ALL \(p \)-LOCAL FINITE GROUPS OF RANK TWO
FOR ODD PRIME \(p \)

ANTONIO DÍAZ, ALBERT RUZ, AND ANTONIO VIRUEL

Abstract. In this paper we give a classification of the rank two \(p \)-local finite groups for odd \(p \). This study requires the analysis of the possible saturated fusion systems in terms of the outer automorphism group of the possible \(\mathcal{F} \)-radical subgroups. Also, for each case in the classification, either we give a finite group with the corresponding fusion system or we check that it corresponds to an exotic \(p \)-local finite group, getting some new examples of these for \(p = 3 \).

1. Introduction

When studying the \(p \)-local homotopy theory of classifying spaces of finite groups, Broto-Levi-Oliver [11] introduced the concept of \(p \)-local finite group as a \(p \)-local analogue of the classical concept of finite group. These purely algebraic objects, whose basic properties are reviewed in Section 2, are a generalization of the classical theory of finite groups. So every finite group gives rise to a \(p \)-local finite group, although there exist exotic \(p \)-local finite groups which are not associated to any finite group, as can be read in [11, Sect. 9], [30], [36] or Theorem 5.11 below. Besides its own interest, the systematic study of possible \(p \)-local finite groups, i.e. possible \(p \)-local structures, is meaningful when working in other research areas such as transformation groups (e.g. when constructing actions on spheres [2, 1]) or modular representation theory (e.g. the study of the \(p \)-local structure of a group is a first step when checking conjectures like those of Alperin [3] or Dade [17]). It also provides an opportunity to enlighten one of the highest mathematical achievements in the last decades: The Classification of Finite Simple Groups [24]. A milestone in the proof of that classification is the characterization of finite simple groups of 2-rank two (e.g. [22, Chapter 1]) which is based in a deep understanding of the 2-fusion of finite simple groups of low 2-rank [21, 1.35, 4.88]. Unfortunately, almost nothing seems to be known about the \(p \)-fusion of finite groups of \(p \)-rank two for an odd prime \(p \) [19], and this work intends to remedy that lack of information by classifying all possible saturated fusion systems over finite \(p \)-groups of rank two, \(p > 2 \).

Received by the editors January 25, 2005.
2000 Mathematics Subject Classification. Primary 55R35, 20D20.
The first author was partially supported by MCED grant AP2001-2484.
The second author was partially supported by MEC grant MTM2004-06686.
The first and third authors were partially supported by MEC grant MTM2004-06262 and CEC-JA grant FQM213.
Theorem 1.1. Let p be an odd prime and let S be a rank two p-group. Given a saturated fusion system (S, \mathcal{F}), one of the following holds:

- \mathcal{F} has no proper \mathcal{F}-centric, \mathcal{F}-radical subgroups, and it is the fusion system of the group $S : \text{Out}_\mathcal{F}(S)$.
- \mathcal{F} is the fusion system of a group G which fits in the following extension:
 \[1 \rightarrow S_0 \rightarrow G \rightarrow W \rightarrow 1, \]
 where S_0 is a subgroup of index p in S and W contains $\text{SL}_2(p)$.
- \mathcal{F} is the fusion system of an extension of one of the following finite simple groups:
 - $L_3(p)$ for any p,
 - $2F_4(2)'$, J_4, $L_3^+(q)$, $2D_4(q)$ for $p = 3$, where q is a $3'$ prime power,
 - Th for $p = 3$,
 - He, $F_4'^{24}$, $O'N$ for $p = 7$, or
 - M for $p = 13$.
- \mathcal{F} is an exotic fusion system characterized by the following data:
 - $S = T_{1+2}$, and all the rank two elementary abelian subgroups are \mathcal{F}-radical,
 - $S = B(3, 2k; 0, \gamma, 0)$, and the only proper \mathcal{F}-radical, \mathcal{F}-centric subgroups are one or two S-conjugacy classes of rank two elementary abelian subgroups,
 - $S = B(3, 2k+1; 0, 0, 0)$, and the proper \mathcal{F}-centric, \mathcal{F}-radical subgroups are:
 * either one or two subgroups isomorphic to T_{1+2},
 * one subgroup isomorphic to $\mathbb{Z}/3^k \oplus \mathbb{Z}/3^k$, and either one or two subgroups isomorphic to T_{1+2},
 * one subgroup isomorphic to $\mathbb{Z}/3^k \oplus \mathbb{Z}/3^k$, one rank two elementary abelian subgroup, and either none or two subgroups isomorphic to T_{1+2}.

Proof. Let p be an odd prime and consider S a rank two p-group. The isomorphism type of S is described in Theorem A.1, hence the proof is done by studying the different cases of S.

The saturated fusion systems over $S \cong p_+^{1+2}$ for odd p are classified in [36, Theorem 1.1], getting the results in the statement.

For $p > 3$ and $S \neq p_+^{1+2}$, Theorems 4.1, 4.2 and 4.3 show that any saturated fusion system (S, \mathcal{F}) is induced by $S : \text{Out}_\mathcal{F}(S)$, i.e. S is resistant (see Definition 3.1).

