives a set of braid-like relations (similar to those of the Yokonuma algebra) for manipulating the products, and Corollary 3 gives a recursive formula for computing these products.

4.1. Chevalley group relations. The relations governing the interaction between the subgroups N, U, and T will be critical in describing the Hecke algebra multiplication in the following section. They can all be found in [St, §3].

The subgroup

$$U = \langle x_\alpha(t) \mid \alpha \in R^+, t \in \mathbb{F}_q \rangle$$

has generators $\{ x_\alpha(t) \mid \alpha \in R^+, t \in \mathbb{F}_q \}$, with relations

$$(U1) \quad x_\alpha(a)x_\beta(b)x_\alpha(a)^{-1}x_\beta(b)^{-1} = \prod_{\gamma = i\alpha + j\beta \in R^+ \atop i,j \in \mathbb{Z}_{>0}} x_\gamma(z_{ij}(\alpha, \beta)a^ib^j),$$

$$(U2) \quad x_\alpha(a)x_\alpha(b) = x_\alpha(a+b),$$
where $z_{ij}(\alpha, \beta) \in \mathbb{Z}$ depends on i, j, α, β and a fixed order on the positive roots R^+, but not on $a, b \in \mathbb{F}_q$ [St, Lemma 15]. The $z_{ij}(\alpha, \beta)$ have been explicitly computed for various types in [De, St].

The subgroup N has generators $\{w_i(1), h_H(t) \mid i = 1, 2, \ldots, \ell, H \in \mathfrak{h}_Z, t \in \mathbb{F}_q^*\}$, with relations

(N1) \quad $w_i(1)^2 = h_i(-1)$,

(N2) \quad $w_i(1)w_j(1)w_i(1)w_j(1) \cdots = w_j(1)w_i(1)w_j(1)w_i(1) \cdots$

\text{where $(s_is_j)^{m_{ij}} = 1$ in W,}

(N3) \quad $w_i(1)h_H(t) = h_{s_i(h)(t)}w_i(1)$,

(N4) \quad $h_H(a)h_H(b) = h_H(ab)$,

(N5) \quad $h_H(a)h_H'(b) = h_H'(b)h_H(a)$, \quad for $H, H' \in \mathfrak{h}$,

(N6) \quad $h_H(a)h_H'(a) = h_{H+H'}(a)$, \quad for $H, H' \in \mathfrak{h}$,

(N7) \quad $h_{H_1}(t_1)h_{H_2}(t_2) \cdots h_{H_r}(t_k) = 1$, if $t_1^{\lambda_1(H_1)} \cdots t_k^{\lambda_r(H_k)} = 1$ for all $1 \leq j \leq r$,

where $\lambda_j : \mathfrak{h} \to \mathbb{C}$ depends on V as in \cite{2414}.

The double-coset decomposition of G \cite{2413} implies $G = (U, N)$. Thus, G is generated by $\{x_\alpha(a), w_i(1), h_H(b) \mid \alpha \in R^+, a \in \mathbb{F}_q^*, i = 1, 2, \ldots, \ell, H \in \mathfrak{h}_Z, b \in \mathbb{F}_q^*\}$ with relations (UN1)-(UN7) and

(UN1) \quad $w_i(1)x_\alpha(t)w_i(1)^{-1} = x_{s_i(\alpha)}(e_\alpha t)$, for $\alpha \neq \alpha_i$, where $e_\alpha = \pm 1$,

(UN2) \quad $hx_\alpha(b)h^{-1} = x_\alpha(hb)$, \quad for $h \in T$,

(UN3) \quad $w_i(1)x_i(t)w_i(1) = x_i(-t^{-1})h_i(-t^{-1})w_i(1)x_i(-t^{-1})$,

\text{where $x_i(t) = x_{\alpha_i}(t)$ and $t \neq 0$,}

where for $\alpha \in R$ and $h_H(t) \in T$,

\begin{equation}
\alpha(h_H(t)) = t^{\alpha(H)}.
\end{equation}

Note that relation (UN3) is not conjugation by $w_i(1)$.

Fix $\psi : U \to \mathcal{C}^\times$ as in \cite{2410}. For $k \in \mathbb{F}_q^*$, let

\begin{equation}
e_\alpha(k) = \frac{1}{q} \sum_{t \in \mathbb{F}_q^*} \psi(-\mu_\alpha kt)x_\alpha(t)
\end{equation}

with the convention $e_\alpha = e_\alpha(1)$.

Note that for any given ordering of the positive roots, the decomposition

\begin{equation}
U = \prod_{\alpha \in R^+} U_\alpha \quad \text{implies} \quad e_\mu = \prod_{\alpha \in R^+} e_\alpha.
\end{equation}

In particular, given any $\alpha \in R^+$, we may choose the ordering of the positive roots to have e_α appear either first or last. Therefore, since e_α is an idempotent,

\begin{equation}
e_\mu e_\alpha = e_\mu = e_\alpha e_\mu.
\end{equation}

If $w = s_{i_1} s_{i_2} \cdots s_{i_r} \in W$ with r minimal, then let

\begin{equation}
R_w = \{ \alpha \in R^+ \mid w(\alpha) \in R^- \} = \{ \alpha_{i_1}, s_{i_r}(\alpha_{i_{r-1}}), \ldots, s_{i_r} s_{i_{r-1}} \cdots s_{i_2}(\alpha_{i_1}) \},
\end{equation}

where the second equality is from [Bo, VI.1, Corollary 2 of Proposition 17].
Lemma 4.1. Let $v \in N$, $w = \pi(v)$ (with $\pi : N \to W$ as in (2.6)), and for $\alpha \in R^+$, let $vx_\alpha(t)v^{-1} = x_{w_\alpha}(c_{v\alpha}t)$, with $c_{v\alpha} = \pm 1$ as in (UN1). Then

\begin{enumerate}[(E1)]
\item $ve_\alpha(k)v^{-1} = e_{w_\alpha}(\mu_\alpha\mu_{w_\alpha}c_{v\alpha}k)$, if $\alpha \notin R_w$,
\item $ve_\alpha v^{-1} = e_{w_\alpha}$ if $\alpha \notin R_w, v \in N_\mu$,
\item $he_\alpha(k)h^{-1} = e_{\alpha}(k\alpha(h)^{-1})$, for $h \in T$,
\item $e_\alpha x_\alpha(t) = \psi(\mu_\alpha t)e_\mu = x_\alpha(t)e_\mu$, for $\alpha \in R^+$.
\end{enumerate}

Proof. (E1) Using relation (UN1),
\[
we_\alpha(k)w^{-1} = \frac{1}{q} \sum_{t \in F_q} \psi(-\mu_\alpha kt)wx_\alpha(t)w^{-1} = \frac{1}{q} \sum_{t \in F_q} \psi(-\mu_\alpha kt)x_{w_\alpha}(c_{v\alpha}t)
\]
\[
= \frac{1}{q} \sum_{t \in F_q} \psi(-\mu_\alpha c_{v\alpha}kt')x_{w_\alpha}(t') = e_{w_\alpha}(\mu_\alpha\mu_{w_\alpha}c_{v\alpha}k).
\]

(E2) Suppose $\alpha \notin R_w$. Since $v \in N_\mu$,
\[
\psi(\mu_\alpha t) = \psi(\mu_\alpha t) = \psi(\mu_\alpha t) = \psi(x_{w_\alpha}(kt)) = \psi(x_{w_\alpha}(kt)) = \psi(\mu_\alpha kt),
\]
for some $k \in \mathbb{Z}_{\neq 0}$.

In particular, since ψ is nontrivial, $\mu_\alpha = k\mu_{w_\alpha}$. Thus,
\[
ve_\alpha v^{-1} = \frac{1}{q} \sum_{t \in F_q} \psi(-\mu_\alpha t)x_{w_\alpha}(kt) = \frac{1}{q} \sum_{t' \in F_q} \psi(-\mu_\alpha k^{-1}t')x_{w_\alpha}(t') = e_{w_\alpha}.
\]

(E3) Since $hx_\alpha(t)h^{-1} = x_\alpha(\alpha(h)t)$,
\[
he_\alpha(k)h^{-1} = \frac{1}{q} \sum_{t \in F_q} \psi(-\mu_\alpha kt)x_\alpha(\alpha(h)t)
\]
\[
= \sum_{t \in F_q} \psi(-\mu_\alpha k\alpha(h)^{-1})x_\alpha(t) = e_{\alpha}(k\alpha(h)^{-1}).
\]

(E4) The element e_α is the minimal central idempotent of CU_α that corresponds to the character $x_\alpha(t) \mapsto \psi(\mu_\alpha t)$. Therefore, by (E4), $e_\mu x_\alpha(t) = e_\mu e_\alpha x_\alpha(t) = \psi(\mu_\alpha t)e_\mu$. \qed

4.2. Local Hecke algebra relations. Let $u = u_1 u_2 \cdots u_r \in N$ according to a minimal expression $s_{i_1} s_{i_2} \cdots s_{i_r} = W$ (see (2.3)). For $1 \leq k \leq r$ define constants $c_k = \pm 1$ and roots $\beta_k \in R^+$ by the equation

\begin{equation}
\tag{4.6} x_{\beta_k}(c_k t) = (u_{k+1} \cdots u_r) \cdot x_{\alpha_{i_k}}(t)(u_{k+1} \cdots u_r).
\end{equation}

Note that $R_{\pi(u)} = \{ \beta_1, \beta_2, \ldots, \beta_r \}$ (see (4.5)). Define $f_u \in \mathbb{F}_q[y_1, y_2, \ldots, y_r]$ by

\begin{equation}
\tag{4.7} f_u = \frac{\mu_{\beta_1 c_1}}{\beta_1(w T)} y_1 - \frac{\mu_{\beta_2 c_2}}{\beta_2(w T)} y_2 - \cdots - \frac{\mu_{\beta_r c_r}}{\beta_r(w T)} y_r,
\end{equation}

and for $k = 1, 2, \ldots, r$ write

\begin{equation}
\tag{4.8} u_k(t) = w_{i_k}(1)x_{i_k}(t).
\end{equation}

In the following theorem we evaluate polynomials $f \in \mathbb{F}_q[y_1, \ldots, y_r]$ at points in $t = (t_1, \ldots, t_r) \in \mathbb{F}_q^r$ by $f(t) = f(t_1, \ldots, t_r)$, where $y_j(t) = t_j$ for $1 \leq j \leq r$.