For $p = 3$ and $S \neq p_+^{1+2}$, Theorems 4.1, 4.2, 5.1 and 5.8 describe all rank two 3-groups which are resistant. The saturated fusion system over nonresistant rank two 3-groups are then obtained in Theorems 4.7 and 5.10 when $S \neq 3_+^{1+2}$, completing the proof.

It is worth noting that along the proof of the theorem above some interesting contributions are made:

- The Appendix provides a neat compendium of the group theoretical properties of rank two p-groups, p odd, including a description of their automorphism groups, and centric subgroups. It does not only collect the related results in the literature [6, 7, 18, 19, 26], but extends them.
Theorems 4.1, 4.2, 4.3, 5.1 and 5.8 identify a large family of resistant groups complementing the results in [38], and extending those in [32].

Theorem 5.10 provides infinite families of exotic rank two p-local finite groups with arbitrary large Sylow p-subgroup. Unlike the other known infinite families of exotic p-local finite groups [13, 30], some of these new families cannot be constructed as the homotopy fixed points of automorphism of a p-compact group. Nevertheless, it is still possible to construct an “ascending” chain of exotic p-local finite groups whose colimit, we conjecture, should provide an example of an exotic p-local compact group [12, Section 6].

Organization of the paper. In Section 2 we quickly review the basics on p-local finite groups. In Section 3 we define the concept of resistant p-group, similar to that of Swan group, and develop some machinery to identify resistant groups. In Section 4 we study the fusion systems over nonmaximal nilpotency class rank two p-groups, while the study of fusion systems over maximal nilpotency class rank two p-groups is done in Section 5. We finish the paper with an Appendix collecting the group theoretical background on rank two p-groups which is needed through the classification.

Notation. By p we always denote an odd prime, and S a p-group of order p^r. For a group G, and $g \in G$, we denote by c_g the conjugation morphism $x \mapsto g^{-1}xg$ and by $c_g(x)$ or x^g the image of x by this morphism. For the commutator of two elements we write $[g,h] = g^{-1}h^{-1}gh$, thus $g[h] = g^h$. If $P,Q \leq G$, the set of G-conjugation morphisms from P to Q is denoted by $\text{Hom}_G(P,Q)$, so if $P = Q$, then $\text{Aut}_G(P) = \text{Hom}_G(P,P)$. Note that $\text{Aut}_G(G)$ is then $\text{Inn}(G)$, the group of inner automorphisms of G. Given P and Q groups, $\text{Inj}(P,Q)$ denotes the set of injective homomorphisms. The rest of the group theoretical notation used along this paper is mainly that of the Atlas [15, 5.2]: $A \times B$ denotes Cartesian (direct) product of groups, and $A.B$ denotes an arbitrary extension of A by B. If the extension is split it is denoted $A : B$, and if it is not, then we use $A \cdot B$. For central products we use the notation $A \circ B$, where the common central subgroup will be clear from the context. Finally, the extraspecial group of order p^3 and exponent p is denoted by p^{1+2}_3.

If C is a small category by $|C|$ we denote the topological space which is the realization of the simplicial set given by the nerve of C.

2. p-LOCAL FINITE GROUPS

At the beginning of this section we review the concept of a p-local finite group introduced in [11] that is based on a previous unpublished work of L. Puig, where the axioms for fusion systems are already established. See [12] for a survey on this subject.

After that we study some particular cases where a saturated fusion system is controlled by the normalizer of the Sylow p-subgroup.

We end this section with some tools which allow us to study the exoticism of an abstract saturated fusion system.

Definition 2.1. A fusion system \mathcal{F} over a finite p-group S is a category whose objects are the subgroups of S, and whose morphisms sets $\text{Hom}_\mathcal{F}(P,Q)$ satisfy the following two conditions.
(a) $\text{Hom}_S(P, Q) \subseteq \text{Hom}_F(P, Q) \subseteq \text{Inj}(P, Q)$ for all P and Q subgroups of S.
(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

We say that two subgroups $P, Q \leq S$ are F-conjugate if there is an isomorphism between them in F. As all the morphisms are injective by condition (b), we denote by $\text{Aut}_F(P)$ the group $\text{Hom}_F(P, P)$. We denote by $\text{Out}_F(P)$ the quotient group $\text{Aut}_F(P)/\text{Aut}_P(P)$.

The fusion systems we consider here satisfy some additional conditions, so we need the following definitions.

Definition 2.2. Let F be a fusion system over a p-group S.

- A subgroup $P \leq S$ is fully centralized in F if $|C_S(P)| \geq |C_S(P')|$ for all P' which is F-conjugate to P.
- A subgroup $P \leq S$ is fully normalized in F if $|N_S(P)| \geq |N_S(P')|$ for all P' which is F-conjugate to P.
- F is a saturated fusion system if the following two conditions hold:
 1. (I) Every fully normalized subgroup $P \leq S$ is fully centralized and $\text{Aut}_S(P) \in \text{Syl}_p(\text{Aut}_F(P))$.
 2. (II) If $P \leq S$ and $\varphi \in \text{Hom}_F(P, S)$ are such that φP is fully centralized, and if we set $N_\varphi = \{g \in N_S(P) \mid \varphi g \varphi^{-1} \in \text{Aut}_S(\varphi P)\}$, then there is $\overline{\varphi} \in \text{Hom}_F(N_\varphi, S)$ such that $\overline{\varphi}|_P = \varphi$.