Theorem 4.1. Let \(u = u_1u_2 \cdots u_{r_T}, \ v = v_1v_2 \cdots v_T \in N_\mu \) according to minimal expressions \(s_{i_1}s_{i_2} \cdots s_{i_r} \in W \) and \(s_{j_1}s_{j_2} \cdots s_{j_s} \in W \), respectively, as in (2.3). Then

(a)
\[
(e_\mu u e_\mu)(e_\mu v e_\mu) = \frac{1}{q^r} \sum_{t \in \mathbb{F}_q^r} (\psi \circ f_u)(t) e_\mu (u_1(t_1)u_2(t_2) \cdots u_r(t_r)) (v_1v_2 \cdots v_s) he_\mu,
\]

where \(h = vTv^{-1}uTv \in T \).

(b) The following local relations suffice to compute the product \((e_\mu u e_\mu)(e_\mu v e_\mu) \).

\[
(\mathcal{H}1) \quad \sum_{t \in \mathbb{F}_q^r} (\psi \circ f)(t)(w_1(1)x_i(t))w_1(1) = (\psi \circ f)(0)h_i(-1) + \sum_{t \in \mathbb{F}_q^r} (\psi \circ f)(-t^{-1})x_i(t)h_i(t)w_1(1)x_i(t),
\]

\[
(\mathcal{H}2) \quad w_1(1)x_\alpha(t) = x_{s_{i}(\alpha)}(c_{ic}t)w_1(1),
\]

\[
(\mathcal{H}3) \quad x_\alpha(t)h = hx_\alpha(\alpha(h)^{-1}t),
\]

\[
(\mathcal{H}4) \quad e_\mu x_\alpha(t) = \psi(\mu_\alpha t)e_\mu = x_\alpha(t)e_\mu,
\]

\[
(\mathcal{H}5) \quad (\psi \circ f)(t)(\psi \circ g)(t) = (\psi \circ (f + g))(t),
\]

\[
(\mathcal{H}6) \quad h_\alpha(t)w_1(1) = w_1(1)h_{s_{i}(\alpha)}(t),
\]

\[
(\mathcal{H}7) \quad (w_1(1)x_i(a))x_\alpha(b) = \prod_{\gamma = m_0, n \in \mathbb{R}^+} x_{s_\gamma \gamma \gamma m_0, n, \alpha(a_\gamma \gamma b^m \beta^m \mu_\gamma)}(w_1(1)x_i(a)), \quad \text{for } \alpha \neq \alpha_i,
\]

\[
(\mathcal{H}8) \quad (w_1(1)x_i(a))x_i(b) = (w_1(1)x_i(a + b)),
\]

\[
(\mathcal{H}9) \quad h_\alpha(a)h_\alpha(b) = h_\alpha(ab),
\]

\[
(\mathcal{H}10) \quad h_\alpha(a)h_\beta(b) = h_\beta(b)h_\alpha(a),
\]

\[
(\mathcal{H}11) \quad w_1(1)t^2 = h_1(-1),
\]

\[
(\mathcal{H}12) \quad w_1(1)w_j(1)w_1(1)w_j(1) \cdots = w_j(1)w_1(1)w_j(1)w_1(1) \cdots,
\]

where \(f, g \in \mathbb{F}_q[y_1^{\pm 1}, \ldots, y_{r_T}^{\pm 1}], \ t \in \mathbb{F}_q, \ \alpha, \beta \in \mathbb{R}^+, \ 1 \leq i \leq t, \ z_{0,1}(\alpha, \alpha) = 1, \) and \(mi_j \) is the order of \(s_i s_j \) in \(W \).

Proof. (a) Order the positive roots so that by (4.3)

\[
e_\mu u e_\mu v e_\mu = e_\mu \left(\prod_{\alpha \in R_+(\mu)} e_\alpha \right) e_\beta_1 e_\beta_2 \cdots e_\beta_s v e_\mu \tag{definition of \(\beta_k \)}
\]

\[
e_\mu \left(\prod_{\alpha \in R_+(\mu)} e_\alpha \right) u e_\beta_1 e_\beta_2 \cdots e_\beta_s v e_\mu \tag{Lemma 4.1 \(\mathcal{H}2 \)}
\]

\[
e_\mu u e_\beta_1 e_\beta_2 \cdots e_\beta_s v e_\mu \tag{Lemma 4.1 \(\mathcal{H}2 \)}
\]

\[
e_\mu u_1 u_2 \cdots u_T e_\beta_1 e_\beta_2 \cdots e_\beta_s v e_\mu \tag{Lemma 4.1 \(\mathcal{H}2 \)}
\]

\[
e_\mu u_1 u_2 \cdots u_T e_\beta_1 \left(\frac{1}{\mu_1(\mu_1)} \right) e_\beta_2 \left(\frac{1}{\mu_2(\mu_1)} \right) \cdots e_\beta_s \left(\frac{1}{\mu_s(\mu_1)} \right) u_T v e_\mu \tag{Lemma 4.1 \(\mathcal{H}3 \)}
\]
\[= e_\mu u_1 e_{\alpha_1} \left(\frac{\nu_{\alpha_1} \epsilon_1}{\nu_{\alpha_1} x_1(v_T)} \right) u_2 e_{\alpha_2} \left(\frac{\nu_{\alpha_2} \epsilon_2}{\nu_{\alpha_2} x_2(v_T)} \right) \]
\[\cdots u_r e_{\alpha_r} \left(\frac{\nu_{\alpha_r} \epsilon_r}{\nu_{\alpha_r} x_r(v_T)} \right) u_{T} v e_\mu \]
\[= e_\mu u_1 e_{\alpha_1} \left(\frac{\nu_{\alpha_1} \epsilon_1}{\nu_{\alpha_1} x_1(v_T)} \right) u_2 e_{\alpha_2} \left(\frac{\nu_{\alpha_2} \epsilon_2}{\nu_{\alpha_2} x_2(v_T)} \right) \]
\[\cdots u_r e_{\alpha_r} \left(\frac{\nu_{\alpha_r} \epsilon_r}{\nu_{\alpha_r} x_r(v_T)} \right) v_1 \cdots v_T v^{-1} u_{T} v e_\mu \]
\[= \frac{e_\mu}{q^r} \sum_{t_1, \ldots, t_r \in \mathbb{F}_q} \psi \left(\frac{-\nu_{\alpha_1} \epsilon_1}{\nu_{\alpha_1} x_1(v_T)} \right) u_1(t_1) \cdots \psi \left(\frac{-\nu_{\alpha_r} \epsilon_r}{\nu_{\alpha_r} x_r(v_T)} \right) u_r(t_r) \]
\[\times v_1 \cdots v_s h e_\mu \]
\[= \frac{1}{q^r} \sum_{t \in \mathbb{F}_q} (\psi \circ f_a)(t) e_\mu u_1(t_1) \cdots u_r(t_r) v_1 \cdots v_s h e_\mu \]
(definition of \(e_\alpha, u_\alpha(t)\))

where \(h = vTv^{-1} uTv \in T\), as desired.

(b) First, note that these relations are in fact correct (though not necessarily sufficient): (H1) comes from (UN3); (H2) comes from (UN1); (H3) comes from (UN2); (H4) is (E4); (H5) comes from the multiplicity of \(\psi\); (H6) comes from (N3); (H7) comes from (UN1) and (UN1); (H8) comes from (U2); (H9) and (H10) are (N4) and (N5); and (H11) and (H12) are (N1) and (N2). It therefore remains to show sufficiency.

By (a) we may write
\[(e_\mu u e_\mu)(e_\mu v e_\mu) = \frac{1}{q^r} \sum_{t \in \mathbb{F}_q} (\psi \circ f)(t) e_\mu u_1(t_1) \cdots u_r(t_r) v_1 \cdots v_s h e_\mu \]

for some \(f \in \mathbb{F}_q[y_1, \ldots, y_r]\) and \(h \in T\). Say \(t_k\) is resolved if the only parts of the summands depending on \(t_k\) are \((\psi \circ f)\) and \(h\). The product is reduced when all the \(t_k\) are resolved. We will show how to resolve \(t_r\) and the result will follow by induction.