Remark 2.3. From the definition of fully normalized and condition (I) in the definition of saturated fusion system we get that if F is a saturated fusion system over a p-group S, then p cannot divide the order of the outer automorphism group $\text{Out}_F(S)$.

As expected, every finite group G gives rise to a saturated fusion system [11 Proposition 1.3], which provides valuable information about BG^\wedge_p. Some classical results for finite groups can be generalized to saturated fusion systems, as for example, Alperin’s fusion theorem for saturated fusion systems [11 Theorem A.10].

Definition 2.4. Let F be any fusion system over a p-group S. A subgroup $P \leq S$ is:

- F-centric if P and all its F-conjugates contain their S-centralizers.
- F-radical if $\text{Out}_F(P)$ is p-reduced, that is, if $\text{Out}_F(P)$ has no nontrivial normal p-subgroups.

Theorem 2.5 (Alperin’s fusion theorem for saturated fusion systems). Let F be a saturated fusion system over S. Then for each morphism $\psi \in \text{Aut}_F(P, P')$, there exists a sequence of subgroups of S

$$P = P_0, P_1, \ldots, P_k = P' \quad \text{and} \quad Q_1, Q_2, \ldots, Q_k,$$

and morphisms $\psi_i \in \text{Aut}_F(Q_i)$, such that

- Q_i is fully normalized in F, F-radical and F-centric for each i;
- $P_{i-1}, P_i \leq Q_i$ and $\psi_i(P_{i-1}) = P_i$ for each i; and
- $\psi = \psi_k \circ \psi_{k-1} \circ \cdots \circ \psi_1$.

The subgroups Q_i in the theorem above determine the structure of F, so they deserve a name.
Definition 2.6. Let \(\mathcal{F} \) be any fusion system over a \(p \)-group \(S \). We say that a subgroup \(Q \leq S \) is \(\mathcal{F} \)-Alperin if it is fully normalized in \(\mathcal{F} \), \(\mathcal{F} \)-radical and \(\mathcal{F} \)-centric.

The definition of a \(p \)-local finite group still requires one more concept \[11\], Definition 1.7.

Let \(\mathcal{F}^c \) denote the full subcategory of \(\mathcal{F} \) whose objects are the \(\mathcal{F} \)-centric subgroups of \(S \).

Definition 2.7. Let \(\mathcal{F} \) be a fusion system over the \(p \)-group \(S \). A centric linking system associated to \(\mathcal{F} \) is a category \(\mathcal{L} \) whose objects are the \(\mathcal{F} \)-centric subgroups of \(S \), together with a functor

\[
\pi : \mathcal{L} \longrightarrow \mathcal{F}^c
\]

and “distinguished” monomorphisms \(P \xrightarrow{\delta_p} \text{Aut}_\mathcal{L}(P) \) for each \(\mathcal{F} \)-centric subgroup \(P \leq S \), which satisfy the following conditions:

(A) \(\pi \) is the identity on objects and surjective on morphisms. More precisely, for each pair of objects \(P, Q \in \mathcal{L} \), \(Z(P) \) acts freely on \(\text{Mor}_\mathcal{L}(P, Q) \) by composition (upon identifying \(Z(P) \) with \(\delta_p(Z(P)) \leq \text{Aut}_\mathcal{L}(P) \)), and \(\pi \) induces a bijection

\[
\text{Mor}_\mathcal{L}(P, Q)/Z(P) \xrightarrow{\sim} \text{Hom}_\mathcal{F}(P, Q).
\]

(B) For each \(\mathcal{F} \)-centric subgroup \(P \leq S \) and each \(g \in P \), \(\pi \) sends \(\delta_p(g) \in \text{Aut}_\mathcal{L}(P) \) to \(c_g \in \text{Aut}_\mathcal{F}(P) \).

(C) For each \(f \in \text{Mor}_\mathcal{L}(P, Q) \) and each \(g \in P \), the equality \(\delta_Q(\pi(f)(g)) \circ f = f \circ \delta_P(g) \) holds in \(\mathcal{L} \).

Finally, the definition of \(p \)-local finite group is:

Definition 2.8. A \(p \)-local finite group is a triple \((S, \mathcal{F}, \mathcal{L})\), where \(S \) is a \(p \)-group, \(\mathcal{F} \) is a saturated fusion system over \(S \) and \(\mathcal{L} \) is a centric linking system associated to \(\mathcal{F} \). The classifying space of the \(p \)-local finite group \((S, \mathcal{F}, \mathcal{L})\) is the space \(|\mathcal{L}|^{\wedge}_p \).

Given a fusion system \(\mathcal{F} \) over the \(p \)-group \(S \), there exists an obstruction theory for the existence and uniqueness of a centric linking system, i.e. a \(p \)-local finite group, associated to \(\mathcal{F} \). The question is solved for \(p \)-groups of small rank by the following result \[11\], Theorem E.

Theorem 2.9. Let \(\mathcal{F} \) be any saturated fusion system over a \(p \)-group \(S \). If \(\text{rk}_p(S) < p^3 \), then there exists a centric linking system associated to \(\mathcal{F} \). Also, if \(\text{rk}_p(S) < p^2 \), then the centric linking system associated to \(\mathcal{F} \) is unique.

As all \(p \)-local finite groups studied in this work are over rank two \(p \)-groups \(S \), we obtain:

Corollary 2.10. Let \(p \) be an odd prime. Then the set of \(p \)-local finite groups over a rank two \(p \)-group \(S \) is in bijective correspondence with the set of saturated fusion systems over \(S \).

In \[11\] Section 2] the “centralizer” fusion system of a given fully centralized subgroup is defined as follows.

Definition 2.11. Let \(\mathcal{F} \) be a fusion system over \(S \) and \(P \leq S \) a fully centralized subgroup in \(\mathcal{F} \). The centralizer fusion system of \(P \) in \(\mathcal{F} \), \(C_\mathcal{F}(P) \) is the fusion system over \(C_S(P) \) with objects \(Q \leq C_S(P) \) and morphisms

\[
\text{Hom}_{C_\mathcal{F}(P)}(Q, Q') = \{ \varphi \in \text{Hom}_\mathcal{F}(Q, Q') | \exists \psi \in \text{Hom}_\mathcal{F}(QP, Q'P), \psi|_Q = \varphi, \psi|_P = \text{Id}_P \}.
\]
Remark 2.12. If we consider the fusion system $\mathcal{F}_S(G)$ corresponding to a finite group G with Sylow p-subgroup S and $P \leq S$ such that $C_S(P) \in \text{Syl}_p(C_G(P))$, i.e. P is fully centralized in $\mathcal{F}_S(G)$, then the fusion system $(C_S(P), \mathcal{F}_{C_S(P)}(C_G(P)))$ is the fusion system $(C_S(P), \mathcal{F}_S(P_0)(C_G(P)))$, so it is again the fusion system of a finite group.

In [11 Section 6] the “normalizer” fusion system of a given fully normalized subgroup is defined as follows.

Definition 2.13. Let \mathcal{F} be a fusion system over S and $P \leq S$ a fully normalized subgroup in \mathcal{F}. The normalizer fusion system of P in \mathcal{F}, $N_\mathcal{F}(P)$ is the fusion system over $N_S(P)$ with objects $Q \leq N_S(P)$ and morphisms

$$\text{Hom}_{N_\mathcal{F}(P)}(Q, Q') = \{ \phi \in \text{Hom}_\mathcal{F}(Q, Q') \mid \exists \psi \in \text{Hom}_\mathcal{F}(QP, Q'P), \psi|_Q = \phi, \psi|_P \in \text{Aut}(P) \}.$$

Also in [11 Section 6] it is proved that if \mathcal{F} is a saturated fusion system over S and P is a fully normalized subgroup, then $N_\mathcal{F}(P)$ is a saturated fusion system over $N_S(P)$.

Remark 2.14. For a fusion system \mathcal{F} over S, when considering the normalizer fusion system over the Sylow S, it follows from the definition that $N_\mathcal{F}(S) = \mathcal{F}$ if and only if every $\phi \in \text{Hom}_\mathcal{F}(Q, Q')$ extends to $\psi \in \text{Aut}(S)$ for each $Q, Q' \leq S$.

Moreover, we have the following two characterizations of \mathcal{F} reducing to the normalizer of the Sylow.

Lemma 2.15. Let \mathcal{F} be a saturated fusion system over the p-group S. Then $\mathcal{F} = N_\mathcal{F}(S)$ if and only if S itself is the only \mathcal{F}-Alperin subgroup of S.

Proof. If S is the unique \mathcal{F}-Alperin subgroup, then the assertion follows from Alperin’s fusion theorem for saturated fusion systems (Theorem 2.5). Assume then that $\mathcal{F} = N_\mathcal{F}(S)$ and choose $P \leq S$ \mathcal{F}-Alperin. Using that $\mathcal{F} = N_\mathcal{F}(S)$, it is straightforward that $\text{Out}_S(P)$ is normal in $\text{Out}_\mathcal{F}(P)$ and, as P is \mathcal{F}-radical, $\text{Out}_S(P)$ must be trivial. Then $P = N_S(P)$, and as S is a p-group, P must be equal to S. □

Lemma 2.16. Let \mathcal{F} be a saturated fusion system over the p-group S. Then $\mathcal{F} = N_\mathcal{F}(S)$ if and only if $N_\mathcal{F}(P) = N_{N_\mathcal{F}(P)}(N_S(P))$ for every $P \leq S$ fully normalized in \mathcal{F}.