Use relation (H2) to define the constant \(d\) and the root \(\gamma \in R\) by
\[(v_1 v_2 \cdots v_s)^{-1} x_{\alpha_r}(t)(v_1 v_2 \cdots v_s) = x_\gamma(dt) \quad \text{where } \ell(\pi(t)) = s.\]

Note that \(\gamma = \pi(v)^{-1}(\alpha_r)\) and \(d = \pm 1\). There are two possible situations:

Case 1. \(\gamma \in R^+\),
Case 2. \(\gamma \in R^-\).

In Case 1,
\[(e_\mu u e_\mu)(e_\mu v e_\mu) = \frac{1}{q^r} \sum_{t \in \mathbb{F}_q} (\psi \circ f)(t) e_\mu u_1(t_1) \cdots u_r x_r(t_r) v_1 \cdots v_s h e_\mu \]
(by (a))
\[= \frac{1}{q^r} \sum_{t \in \mathbb{F}_q} (\psi \circ f)(t) e_\mu u_1(t_1) \cdots u_r x_r(t_r) v_1 \cdots v_s x_\gamma(dt) h e_\mu \]
(by (H2))
\[= \frac{1}{q^r} \sum_{t \in \mathbb{F}_q} (\psi \circ f)(t) e_\mu u_1(t_1) \cdots u_r x_r(t_r) v_1 \]
\[\cdots v_s x_\gamma(dt^r h^{-1} t_r) h e_\mu \]
(by (H3))
where $g = f + \mu_+ d\gamma(h)^{-1}y_r$. We have resolved t_r in Case 1. Furthermore, since
$\gamma \in R^+$, $v_1 v_2' \cdots v_{s+1}' = u_r v_1 v_2 \cdots v_s$ still corresponds to a minimal expression in W.

In Case 2, $\gamma \in R^-$, so we can no longer move $x_{s_r}(t_r)$ past the v_j. Instead,

$$(e_\mu w e_\mu)(e_\mu v e_\mu)$$

$$= \frac{e_\mu}{q''} \sum_{t \in P_q} (\psi \circ f)(t)u_1(t_1) \cdots u_{r-1}(t_{r-1}) u_r v_1$$

$$\cdots v_s h(\psi(\mu_+ d\gamma(h)^{-1}t_r)) e_\mu$$

(by (74))

$$= \frac{1}{q''} \sum_{t \in P_q} (\psi \circ f)(t) e_\mu u_1(t_1) \cdots u_{r-1}(t_{r-1}) u_r v_1$$

$$\cdots v_s h(\psi(\mu_+ d\gamma(h)^{-1}t_r)) e_\mu$$

(by (75))
= \frac{e_\mu}{q'} \sum_{t' \in F_q^*} (\psi \circ f)(t', 0)u_1(t_1) \cdots u_{r-1}(t_{r-1})
\times u_{r-1}v_1 \cdots v_s h_{-\gamma}(-1)h_{e_\mu}
+ \frac{e_\mu}{q'} \sum_{t' \in F_q^*} u_1(t_1) \cdots u_{r-1}(t_{r-1})
\times \sum_{t_r \in F_q} (\psi \circ g)(t', -t_r^{-1})x_i(t_r)h_{e_\mu}(t_r)v_1 \cdots v_s h_{e_\mu}
\quad \text{(by \textcolor{red}{H3})}

(\text{where } g = f + \mu_\gamma d(-\gamma(h))^{-1}g_r^{-1} \text{ (same as in the analogous steps in Case 1)})

= \frac{e_\mu}{q'} \sum_{t' \in F_q^*} (\psi \circ f)(t', 0)u_1(t_1) \cdots u_{r-1}(t_{r-1})
\times u_{r-1}v_1 \cdots v_s h_{-\gamma}(-1)h_{e_\mu}
+ \frac{e_\mu}{q'} \sum_{t' \in F_q^*} u_1(t_1) \cdots u_{r-1}(t_{r-1})
\times \sum_{t_r \in F_q} (\psi \circ g)(t', -t_r^{-1})
\quad \text{(by \textcolor{red}{H3})}

\times \left(\prod_{\beta \in R^+} x_\beta(a_\beta(t', t_r)) \right) u_1(t_1) \cdots u_{r-1}(t_{r-1}) v_1 \cdots v_s h' e_\mu

(\text{where } \varphi : F_q[y_1, \ldots, y_r] \to F_q[y_1, \ldots, y_r] \text{ catalogues the substitutions to } g \text{ due to } \textcolor{red}{H3} \text{ and } \textcolor{red}{H2}, \text{ the } a_\beta(y_1, y_2, \ldots, y_r) \in F_q[y_1, \ldots, y_r] \text{ are determined by repeated applications of } \textcolor{red}{H3} \text{ and } \textcolor{red}{H3}, \text{ and } h' = h_{-\gamma}(t_r^{-1})h \in T)

= \frac{1}{q'} \sum_{t' \in F_q^*} (\psi \circ f)(t', 0)e_\mu u_1(t_1) \cdots u_{r-1}(t_{r-1})
\times u_{r-1}v_1 \cdots v_s h_{-\gamma}(-1)h_{e_\mu}
\quad \text{(by \textcolor{red}{H3})}

+ \frac{1}{q'} \sum_{t' \in F_q^*} (\psi \circ g)(t', -t_r^{-1})e_\mu
\times \left(\prod_{\beta \in R^+} \psi(\mu_\beta a_\beta(t', t_r)) \right) u_1(t_1) \cdots u_{r-1}(t_{r-1}) v_1 \cdots v_s h' e_\mu
\[= \frac{1}{q'} \sum_{t' \in \mathcal{F}^n_q} (\psi \circ f)(t', 0)e_\mu u_1(t_1) \cdots u_{r-1}(t_{r-1}) \times u_r^{-1} v_1 \cdots v_s h_{-\gamma}(-1) h e_\mu \]
\[+ \frac{1}{q'} \sum_{t' \in \mathcal{F}^n_q \setminus t_r \in \mathcal{F}^n_q} (\psi \circ g_2)(t', -t_r^{-1})e_\mu u_1(t_1) \cdots u_{r-1}(t_{r-1}) \times v_1 \cdots v_s h' e_\mu \]

where \(g_2 = \varphi(g) + \sum_{t' \in \mathcal{F}^n_q} \mu \cdot a_\beta(y_1, \ldots, y_{r-1}, -y_r^{-1})\). In the first sum, use (\ref{H11}) and (\ref{H12}) to reduce \(v_1' \cdots v_{r-1}' = u_r^{-1} v_1 \cdots v_s\) into an expression that corresponds to a minimal expression in \(W\). Use (\ref{H9}) and (\ref{H10}) to simplify the expressions \(h', h_{-\gamma}(-1) h\). Now \(t_r\) is resolved for Case 2, as desired. \(\Box\)

Corollary 2 (Resolving \(t_k\)). Let \(u = u_1 u_2 \cdots u_k \in N\) according to a minimal expression \(s_i_1 s_i_2 \cdots s_i_k \in W\) (with \(u_T = 1\)). Suppose \(v \in N\) and \(f \in \mathbb{F}_q[y_1, y_2, \ldots, y_k]\). Define \(\gamma \in R\) and \(d \in \mathbb{C}\) by the equation \(v^{-1} x_{i_k}(t)v = x_{\gamma}(dt)\). Then

Case 1. If \(\ell((\pi(u_k v)) > \ell((\pi(v))\), then
\[\sum_{t \in \mathcal{F}_q^n} (\psi \circ f)(t)e_\mu u_1(t_1) \cdots u_k(t_k) v e_\mu \]
\[= \sum_{t \in \mathcal{F}_q^n} (\psi \circ (f + \mu \cdot d_{i_k}))(t)e_\mu u_1(t_1) \cdots u_{k-1}(t_{k-1}) u_k v e_\mu.\]

Case 2. If \(\ell((\pi(u_k v)) < \ell((\pi(v))\), then
\[\sum_{t \in \mathcal{F}_q^n} (\psi \circ f)(t)e_\mu u_1(t_1) \cdots u_k(t_k) v e_\mu \]
\[= \sum_{t \in \mathcal{F}_q^n} (\psi \circ f)(t)e_\mu u_1(t_1) \cdots u_{k-1}(t_{k-1}) u_k v e_\mu \]
\[+ \sum_{t \in \mathcal{F}_q^n \setminus t_k \in \mathcal{F}_q^n} (\psi \circ (\varphi_k(f) + \mu \cdot d_{i_k}^{-1}))(t)e_\mu u_1(t_1) \cdots u_{k-1}(t_{k-1}) h_{i_k}(\mu \cdot d_{i_k}^{-1}) v e_\mu,\]

where \(\varphi_k : \mathbb{F}_q[y_1^{\pm 1}, \ldots, y_k^{\pm 1}] \to \mathbb{F}_q[y_1^{\pm 1}, \ldots, y_k^{\pm 1}]\) is given by
\[= \sum_{t \in \mathcal{F}_q^n \setminus t_k \in \mathcal{F}_q^n} (\psi \circ \varphi_k(f))(t)e_\mu u_1(t_1) \cdots u_{k-1}(t_{k-1}) v e_\mu.\]

Proof: This corollary puts \(v\) in the place of \(u_T v\) in the proof of Theorem 4.1(b), and summarizes the steps taken in Case 1 and Case 2. The only slight adjustments are in Case 2: note that \(u_k v = h_{i_k}(-1) u_k^{-1} v\) in the first summand, and there is a renormalization of \(t_k\) in the second summand. \(\Box\)
4.3. Global Hecke algebra relations. Fix a decomposition $u = u_1u_2 \cdots u_ru_T \in N_\mu$ according to a minimal expression $s_i,s_i, \cdots s_i \in W$ (see (2.3)). Suppose $v' \in N_\mu$ and let $v = uTv'$.

For $0 \leq k \leq r$, let $\tau = (\tau_1, \tau_2, \ldots, \tau_{r-k})$ be such that $\tau_i \in \{+0,-0,1\}$, where $+0,-0$, and 1 are symbols. If τ has $r-k$ elements, then the colength of τ is $\ell^v(\tau) = k$. For example, if $r = 10$ and $\tau = (-0,1,+0,1,1)$, then $\ell^v(\tau) = 4$.

Let $i \in \{+0,-0,1\}$, let

$$ (i, \tau) = (i, \tau_1, \tau_2, \ldots, \tau_{r-k}). $$

By convention, if $\ell^v(\tau) = r$, then $\tau = \emptyset$.

Suppose $\ell^v(\tau) = k$. Define

$$ \Xi^v(u,v) = \frac{1}{q} \sum_{t \in F_q^r} (\psi \circ f^\tau)(t)e_\mu t_1 \cdots u_k(t_k)v^\tau(t)e_\mu, $$

where

$$ F_q^r = \left\{ t \in F_q^r \mid \text{for } k < i \leq r, \text{ if } \tau_i = +0, \text{ then } t_i \in F_q \right\}, $$

$$ v^\tau(t) = h_{i_k+1}(-t_{k+1})^{\tau_1}u_{k+1}^{\tau_{-1}} \cdots h_{i_2}(-t_2)^{\tau_r}u_r^{\tau_{r-1}}v, $$

with $+0 = -0 = 0 \in \mathbb{Z}$ and $1 = 1 \in \mathbb{Z}$ in (4.12); and f^τ is defined recursively by

$$ f^0 = f_u = -\frac{\mu_2,c_1}{\beta_1(u_T)}y_1 - \frac{\mu_2,c_2}{\beta_2(u_T)}y_2 - \cdots - \frac{\mu_2,c_r}{\beta_r(u_T)}y_r \quad \text{(as in (4.14))}, $$

$$ f^{(i,\tau)} = \begin{cases} f^\tau + \mu_{\tau_r}d_r y_k, & \text{if } i = +0, \\ f^\tau, & \text{if } i = -0, \\ \varphi_k(f^\tau) + \mu_{\tau_r}d_r y_k, & \text{if } i = 1, \end{cases} $$

where $(v^\tau)^{-1}x_{\alpha_k}(t)v^\tau = x_{\gamma_r}(d,t)$ and the map φ_k is as in Corollary 2 Case 2.

Remarks.

1. By (4.10) and Theorem 4.1(a), $\Xi^v(u,v) = (e_\mu u e_\mu)(e_\mu v' e_\mu)$ (recall, $v = uTv'$).

2. If $\ell^v(\tau) = 0$ so that τ is a string of length r, then

(a) $\Xi^v(u,v) = \frac{1}{q} \sum_{t \in F_q^r} (\psi \circ f^\tau)(t)e_\mu t^\tau(t)e_\mu$ has no remaining factors of the form $u_k(t_k)$,

(b) $\Xi^v(u,v) = 0$ unless $v^\tau(t) \in N_\mu$ for some $t \in F_q$.

The following corollary gives relations for expanding $\Xi^v(u,v)$ (beginning with $\Xi^0(u,v)$) as a sum of terms of the form Ξ^τ with $\ell^v(\tau') = \ell^v(\tau) - 1$. When each term has colength 0 (length r), then the product $(e_\mu u e_\mu)(e_\mu v' e_\mu)$ is decomposed in terms of the basis elements of H_μ.

In summary, while we compute f^τ recursively by removing elements from τ, we compute the product $(e_\mu u e_\mu)(e_\mu v' e_\mu)$ by progressively adding elements to τ.

Corollary 3 (The Global Alternative). Let $u,v' \in N_\mu$ such that $u = u_1u_2 \cdots u_ru_T$ decomposes according to a minimal expression in W. Let $v = uTv'$. Then

(a) $(e_\mu u e_\mu)(e_\mu v' e_\mu) = \Xi^0(u,v)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(b) If $\ell^\vee(\tau) = k$, then

$$\Xi^\tau(u, v) = \begin{cases}
\Xi^{(+0, \tau)}(u, v), & \text{if } \ell(\pi(u_k v^\tau)) > \ell(\pi(v^\tau)), \\
\Xi^{(-0, \tau)}(u, v) + \Xi^{(1, \tau)}(u, v), & \text{if } \ell(\pi(u_k v^\tau)) < \ell(\pi(v^\tau)).
\end{cases}$$

Proof. (a) follows from Remark 1.

(b) Suppose $\ell^\vee(\tau) = k$. Note that

$$\Xi^\tau(u, v) = \frac{1}{q^3} \sum_{t \in F_q^k} (\psi \circ f^\tau)(t) e_\mu u_1(t_1) \cdots u_k(t_k) v^\tau e_\mu = \frac{1}{q^r} \sum_{t'' \in (F_q^{r-k})^\tau} \sum_{t' \in F_q^k} (\psi \circ f^\tau)(t', t'') e_\mu u_1(t_1) \cdots u_k(t_k) v^\tau e_\mu,$$

where $(F_q^{r-k})^\tau = \{(t_{k+1}, \ldots, t_r) \in F_q^{r-k} \mid \text{restrictions according to } \tau\}$ (as in (4.11)). Apply Corollary 2 to the inside sum with $f := f^\tau$, $v := v^\tau$. Note that the corollary relations imply

$$\{t' \in F_q^k\} \text{ becomes } \begin{cases}
\{t' \in F_q^k\}, & \text{if in Case 1}, \\
\{t' \in F_q^k \mid t_k = 0\}, & \text{if in Case 2, first sum}, \\
\{t' \in F_q^k \mid t_k \in F_q^a\}, & \text{if in Case 2, second sum},
\end{cases}$$

$$f^\tau \text{ becomes } \begin{cases}
f^{(+0, \tau)}, & \text{if in Case 1}, \\
f^{(-0, \tau)}, & \text{if in Case 2, first sum}, \\
f^{(1, \tau)}, & \text{if in Case 2, second sum},
\end{cases}$$

$$v^\tau \text{ becomes } \begin{cases}
v^{(+0, \tau)}, & \text{if in Case 1}, \\
v^{(-0, \tau)}, & \text{if in Case 2, first sum}, \\
v^{(1, \tau)}, & \text{if in Case 2, second sum}.
\end{cases}$$

Thus,

$$\Xi^\tau(u, v) = \begin{cases}
\Xi^{(+0, \tau)}(u, v), & \text{if Case 1}, \\
\Xi^{(-0, \tau)}(u, v) + \Xi^{(1, \tau)}(u, v), & \text{if Case 2},
\end{cases}$$

as desired. \hfill \square

5. The case $G = GL_n(F_q)$

Let $G = GL_n(F_q)$ be the general linear group over the finite field F_q with q elements. This section uses braid-like diagrams to analyze multiplication in unipotent Hecke algebras. The structure of this section is as follows.

5.1 describes the braid-like diagrams of this paper, and how the Chevalley relations translate into diagram relations.

5.2 reviews unipotent Hecke algebras for $GL_n(F_q)$ in this context, and shows how to identify the diagrams of unipotent Hecke algebra basis elements.

5.3 uses a 3 step process to multiply basis elements using the visual cues of the diagrams.

5.4 summarizes a complete algorithm for multiplying basis elements, and illustrates the process with a nontrivial example.
Define subgroups
\[
T = \left\{ \text{diagonal matrices} \right\}, \quad N = \left\{ \text{monomial matrices} \right\},
\]
where a monomial matrix is a matrix with exactly one nonzero entry in each row and column.