Proof. Assume first that $\mathcal{F} = N_\mathcal{F}(S)$ and $P \leq S$ is fully normalized in \mathcal{F}. In general we have that $N_\mathcal{F}(P) \supseteq N_{N_\mathcal{F}(P)}(N_S(P))$. The other inclusion follows if all $\phi \in \text{Hom}_{N_\mathcal{F}(P)}(Q, Q')$ which extend to a morphism $\psi \in \text{Hom}_\mathcal{F}(QP, PQ')$ such that $\psi|_Q = \phi$ and $\psi|_P \in \text{Aut}_\mathcal{F}(P)$, extend to an element of $\text{Aut}(N_S(P))$. But using Remark 2.14 we get that ψ extends to an element of $\text{Aut}_\mathcal{F}(S)$, which restricts to an element of $\text{Aut}_\mathcal{F}(N_S(P))$ because ψ restricts to an element of $\text{Aut}(P)$.

Assume now that for every $P \leq S$ fully normalized in \mathcal{F} we have $N_\mathcal{F}(P) = N_{N_\mathcal{F}(P)}(N_S(P))$. According to Lemma 2.15 we have to check that S does not contain any proper \mathcal{F}-Alperin subgroup. Let P be an \mathcal{F}-Alperin subgroup; then it is $N_\mathcal{F}(P)$-Alperin, too. But, applying Lemma 2.15 to $N_\mathcal{F}(P)$, we get that $S = P$. □

Finally in this section we give some results which allow us to determine in some special cases the existence of a finite group with a fixed saturated fusion system.

We begin with a definition which only depends on the p-group S.

Definition 2.17. Let S be a p-group. A subgroup $P \leq S$ is centric in S if $C_S(P) = Z(P)$.

Remark 2.18. If F is any fusion system over the p-group S, then F-centric subgroups are centric in S.

The following result is a generalization of [11, Lemma 9.2] which applies to some of our cases.

If F is a fusion system over S, a subgroup $P \leq S$ is called strongly closed in F if no element of P is F-conjugate to an element of $S \setminus P$. A finite group is almost simple if it is an extension of a nonabelian simple group by outer automorphisms.

Proposition 2.19. Let (S,F) be a saturated fusion system such that every nontrivial strongly closed subgroup $P \leq S$ is not elementary abelian, centric and does not factorize as a product of two or more subgroups which are permuted transitively by $\text{Aut}_F(P)$. Then if F is the fusion system of a finite group, it is the fusion system of a finite almost simple group.

Proof. Suppose $F = F_S(G)$ for a finite group G. Assume also that $|G|$ is of minimal order such that $F = F_S(G)$. Consider $H \triangleleft G$ a minimal nontrivial normal subgroup in G. Then $H \cap S$ is a strongly closed subgroup of (S,F) and, as H is normal, P is the Sylow p-subgroup in H. By [20, Theorem 2.1.5] H must be either elementary abelian or a product of nonabelian isomorphic simple groups which must be permuted transitively by $N_G(H) = G$ (now by minimality of H). Note that H cannot be elementary abelian, as that would imply that P is elementary abelian as well, while this is not possible by hypothesis. Therefore H is a product of nonabelian simple groups. If H is not simple (so there is more than one factor) this would break P into two or more factors which would be permuted transitively, so H must be simple. Now, as P is centric, $C_G(H) \cap S \subseteq P \subseteq H$, so $C_G(H) \cap S \subseteq C_G(H) \cap H = 1$ and $C_G(H) = 1$ ($C_G(H)$ is a normal subgroup in G of order prime to p, so if $C_G(H) \neq 1$ taking $G/C_G(H)$ again gives a contradiction with the minimality of $|G|$). This tells us that $H \triangleleft G \leq \text{Aut}(H)$, so G is almost simple.

Remark 2.20. In fact [11, Lemma 9.2] proves that if the only nontrivial strongly closed p-subgroup in (S,F) is S, and moreover S is nonabelian and it does not factorize as a product of two or more subgroups which are permuted transitively by $\text{Aut}_F(S)$, then if (S,F) is the fusion system of a finite group, it is the fusion system of a finite almost simple group.

We finish this section with the following result, which can be found in [33, Corollary 6.17].

Lemma 2.21. Let (S,F) be a saturated fusion system, and assume there is a nontrivial subgroup $A \leq Z(S)$ which is central in F (i.e. $C_F(A) = F$). Then F is the fusion system of a finite group if and only if F/A is so.

3. Resistant p-groups

In this section we recall the notion of Swan group and introduce its generalization for fusion systems, giving some related results. Some of these results were considered independently by Stancu in [37].
For a fixed prime p we recall that a subgroup $H \leq G$ is said to control (strong) p-fusion in G if H contains a Sylow p-subgroup of G, and whenever P, $g^{-1}Pg \leq H$ for P a p-subgroup of G, then $g = hc$, where $h \in H$ and $c \in C_G(P)$.

If we focus on a p-group S we may wonder if $N_G(S)$ controls p-fusion in G whenever $S \in \text{Syl}_p(G)$. If this is always the case, then S is called a Swan group. The equivalent concept in the setting of p-local finite groups is:

Definition 3.1. A p-group S is called resistant if whenever F is a saturated fusion system over S, then $N_F(S) = F$.