Let \(x_{ij}(t) \in U \) be the matrix with \(t \) in position \((i,j)\), ones on the diagonal and zeroes elsewhere; write \(x_i(t) = x_{i,i+1}(t) \). Let \(h_{z_i}(t) \in T \) denote the diagonal matrix with \(t \) in the \(i \)th slot and ones elsewhere, and let \(s_i \in W \subseteq N \) be the identity matrix with the \(i \)th and \((i+1)\)st columns interchanged. That is,
\[
x_i(t) = Id_{i-1} \oplus \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \oplus Id_{n-i-1}, \quad h_{z_i}(t) = Id_{i-1} \oplus (t) \oplus Id_{n-i},
\]
\[
s_i = Id_{i-1} \oplus \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \oplus Id_{n-i-1},
\]
where \(Id_k \) is the \(k \times k \) identity matrix. Then
\[
W = \langle s_1,s_2,\ldots,s_{n-1} \rangle, \quad T = \langle h_{z_i}(t) \mid 1 \leq i \leq n, t \in \mathbb{F}_q^* \rangle, \quad N = WT, \quad U = \langle x_{ij}(t) \mid 1 \leq i < j \leq n, t \in \mathbb{F}_q \rangle, \quad G = \langle U,W,T \rangle.
\]
The Chevalley group relations for \(G \) are (see also Section 4.1)
\[
\begin{align*}
\text{(U1)} & \quad x_{ij}(a)x_{rs}(b) = x_{rs}(b)x_{ij}(a)x_{js}(ab)x_{rs}(-\bar{a}b), & (i,j) \neq (r,s), \\
\text{(U2)} & \quad x_{ij}(a)x_{ij}(b) = x_{ij}(a + b), \\
\text{(N1)} & \quad s_i^2 = 1, \\
\text{(N2)} & \quad s_is_{i+1}s_i = s_{i+1}s_is_{i+1} \quad \text{and} \quad s_is_j = s_js_i, \quad |i - j| > 1, \\
\text{(N3)} & \quad s_i h_{z_j}(a) = h_{z_j}(s_i(a)s_i), \\
\text{(N4)} & \quad h_{z_i}(b)h_{z_i}(a) = h_{z_i}(ab), \\
\text{(N5)} & \quad h_{z_i}(b)h_{z_i}(a) = h_{z_i}(a)h_{z_i}(b), \\
\text{(UN1)} & \quad s_r x_{ij}(t) = x_{sr(i)s_r(j)}(t)s_r, \\
\text{(UN2)} & \quad x_{ij}(a) h_{z_r}(t) = h_{z_r}(t)x_{ij}(t^{-\bar{a}}t^{-1}a), \\
\text{(UN3)} & \quad s_i x_i(t)s_i = x_i(t^{-1})s_i x_i(-t)h_{z_i}(t)h_{z_{i+1}}(-t^{-1}), \quad t \neq 0,
\end{align*}
\]
where \(\delta_{ij} \) is the Kronecker delta.

5.1. A pictorial version of \(GL_n(\mathbb{F}_q) \). For the results that follow, it will be useful to view elements of \(CG \) as braid-like diagrams instead of matrices. The basic idea is to depict an \(n \times n \) permutation matrix \(w \) as two rows of \(n \) vertices each, with an edge (called a strand) from the \(i \)th top vertex to the \(j \)th bottom vertex if \(w(i) = j \). For example,
Matrix multiplication corresponds to concatenation of diagrams, so

\[
\begin{align*}
(\begin{array}{c}
\text{Diagram 1} \\
\end{array}) (\begin{array}{c}
\text{Diagram 2} \\
\end{array}) = (\begin{array}{c}
\text{Resulting Diagram} \\
\end{array})
\end{align*}
\]

We generalize these diagrams to $GL_n(F_q)$ by adding different varieties of “beads” to these diagrams that slide along the strands. A diagonal matrix corresponds to the identity permutation with a bead on each strand, such as

\[
\begin{align*}
\begin{array}{cccc}
 h_1 & h_2 & h_3 & \ldots & h_n
\end{array}
\end{align*}
\]

corresponds to $\text{diag}(h_1, h_2, \ldots, h_n)$,

and we depict the matrix $x_{ij}(t)$ by the identity permutation with directed beads on the ith and jth strands, such as

\[
\begin{align*}
\begin{array}{cccc}
 \vdots & \vdots & \vdots & \vdots \\
 \epsilon_{\frac{i-1}{t}} & \epsilon_{\frac{j-1}{t}} & \epsilon_{\frac{j-1}{t}} & \epsilon_{\frac{j-1}{t}}
\end{array}
\end{align*}
\]

corresponds to $x_{ij}(t)$ for $a \in F_q^*$.

Note there is an implicit relation in this last correspondence given by

\[
\begin{align*}
\begin{array}{cccc}
 a & b & \vdots & \vdots \\
 \epsilon_{\frac{i-1}{t}} & \epsilon_{\frac{j-1}{t}} & \epsilon_{\frac{j-1}{t}} & \epsilon_{\frac{j-1}{t}}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{cccc}
 a & b & \vdots & \vdots \\
\end{array}
\end{align*}
\]

for $a, b \in F_q$.

The advantage of this approach is that it allows a visual shortcut to computing products (such as the permutations above) and commutations in $GL_n(F_q)$. For example, we can summarize multiple applications of $[N3]$ by simply pushing the beads of $h \in T$ along the strands of $w \in W$ so that

\[
\begin{align*}
\begin{array}{cccc}
\end{array}
\end{align*}
\]

gives

\[
\begin{align*}
s_4s_3s_4s_2s_3s_1h_{\epsilon_1}(a)h_{\epsilon_2}(b)h_{\epsilon_3}(c)h_{\epsilon_4}(d)h_{\epsilon_5}(e)h_{\epsilon_6}(f) \\
= h_{\epsilon_5}(a)h_{\epsilon_4}(b)h_{\epsilon_3}(c)h_{\epsilon_2}(d)h_{\epsilon_1}(e)h_{\epsilon_6}(f)s_4s_3s_4s_2s_3s_1.
\end{align*}
\]
The generators of G are

(5.4) s_i as

(5.5) $h_{x_i}(t)$ as

(5.6) $x_{ij}(ab)$ as

where each diagram has two rows of n vertices. In the following Chevalley relations, curved strands indicate longer strands, so for example (UN1) indicates that \overrightarrow{a} and \overrightarrow{b} slide along the strands they are on (no matter how long). The Chevalley relations translate to

(UN1)

(UN2)

(the beads \overrightarrow{a} and \overrightarrow{b} commute unless two arrows or two circles encounter one-another on a strand).

(N1)

(N2)
(relations in W exactly describe what one can do by pushing the strands around the diagrams),

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\cdot a \cdot \\
\cdot b \\
\end{array} \\
\begin{array}{c}
\cdot a \\
\cdot b \\
\end{array}
\end{array}
\end{array} \quad \text{(N4)} \]

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\cdot a \\
\cdot b \\
\end{array} \\
\begin{array}{c}
\cdot a \\
\cdot b \\
\end{array}
\end{array}
\end{array} \quad \text{(N5)}
\]

(T-type beads follow strands and multiply if they hit one another),

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\cdot a \\
\cdot b \\
\end{array} \\
\begin{array}{c}
\cdot a \\
\cdot b \\
\end{array}
\end{array}
\end{array} \quad \text{(UN1)}
\]

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\cdot a \\
\cdot b \\
\end{array} \\
\begin{array}{c}
\cdot a \\
\cdot b \\
\end{array}
\end{array}
\end{array} \quad \text{(UN2)}
\]

(beads τ and σ slide along strands unless they simultaneously hit a crossing (see (UN3) below), and the circle or arrow determine how T-type beads interact with τ and σ),

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\cdot a \\
\cdot b \\
\end{array} \\
\begin{array}{c}
\cdot a \\
\cdot b \\
\end{array}
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\cdot a \\
\cdot b \\
\end{array} \\
\begin{array}{c}
\cdot a \\
\cdot b \\
\end{array}
\end{array}
\end{array} \quad \text{ab} \neq 0. \quad \text{(UN3)}
\]

(if τ and σ get stuck between two crossings, “things explode”).

5.2. The unipotent Hecke algebra \mathcal{H}_μ. Fix a nontrivial group homomorphism $\psi : \mathbb{F}_q^+ \to \mathbb{C}^*$, fix a map

\[\mu : \{1, 2, \ldots, n-1\} \quad \xrightarrow{i} \quad \{0, 1\} \quad \mu_i \]

and define

\[\mu_{ij} = \begin{cases}
\mu_i, & \text{if } j = i+1, \\
0, & \text{otherwise.}
\end{cases} \]

Then

\[\psi_\mu : \begin{array}{c}
U \\
\mathbb{C}^*
\end{array} \quad \begin{array}{c}
\xrightarrow{x_{ij}(t)} \\
\xrightarrow{\psi(\mu_{ij} t)}
\end{array} \]

is a group homomorphism.

The unipotent Hecke algebra \mathcal{H}_μ of the triple (G, U, ψ_μ) is

\[\mathcal{H}_\mu = \text{End}_G \left(\text{Ind}_U^G(\psi_\mu) \right) \cong e_\mu CGe_\mu, \quad \text{where} \quad e_\mu = \frac{1}{|U|} \sum_{u \in U} \psi_\mu(u^{-1})u. \]

If $N_\mu = \{ v \in N \mid e_\mu ve_\mu \neq 0 \}$, then $\{ e_\mu ve_\mu \mid v \in N_\mu \}$ is a basis for \mathcal{H}_μ.
We may characterize the elements of N_{μ} in the following fashion (for a more extensive analysis of N_{μ} see [Th]). Suppose $v \in N$. For each $\mu_i = 0$, place a dotted line between the ith and $(i+1)$st vertices; for example, $\mu = (1,0,1,0,0,0)$ gives:

\[h_1 \quad h_2 \quad h_3 \quad h_4 \quad h_5 \quad h_6 \]

Then $e_{\mu} v e_{\mu} \neq 0$ if and only if the diagram for v satisfies

(1) if

\[\begin{array}{c}
\text{adjacent} \\
\hline
\end{array} \]

(2) if

\[\begin{array}{c}
\text{adjacent} \\
\hline
\end{array} \]

(3) if

\[\begin{array}{c}
\text{diagram} \\
\hline
\end{array} \]

Then either

\[\begin{array}{c}
\text{diagram} \\
\hline
\end{array} \]

or

\[\begin{array}{c}
\text{diagram} \\
\hline
\end{array} \]

Example. If $\mu = (1,0,1,1,1,0,1,1,0,1,1,1,0)$ then

\[\in N_{\mu}. \]

Note that the map

\[\pi : N = WT \rightarrow W \]

is a surjective group homomorphism. Let $u \in N$ with $\pi(u) = s_{i_1} \cdots s_{i_r}$ for r minimal. Then there is a unique $u_T \in T$ such that

\[u = u_1 u_2 \cdots u_r u_T, \quad \text{where } u_k = s_{i_k}. \]

We write u_k instead of s_{i_k} because when working with diagrams, it is clear *where* the crossing is located and it is more important to determine the order in which
order the crossings come, as in

For \(t \in \mathbb{F}_q \), write \(u_k(t) = s_{i_k}x_{i_k}(t) \).

For any \(\mu \) as in (5.7), the decomposition

\[
U = \prod_{1 \leq i < j \leq n} U_{ij}, \quad \text{where} \quad U_{ij} = \langle x_{ij}(t) \mid t \in \mathbb{F}_q \rangle,
\]

implies

\[
e_{\mu} = \prod_{1 \leq i < j \leq n} e_{ij}(\mu_{ij}), \quad \text{where} \quad e_{ij}(k) = \frac{1}{q} \sum_{t \in \mathbb{F}_q} \psi(-kt)x_{ij}(t).
\]

Pictorially,

\[
u_k = \quad \begin{array}{c}
\cdots \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\end{array}
\]

\[
u_k(t_k) = \quad \begin{array}{c}
\cdots \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\end{array}
\]

\[
e_{ij}(k) = \quad \begin{array}{c}
\cdots \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\end{array}
\]

\[
e_{\mu} = \quad \begin{array}{c}
\cdots \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\end{array}
\]

Therefore, if \(n = 5 \), since

\[
e_{\mu} = e_{13}(0)e_{23}(\mu_2)e_{12}(\mu_1)e_{45}(\mu_4)e_{15}(0)e_{25}(0)e_{14}(0)e_{35}(0)e_{24}(0)e_{34}(\mu_3),
\]
it follows that

\[(5.17)\]

\[\mu_1 \mu_2 \mu_3 \mu_4 \mu_5 \mu_6 \mu_7 \mu_8 = \mu_3 \mu_1 \mu_2 \mu_3 \mu_4 \mu_5 \mu_6 \mu_7 \mu_8.\]

A running example. Throughout this section we will illustrate points using the example

\[(5.18)\]

\[u = u_1 u_2 u_3 u_4 u_5 u_6 u_7 u_8 u_T \in N_5 \]

according to \(s_3 s_1 s_2 s_3 s_1 s_4 s_2 s_3 \in S_5,\)

with \(u_T = \text{diag}(a, b, c, d, e).\) In this case,

\[u_1(t_1) u_2(t_2) \cdots u_8(t_8) u_T = \]

and

\[e_\mu u e_\mu = \]
The elements $e_{ij}(k)$ also interact with U and N as follows (see also Section 4.1):

1. $s_e e_{ij}(k) s_e = e_{s_e(i)s_e(j)}(k)$,
2. $e_\mu v e_{ij}(\mu_{ij}) = e_\mu v$, $v \in N_\mu$, $(\pi v)(i) < (\pi v)(j)$,
3. $e_{ij}(k) h_{x_i}(r) = h_{x_j}(r) e_{ij}(k r^{i j k - \delta_{ij}})$,
4. $e_\mu x_{ij}(t) = \psi(\mu_{ij} t) e_\mu = x_{ij}(t) e_\mu$,

or pictorially,

and for $v \in N_\mu$ with $(\pi v)(i) < (\pi v)(j)$, and for $v \in N_\mu$ with $(\pi v)(i) < (\pi v)(j)$,

5.3. Basis element multiplication using braids. When we multiply two basis elements $e_\mu u e_\mu$ and $e_\mu v e_\mu$, the product $e_\mu u e_\mu v e_\mu$ has an e_μ “stuck” between the u
and the v, or:

We then use the Chevalley relations to piece by piece “push” the center \(e_\mu \) to the outside of the diagram. The first step is to push the \(e_\mu \) as far into \(u \) as possible, as illustrated by the following example.

Example (see [5.18]). Let \(u = u_1 u_2 \cdots u_8 u_T \in N \) according to \(s_3 s_1 s_2 s_3 s_1 s_4 s_2 s_3 \in W \) and \(u_T = \text{diag}(a, b, c, d, e) \in T \). By [5.17], we may write

\[
e_\mu u e_\mu =
\]

Note that the strands that \(e_{13}(0) \) and \(e_{23}(\mu_2) \) connect never cross, so we can use [E2] to push them through the diagram of \(u \). The rest of the \(e_{ij}(k) \) get stuck on
some crossing, so we use (E3) to first move u_T through the remaining $e_{ij}(k)$:

$$e_{ij}u = e_{ij}u$$

Next, use (E1) to push the $e_{ij}(k)$ down into u until the strands they are on cross,

$$= 1\sum_{i \in \mathcal{P}_q} \psi(-\mu_{1}t_{1} - \mu_{2}t_{2} - \mu_{3}t_{3})$$

by definitions (5.15), (5.13), and (5.14).

Step 0: Push e_{ij} into the diagram u. Suppose $u = u_{1}u_{2} \cdots u_{r}u_{T} \in N_{\mu}$ with $u_{T} = \text{diag}(h_{1}, h_{2}, \ldots, h_{n})$. As illustrated in the example above, use (5.12), (E3),
(E1) and (E2) to rewrite \(e_\mu ue_\mu \) as

\[
(5.20) \quad u_1u_2 \cdots u_r
\]

\[
= \frac{1}{q^r} \sum_{t \in \mathbb{F}_q} (\psi \circ f_u)(t)
\]

where \(f_u \in \mathbb{F}_q[y_1, y_2, \ldots, y_r] \) is given by

\[
(5.21) \quad f_u(y_1, y_2, \ldots, y_r) = -\mu_{i_1j_1}h_{i_1}^{-1}h_{j_1}y_1 - \mu_{i_2j_2}h_{i_2}^{-1}h_{j_2}y_2 - \cdots - \mu_{i_kj_k}h_{i_k}^{-1}h_{j_k}y_r,
\]

where \((i_k, j_k) = (a, b)\), if the \(k \)th crossing in \(u \) crosses the strands coming from the \(a \)th and \(b \)th top vertices.

Note that relation (5.20) can be quickly computed by visually ascertaining which strands cross in the diagram.

Step 1: Concatenate \((e_\mu ue_\mu)\) with \((ve_\mu)\). Let \(u = u_1u_2 \cdots u_r u_T \in N_\mu \) according to a minimal expression in \(W \) as in (5.11). Let \(v \in N_\mu \) and use (N3) and (N4) to write \(uTv = w \cdot \text{diag}(a_1, a_2, \ldots, a_n) \), where \(w = \pi(v) \in W \) (see (5.7)). Then use (5.20) to write

\[
(5.22) \quad (e_\mu ue_\mu)(e_\mu ve_\mu) = (e_\mu ve_\mu)(e_\mu u)
\]

\[
= \frac{1}{q^r} \sum_{t \in \mathbb{F}_q} (\psi \circ f_u)(t)
\]

(This form corresponds to \(E^0(u, uTv) \) of Corollary 8.)
Example (continued). If u is as in (5.18) and

$$v = s_2s_3s_2s_1s_2 \cdot \text{diag}(f, g, h, i, j) \in N,$$

then by (5.19) and (N3),

$$(e_\mu u e_\mu)(e_\mu v e_\mu) = (e_\mu u e_\mu)(v e_\mu)$$

is equal to

\[
\frac{1}{q^8} \sum_{t \in P_q} (\psi \circ f_u)(t)
\]

\[
= \frac{1}{q^8} \sum_{t \in P_q} (\psi \circ f_u)(t)
\]

Step 2: Apply “braid” relations. Consider the crossing in (5.22) corresponding to $u_r(t_r)$ (the top crossing of u). There are two possibilities.

Case 1. the strands that cross at $\rightarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow r$ do not cross again as they go up to the top of the diagram ($\ell(u_r, w) > \ell(w)$).

Case 2. the strands that cross at $\rightarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow r$ cross once on the way up to the top of the diagram ($\ell(u_r, w) < \ell(w)$).
Relation 1 (Case 1). By (UN1), (UN2) and (E), \((e_\mu \cdot u_\mu)(v e_\mu)\) is equal to

\[
\frac{1}{q^r} \sum_{t \in \mathbb{F}_q^r} (\psi \circ f_u)(t)
\]

\[
= \frac{1}{q^r} \sum_{t \in \mathbb{F}_q^r} (\psi \circ f_u^{(+0)})(t)
\]

where \(f_u^{(+0)} = f_u + \mu_j a_i^{-1} a_j y_r\). Note that \(f_u^{(+0)} = f_u\) unless \(j = i + 1\).