Remark 3.2. Considering the saturated fusion system associated to $S \in \text{Syl}_p(G)$, it is clear that every resistant group is a Swan group. In the opposite way, up to date there is no known Swan group that is not a resistant group.

Following [32, Section 2] we look for conditions on a p-group S to be resistant. If the p-group S is resistant, when dealing with a fusion system F over S all morphisms in F are restrictions of F-automorphisms of S. In the general case, we must pay attention to possible F-Alperin subgroups to understand the whole category F.

The first step towards this objective is to examine centric subgroups.

Theorem 3.3. Let S be a p-group. If every proper centric subgroup $P \leq S$ satisfies

$$\text{Out}_S(P) \cap O_p(\text{Out}(P)) \neq 1,$$

then S is a resistant group.

Proof. Let F be a saturated fusion system over S. According to Lemma 2.15, it is enough to prove that S is the only F-Alperin subgroup. Let $P \leq S$ be a proper F-Alperin subgroup, hence centric in S by Remark 2.18. As $\text{Out}_S(P) \leq \text{Out}_F(P)$, we have that

$$1 \neq \text{Out}_S(P) \cap O_p(\text{Out}(P)) \leq \text{Out}_F(P) \cap O_p(\text{Out}(P)) \leq O_p(\text{Out}_F(P)).$$

Hence P cannot be F-radical, and thus it is not F-Alperin. \qed

We obtain a family of resistant groups:

Corollary 3.4. Abelian p-groups are resistant groups.

It is meaningful to determine whether a p-group can be F-Alperin for some saturated fusion system F.

Lemma 3.5. Let P be a p-group such that $O_p(\text{Out}(P))$ is the Sylow p-subgroup of $\text{Out}(P)$. Then P is not F-Alperin for any saturated fusion system F over S with $P \leq S$.

Proof. Let S be a p-group with $P \leq S$ and let F be a saturated fusion system over S. If P is F-radical, then the normal p-subgroup $O_p(\text{Out}(P)) \cap \text{Out}_F(P)$ of $\text{Out}_F(P)$ must be trivial. Since $O_p(\text{Out}(P))$ is a Sylow p-subgroup and normal, this implies that $\text{Out}_F(P)$ is a p'-group and so, by definition, $\text{Aut}_P(P) \in \text{Syl}_p(\text{Aut}_F(P))$. If in addition P is fully normalized, then we know that $\text{Aut}_S(P)$ is another Sylow p-subgroup of $\text{Aut}_F(P)$. So they both must be isomorphic. Finally, if P is F-centric, then $Z(P) = C_S(P)$ and so $P = N_S(P)$, which is false for p-groups unless P is equal to S. \qed

We obtain some useful corollaries.
Corollary 3.6. \(\mathbb{Z}/p^n \) is not \(\mathcal{F} \)-Alperin in any saturated fusion system \(\mathcal{F} \) over \(S \) where \(\mathbb{Z}/p^n \lesssim S \).

Proof. Use the fact that \(\text{Aut}(\mathbb{Z}/p^n) \) is equal to \((\mathbb{Z}/p^n)^* \), which is abelian. Now just apply Lemma 3.5. \(\square \)

Corollary 3.7. If \(n \) and \(m \) are different positive integers, then \(\mathbb{Z}/p^n \times \mathbb{Z}/p^m \) is not \(\mathcal{F} \)-Alperin in any saturated fusion system \(\mathcal{F} \) over \(S \) where \(\mathbb{Z}/p^n \times \mathbb{Z}/p^m \lesssim S \).

Proof. Suppose \(n < m \) and take \(f \in \text{End}(\mathbb{Z}/p^n \times \mathbb{Z}/p^m) \) with \(f(1,0) = (\bar{a},\bar{b}) \) and \(f(0,1) = (\bar{c},\bar{d}) \). Then we obtain \(b \equiv 0 \mod p^{m-n} \). Moreover, \(f \) is an automorphism if and only if order\((\bar{a},\bar{b}) = p^n \), order\((\bar{c},\bar{d}) = p^m \) and \((\bar{a},\bar{b}), (\bar{c},\bar{d}) \) is \(\mathbb{Z}/p^n \times \mathbb{Z}/p^m \). It can be checked that the first condition is equivalent to \(a \not\equiv 0 \mod p \), the second to \(d \not\equiv 0 \mod p \), and the third is a consequence of the first two. A counting argument shows that \(\text{Aut}(\mathbb{Z}/p^n \times \mathbb{Z}/p^m) \) has order \(p^{3n+m-2}(p-1)^2 \). Finally, the subgroup \(\{(\bar{a},\bar{b}), (\bar{c},\bar{d}) \mid a \equiv 1 \mod p \) and \(d \equiv 1 \mod p \} \) is normal and has order \(p^{3n+m-2} \). \(\square \)

Corollary 3.8. If \(p \) is odd, then nonabelian metacyclic \(p \)-groups \(M \) are not \(\mathcal{F} \)-Alperin in any saturated fusion system \(\mathcal{F} \) over \(S \) with \(M \lesssim S \).