Relation 2 (Case 2). In Case 2,

\[
(e_\mu \cdot u_\mu)(v e_\mu) = \frac{1}{q^r} \sum_{t' \in \mathbb{F}_q^{r-1}} \sum_{t_r \in \mathbb{F}_q} (\psi \circ f_u)(t', t_r)
\]

Split the sum into two parts corresponding to \(t_r = 0\) and \(t_r \neq 0\) to get

\[
(e_\mu \cdot u_\mu)(v e_\mu) = \frac{1}{q^r} \sum_{t' \in \mathbb{F}_q^{r-1}} \sum_{t_r = 0} (\psi \circ f_u^{(-0)})(t', t_r)
\]

\[
= \frac{1}{q^r} \sum_{t' \in \mathbb{F}_q^{r-1}} \sum_{t_r \neq 0} (\psi \circ f_u^{(-0)})(t', t_r)
\]
(by [L1])

\[
\frac{1}{q^r} \sum_{t' \in \mathbb{F}_q^*} (\psi \circ f_u)(t', t_r)
\]

(by [UN3]), where \(f_u^{(-)} = f_u \). Use [UN1], [UN2], [U1], [U1] and [ED] on the second sum to push the pair \((t_r, \mu) \) to the top of the diagram and the pair \((T, \frac{n}{r}) \) to the bottom.

\[
(e_\mu u_\mu)(v_\mu) = \frac{1}{q^r} \sum_{t' \in \mathbb{F}_q^* \atop t_r = 0} (\psi \circ f_u^{(-)})(t', t_r)
\]

(R2)

\[
\frac{1}{q^r} \sum_{t' \in \mathbb{F}_q^* \atop t_r \in \mathbb{F}_q^*} (\psi \circ f_u^{(1)})(t', t_r)
\]

where \(f_u^{(1)} = \varphi_r(f_u) + \mu_{ij} a_j a_i^{-1} y_r^{-1} \), and \(\varphi_r(f) \) is defined by

\[
(\star) \sum_{t \in \mathbb{F}_q^* \atop t_r \in \mathbb{F}_q^*} (\psi \circ f)(t)
\]

\[
= \sum_{t \in \mathbb{F}_q^* \atop t_r \in \mathbb{F}_q^*} (\psi \circ \varphi_r(f))(t)
\]
Remarks.

(a) We could have applied these steps for any \(f, u, \) and \(v \), so we can iterate the process with each sum.

(b) The most complex step in these computations is determining \(\varphi_r \). The following section develops a combinatorial method for computing the right-hand side of (4).

Step 2': A combinatorial way to compute \(\varphi_k \). Relation (4) pushes the beads \(\bar{z} \) and \(\bar{z}^{k+1} \) through the diagram until they get to the bottom. Along the way, the beads hit crossings and we either apply relation (11), which leads to additional beads, or (12), which forces us to renormalize. In the following, red paint corresponds to the strands traversed by beads of the form \(\bar{z} \) and blue paint corresponds to strands traversed by beads of the form \(\bar{z}^{k} \). Sinks encode places where we change \(f \) (in (4)), while paths and their weights describe how to change \(f \). Lemma 5.4 below gives the resulting evaluation of the map \(\varphi_r \) in (4).

Paint the strands below \(u_k \ (u^{\otimes}) \). Suppose \(u = u_1u_2\cdots u_k \in N \) decomposes according to \(s_1s_2\cdots s_k \in W \) (assume \(\bar{w}_r = 1 \)). Each step is illustrated with example (5.18).

1. Paint the left [respectively right] strand exiting \(\bar{k} \) below red [blue] all the way to the bottom of the diagram.

\[\text{where red is } \begin{array}{c} \circ \circ \circ \circ \circ \circ \circ \end{array}, \text{ blue is } \begin{array}{c} \dashv \dashv \dashv \dashv \dashv \dashv \end{array}, \text{ and } \bar{k} \text{ is } \begin{array}{c} \bar{k} \end{array} \]

2. For each crossing that the red [blue] strand passes through, paint the right [left] strand (if possible) red [blue] until that strand either reaches the bottom or crosses the blue [red] strand of (1).

![Diagram](image)

3. Set

\[u^{\otimes} = \text{the diagram } u_1(t_1)u_2(t_2)\cdots u_k(t_k) \text{ painted according to (1) and (2).} \]
Sinks. The diagram u^\otimes has a *crossed sink at* j if j is a crossing between a red strand and a blue one, or:

![Diagram of a crossed sink]

Note that since u is decomposed according to a minimal expression in W, there will be no crossings of the form

![Diagram of crossings]

(j since \cdot would imply \cdot for some $j' \geq j$).

The diagram u^\otimes has a *bottom sink at* j if a red strand enters the jth bottom vertex and a blue strand enters the $(j + 1)$st bottom vertex, or:

![Diagram of a bottom sink]

Example (continued). In the running example above u^\otimes has crossed sinks at \oplus, \otimes, and \oplus, and a bottom sink at 4. Note that \odot is not a crossed sink since both strands are red.

Paths. A *red [respectively blue]* path p from a sink s (either crossed or bottom) in u^\otimes is an increasing sequence

$$j_1 < j_2 < \cdots < j_l = k,$$

such that in u^\otimes

(a) $\odot^{(s)}$ is directly connected (no intervening crossings) to $\odot^{(s+1)}$ by a red [blue] strand,

(b) if s is a crossed sink, then $\odot^{(s)} = s$,

(b') if s is a bottom sink, then

- in a red path, the sth bottom vertex connects to the crossing $\odot^{(s)}$ with a red strand,
- in a blue path, the $(s + 1)$st bottom vertex connects to the crossing $\odot^{(s)}$ with a blue strand.
Example (continued). The sinks with their corresponding paths for u^{\otimes} are

Let

$$P_{=}(u^{\otimes}, s) = \left\{ \text{red paths from } s \text{ in } u^{\otimes} \right\} \quad \text{and} \quad P_{\ast}(u^{\otimes}, s) = \left\{ \text{blue paths from } s \text{ in } u^{\otimes} \right\}. \quad (5.25)$$

The weight of a path p is

$$\text{wt}(p) = \begin{cases}
\prod_{p \text{ switches strands at } \otimes} y_i, & \text{if } p \in P_{=}(u^{\otimes}, s), \\
\prod_{p \text{ switches strands at } \otimes} (-y_i), & \text{if } p \in P_{\ast}(u^{\otimes}, s).
\end{cases} \quad (5.26)$$

Each sink s in u^{\otimes} (either crossed \otimes or bottom \ast) has an associated polynomial $g_s \in \mathbb{F}_q[y_1, y_2, \ldots, y_k-1, y_k^{-1}]$ given by

$$g_s = \sum_{p \in P_{=}(u^{\otimes}, s)} \text{wt}(p)y_k^{-1}\text{wt}(p'). \quad (5.27)$$

Example (continued). Consider the weights of the above paths:

<table>
<thead>
<tr>
<th>Sink</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>$1 < 3 < 5 < 7 < 8$</td>
<td>$1 < 4 < 7 < 8$</td>
<td>$6 < 8$</td>
<td>$2 < 5 < 7 < 8$</td>
<td>$2 < 3 < 4 < 6 < 8$</td>
</tr>
<tr>
<td>Weight</td>
<td>y_5</td>
<td>y_1y_7</td>
<td>1</td>
<td>1</td>
<td>$-y_6$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sink</th>
<th>3</th>
<th>3</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>$3 < 5 < 7 < 8$</td>
<td>$3 < 4 < 6 < 8$</td>
<td>$4 < 7 < 8$</td>
<td>$4 < 6 < 8$</td>
</tr>
<tr>
<td>Weight</td>
<td>y_5</td>
<td>$-y_6$</td>
<td>y_7</td>
<td>$-y_6$</td>
</tr>
</tbody>
</table>

The corresponding polynomials are

$$g_4 = y_5y_8^{-1} + y_1y_7y_8^{-1}, \quad g_5 = -y_8^{-1}y_6, \quad g_6 = -y_5y_8^{-1}y_6, \quad g_7 = -y_7y_8^{-1}y_6. \quad (5.28)$$

Lemma 5.1. Let $u = u_1u_2 \cdots u_r$ and φ_r be as in (R2) and \otimes; suppose u^0 is painted as above. Then

$$\varphi_r(f) = f \bigg|_{(y_j \rightarrow y_j - g_\otimes \mid \otimes \text{ a crossed sink})} + \sum_{j \text{ a bottom sink}} \mu_j g_j.$$
Proof. In the painting,

is a strand traveled by and is a strand traveled by .

Substitutions due to crossed sinks correspond to the normalizations in relation (102), and the sum over bottom sinks comes from applications of relation (5.1).