Proof. According to [15, Section 3], for \(p \) odd and \(M \) a nonabelian metacyclic \(p \)-group, \(O_p(\text{Out}(M)) \) is the Sylow \(p \)-subgroup of \(\text{Out}(M) \), so the result follows using Lemma 3.5. \(\square \)

Now we need to introduce some notation to deal with the different isomorphism types of rank two \(p \)-groups for odd \(p \).

Notation 3.9. Fix \(p \) an odd prime.

- \(M(p,r) \) denotes a noncyclic metacyclic \(p \)-group of order \(p^r \).
- \(C(p,r) \), for \(r \geq 3 \), denotes the \(p \)-group defined by the following presentation:
 \[
 C(p,r) = \langle a, b, c \mid a^p = b^p = c^{p^r-2} = 1, [a,b] = c^{p^{r-3}}, [a,c] = [b,c] = 1 \rangle.
 \]
 We will also use the notation \(p_{1+2}^3 \) for the extraspecial group of order \(p^3 \) and exponent \(p \), which fits in this family as \(C(3,p) \).
- \(G(p,r;\epsilon) \), for \(r \geq 4 \) and \(\epsilon \) either 1 or a quadratic nonresidue modulo \(p \), denotes the \(p \)-group defined by the following presentation:
 \[
 G(p,r;\epsilon) = \langle a, b, c \mid a^p = b^p = c^{p^{r-2}} = [b,c] = 1, [a,b^{-1}] = c^{p^{r-3}}, [a,c] = b \rangle.
 \]
- \(B(3,r;\beta,\gamma,\delta) \), for \(\beta, \gamma \) and \(\delta \) as in Theorem A.2, denotes a 3-rank two 3-group of maximal nilpotency class.

Here \([x,y] \) denotes \(x^{-1}y^{-1}xy \).

Corollary 3.10. If \(p \) is odd, then \(G(p,r;\epsilon) \) cannot be \(\mathcal{F} \)-Alperin in any saturated fusion system over \(S \), with \(G(p,r;\epsilon) \lesssim S \).

Proof. By [19, Proposition 1.6], \(O_p(\text{Out}(G(p,r;\epsilon))) \) is the Sylow \(p \)-subgroup of \(\text{Out}(G(p,r;\epsilon)) \), so according to Lemma 3.5, \(G(p,r;\epsilon) \) cannot be \(\mathcal{F} \)-Alperin. \(\square \)

Corollary 3.11. \(B(3,r;\beta,\gamma,\delta) \) is not \(\mathcal{F} \)-Alperin in any saturated fusion system \(\mathcal{F} \) over \(S \) where \(B(3,r;\beta,\gamma,\delta) \lesssim S \).
Proof. Recall that the Frattini subgroup of a p-group is the unique smallest normal subgroup with elementary abelian quotient. Then, by [6, Lemma 2.2], the Frattini subgroup of $G \overset{\text{def}}{=} B(3, r; \beta, \gamma, \delta)$, denoted by $\Phi(G)$, is $\gamma_2 \overset{\text{def}}{=} \langle s_2, s_3, \ldots, s_{r-1} \rangle$. Consider the Frattini map

$$G \to G/\Phi(G) \simeq \langle s, s_1 \rangle$$

and the induced map

$$\rho : \text{Out}(G) \to \text{Aut}(G/\Phi(G)) \simeq \text{GL}_2(3)$$

whose kernel is a 3-group. The subgroup $\gamma_1 \overset{\text{def}}{=} \langle s_1, s_2, \ldots, s_r \rangle$ is characteristic in G, and it is mapped by the Frattini map to $\langle s, s_1 \rangle$. Thus for every class of morphisms φ in $\text{Out}(G)$ the inclusion $\rho(\varphi)(\langle s, s_1 \rangle) \leq \langle s, s_1 \rangle$ holds, and so the image of ρ is contained in the lower triangular matrices.

The subgroup generated by $\{1 \ 0\}$ is normal and is the Sylow 3-subgroup of the lower triangular matrices of $\text{GL}_2(3)$. Its preimage by ρ is normal in $\text{Out}(G)$ and, as the kernel of ρ is a 3-group, it is the Sylow 3-subgroup of $\text{Out}(G)$, too. To finish the proof apply Lemma [3,5].

The following is a restatement of [30, Lemma 4.1].

Lemma 3.12. Let G be a p-reduced subgroup (that is, G has no nontrivial normal p-subgroup) of $\text{GL}_2(p)$, $p \geq 3$. If p divides the order of G, then $\text{SL}_2(p) \leq G$.