□

For example (see (5.28)),

\[
\varphi_8(f) = f|_{y_4 \rightarrow y_4 - y_8} + \mu_4 g_4 = f|_{y_4 \rightarrow y_4 + y_7 y_8^{-1} y_6} + \mu_4 (y_5 y_8^{-1} + y_1 y_7 y_6^{-1}).
\]

5.4. A multiplication algorithm.

Theorem 5.1 (The algorithm). Let \(G = GL_n(\mathbb{F}_q) \) and \(u, v \in N_\mu \). An algorithm for multiplying \(e_\mu u e_\mu \) and \(e_\mu v e_\mu \) is

1. Decompose \(u = u_1 u_2 \cdots u_r u_T \) according to some minimal expression in \(W \) (as in (6.11)).
2. Put \(e_\mu u e_\mu v e_\mu \) into the form specified by (5.22), with \(u_T v = w \cdot \text{diag}(a_1, a_2, \ldots, a_n) \) (\(w = \pi(v) \in W \)).
3. Complete the following:
 a. If \(\ell(u, w) > \ell(w) \), then apply relation (R1).
 b. If \(\ell(u, w) \leq \ell(w) \), then apply relation (R2), using \((u_1 u_2 \cdots u_r)^\# \) and Lemma 5.1 to compute \(\varphi_r \).
4. If \(r > 1 \), then reapply (3) to each sum with \(r := r - 1 \) and with
 a. \(w := u, v \), after using (3a) or using (3b), in the first sum,
 b. \(w := w, v \), after using (3b), in the second sum.
5. Set all diagrams not in \(N_\mu \) to zero.

Sample computation. Suppose \(n = 3 \) and \(\mu_i = 1 \) for all \(1 \leq i \leq 3 \) (i.e. the Gelfand-Graev case). Then

\[
N_\mu = \left\{ \begin{array}{c}
\begin{array}{c}
\begin{array}{c}a\ a\ a\ , \ a\ a\ b\ \ , \ a\ b\ b\ \ , \ b\ b\ b\ \ , \ b\ a\ c\ \ , \ a\ b\ c\ \end{array}
\end{array}
\end{array} \right| a, b, c \in \mathbb{F}_q^*
\right\}.
\]

Suppose

\[
u = \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}a\ b\ c\ \end{array}
\end{array}
\end{array}
\end{array}\quad \text{and} \quad v = \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}d\ e\ e\ \end{array}
\end{array}
\end{array}
\end{array}.
\]

1. Theorem 5.1(1): Let \(u = u_1 u_2 u_3 u_T \in N_\mu \) decompose according to \(s_2 s_1 s_2 \in W \), with \(u_T = \text{diag}(a, b, c) \).
2. Theorem 5.1(2): By (5.22)

\[(e_\mu)(e_\mu)(e_\mu) = \frac{1}{q^3} \sum_{t \in F_q^3} (\psi \circ f_u(t) \circ \varphi_3(f_u) + \mu_{13} \varphi_3(f_u) y_3^{-1})\]

with \(uTv = s_2 s_1 \cdot \text{diag}(cd, ae, be)\) (so \(w = s_2 s_1\)), and \(f_u = -\frac{b}{a} y_1 - \frac{c}{b} y_3\) (as in (5.21)).

3. Theorem 5.1(3b): Since \(\ell(u_3 w) < \ell(w)\), paint \(u_1(t_1)u_2(t_2)u_3(t_3)\) to get \((u_1 u_2 u_3)^\circ\) (as in (5.24)),

\[= \frac{1}{q^3} \sum_{t \in F_q^3} (\psi \circ f_u(t))\]

Now apply (R2),

\[= \frac{1}{q^3} \sum_{t \in F_q^3} (\psi \circ f^{(-0)}(t))\]

\[+ \frac{1}{q^3} \sum_{t \in F_q^3} (\psi \circ f^{(1)}(t))\]

where \(f^{(-0)} = -\frac{b}{a} y_1 - \frac{c}{b} y_3\) and by Lemma 5.1

\[f^{(1)} = \varphi_3(f_u) + \mu_{13} \varphi_3(f_u) y_3^{-1} = -\frac{b}{a} y_1 + \frac{b}{a} y_2 y_3^{-1} - \frac{c}{b} y_3 + y_3^{-1}\]

4. Theorem 5.1(4): Set \(r := 2\) with \(w := u_r w = s_1\) in the first sum and \(w := w\) in the second sum.

5. Theorem 5.1(3a), (3b): In the first sum, \(\ell(u_2 s_1) < \ell(s_1)\), so paint \(u_1(t_1)u_2(t_2)\) to get \((u_1 u_2)^\circ\). In the second sum, \(\ell(u_2 s_2 s_1) > \ell(s_2 s_1)\), so apply
where \(f^{(0,0)} = -\frac{b}{a}y_1 - \frac{c}{b}y_2 - \frac{c}{a}y_3 + y_3^{-1} - \mu_3 \frac{b}{a}y_3y_2y_3^{-1} = -\frac{b}{a}y_1 - \frac{c}{b}y_2 + y_3^{-1} \). Now apply (R2) to the first sum,

where \(f^{(0,0)} = -\frac{b}{a}y_1 - \frac{c}{b}y_2 - \frac{c}{a}y_3 + y_3^{-1} - \mu_3 \frac{b}{a}y_3y_2y_3^{-1} = -\frac{b}{a}y_1 - \frac{c}{b}y_2 + y_3^{-1} \). Now apply (R2) to the first sum,
\[\ell(s_1s_2s_1), \text{ so paint } u_1(t_1) \text{ to get } u_1^{(s_1s_2s_1)}. \]

\[= \frac{1}{q^3} \sum_{t \in \mathbb{F}_q^3 \atop t_2 = t_3 = 0} (\psi \circ f^{(+0,-0,-0)})(t) \]

\[+ \frac{1}{q^3} \sum_{t \in \mathbb{F}_q^3 \atop t_2 \in \mathbb{F}_q^*, t_3 = 0} (\psi \circ f^{(+0,1,-0)})(t) \]

\[+ \frac{1}{q^3} \sum_{t \in \mathbb{F}_q^3 \atop t_3 \in \mathbb{F}_q^*} (\psi \circ f^{(0,+1)})(t) \]

where \(f^{(+0,-0,-0)} = -\frac{b}{a} y_1 - \frac{c}{a} y_3 + \frac{d}{a} y_1 = -\frac{c}{a} y_3 \) and \(f^{(+0,1,-0)} = -\frac{b}{a} y_1 + \frac{ae}{cd} y_2^{-1} - y_2^{-1} y_1 \). Now apply (R2) to the third sum,

\[= \frac{1}{q^3} \sum_{t \in \mathbb{F}_q^3 \atop t_2 = t_3 = 0} (\psi \circ f^{(+0,-0,-0)})(t) \]

\[+ \frac{1}{q^3} \sum_{t \in \mathbb{F}_q^3 \atop t_2 \in \mathbb{F}_q^*, t_3 = 0} (\psi \circ f^{(+0,1,-0)})(t) \]

\[+ \frac{1}{q^3} \sum_{t \in \mathbb{F}_q^3 \atop t_1 = 0, t_3 \in \mathbb{F}_q^*} (\psi \circ f^{(-0,+0,1)})(t) \]

\[+ \frac{1}{q^3} \sum_{t \in \mathbb{F}_q^3 \atop t_1, t_3 \in \mathbb{F}_q^*} (\psi \circ f^{(1,+0,1)})(t) \]

where \(f^{(-0,+0,1)} = -\frac{c}{a} y_3 + y_3^{-1} \) and

\[f^{(1,+0,1)} = \varphi_1 f^{(+0,1)} + \mu_1 \frac{ae}{cd} y_1^{-1} y_3^{-1} = -\frac{b}{a} y_1 - \frac{c}{b} y_3 + y_3^{-1} y_1^{-1} + \frac{ae}{cd} y_1^{-1} y_3^{-1}. \]

8. Theorem 5.1(15): The first sum contains no elements of \(N_\mu \), so set it to zero. The second sum contains elements of \(N_\mu \) when \(be = -aet_2^{-1} \), so set \(t_2 = -\frac{a}{b} \). The third sum contains elements of \(N_\mu \) when \(cdt_3 = ae \), so set \(t_3 = \frac{ae}{cd} \). All the
terms in the fourth sum are in N_μ.

\[
= 0 + \frac{1}{q^3} \sum_{t_2 \in \mathbb{F}_q^3} \left(\psi \circ f^{(+0,1,-0)}(t) \right) \\
+ \frac{1}{q^3} \sum_{t_1=0, t_3 = \frac{ae}{cd}} \left(\psi \circ f^{(-0,0,1)}(t) \right) \\
+ \frac{1}{q^3} \sum_{t_1, t_3 \in \mathbb{F}_q^3} \left(\psi \circ f^{(+1,0,1)}(t) \right) \\
= \frac{1}{q^2} \psi(-\frac{be}{cd}) + \frac{1}{q^2} \psi(-\frac{ae}{bd} + \frac{cd}{ae}) + \frac{1}{q^2} \psi(-\frac{b}{a}t_1 - \frac{c}{b}t_3 + t_1^{-1} + t_3^{-1} + \frac{ae}{cd}t_1^{-1}t_3^{-1})
\]

Acknowledgments

Along with [11], this paper is part of the author’s Ph.D. thesis. In developing these results, the author has enjoyed the supportive environment of the University of Wisconsin-Madison mathematics department, the time supplied by several grants (VIGRE DMS-9819788, NSF DMS-0097977, and NSA MDA904-01-1-0032), and above all the patient help and insights of his advisor Arun Ram. The thoughtful comments and insights of an anonymous referee are also appreciated.

References