Proof. If p divides the order of the group G, then there is a subgroup of order p in G. As G is p-reduced, G is a subgroup of $\text{GL}_2(p)$ with more than one nontrivial p-subgroup. Observe that the only nontrivial p-subgroups in $\text{GL}_2(p)$ are the Sylow p-subgroups, so G has more than one Sylow p-subgroup. Using the Third Sylow Theorem, there are at least $p + 1$ different Sylow p-subgroups in $G \leq \text{GL}_2(p)$, but there are exactly $p + 1$ Sylow p-subgroups in $\text{GL}_2(p)$, so G contains all the Sylow p-subgroups in $\text{GL}_2(p)$ and the subgroup they generate, thus $\text{SL}_2(p) \leq G$. □

Proposition 3.13. For a prime $p > 3$ and an integer $n > 1$, $\mathbb{Z}/p^n \times \mathbb{Z}/p^n$ is not \mathcal{F}-Alperin in any saturated fusion system \mathcal{F} over a p-group S where $\mathbb{Z}/p^n \times \mathbb{Z}/p^n \leq S$.

Proof. Let S be a p-group and $\mathbb{Z}/p^n \times \mathbb{Z}/p^n \leq S$. If we assume that $\mathbb{Z}/p^n \times \mathbb{Z}/p^n$ is \mathcal{F}-radical, then $G \overset{\text{def}}{=} \text{Aut}_\mathcal{F}(\mathbb{Z}/p^n \times \mathbb{Z}/p^n)$ must be p-reduced, and if $\mathbb{Z}/p^n \times \mathbb{Z}/p^n$ is \mathcal{F}-centric it is centric in S, so taking the conjugation by an element in $S \setminus \mathbb{Z}/p^n \times \mathbb{Z}/p^n$ we get that there exists an element of order p in G.

We can consider $\text{Aut}(\mathbb{Z}/p^n \times \mathbb{Z}/p^n)$ as 2×2 matrices with coefficients in \mathbb{Z}/p^n and with determinant nondivisible by p. Thus the reduction modulo p induces a short exact sequence:

$$\{1\} \to P \to \text{Aut}(\mathbb{Z}/p^n \times \mathbb{Z}/p^n) \overset{\rho}{\to} \text{GL}_2(p) \to \{1\},$$

with P a p-group [34, Corollary 11.13]. If the intersection $P \cap G$ is not trivial, then we have a nontrivial normal p-subgroup in G and G would not be p-reduced, so $G \cap P = \{1\}$ and ρ restricts to an injection of G in $\text{GL}_2(p)$.

Using the fact that $\rho(G)$ has an element of order p, is a p-reduced subgroup of $\text{GL}_2(p)$ and applying Lemma [3,12] we get that $\rho(G)$ contains $\text{SL}_2(p)$. In particular we get that the matrix $\overline{A} \overset{\text{def}}{=} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is in $\rho(G)$, so we have an element $A \in G \subset$
\text{Aut}(\mathbb{Z}/p^n \times \mathbb{Z}/p^n)$ which reduction modulo p is \overline{A}. Then A must be a matrix of the form $A = \begin{pmatrix} 1 + \xi p & 1 + \eta p \\ 1 + \mu p & 1 + \nu p \end{pmatrix}$, and an easy computation tells us that

$$A^m \equiv \begin{pmatrix} 1 + m \xi p + \frac{(m)}{2} \lambda p & m + \frac{(m)}{2} \xi p + m \eta p + \frac{(m)}{3} \lambda p + \frac{(m)}{2} \mu p \\ m \lambda p & 1 + \frac{(m)}{2} \lambda p + m \mu p \end{pmatrix} \mod p^2. $$

So, for $p > 3$, we get $A^p \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod p^2$, and as $n > 1$, the order of A is bigger than p, which contradicts the fact that ρ is injective on G. \hfill \Box

If p equals 3 or n equals 1 then the thesis of the previous lemma is false, that is, $\mathbb{Z}/p^n \times \mathbb{Z}/p^n$ could be F-Alperin when $p = 3$ or $n = 1$. But then we can sharpen our result in the following way (recall that p^{1+2}_{\pm} denotes the extraspecial group of order p^3 and exponent p):

Lemma 3.14. Fix p an odd prime. Suppose that $p = 3$ or $n = 1$ and that $\mathbb{Z}/p^n \times \mathbb{Z}/p^n$ is F-Alperin in a saturated fusion system F over a p-group S with $\mathbb{Z}/p^n \times \mathbb{Z}/p^n \leq S$. If there exists a centric linking system associated to F, then p^{1+2}_{\pm} contains $\text{SL}_2(p)$.

Proof. Let F be a saturated fusion system over S, and suppose that $P \overset{\text{def}}{=} \mathbb{Z}/p^n \times \mathbb{Z}/p^n \leq S$. As in the proof of Proposition 3.13 if P is F-radical and F-centric, then $\text{Aut}_F(P)$ contains $\text{SL}_2(p)$.

Denote by L a centric linking system associated to F and by $\pi: L \longrightarrow F^c$ the associated projection functor. Take the short exact sequence of groups induced by π:

$$1 \rightarrow P \rightarrow \text{Aut}_L(P) \xrightarrow{\pi} \text{Aut}_F(P) \rightarrow 1. $$

Because $\text{Aut}_F(P)$ contains $\text{SL}_2(p)$ we have another short exact sequence:

$$1 \rightarrow P \rightarrow M \xrightarrow{\pi} \text{SL}_2(p) \rightarrow 1. $$

To see that there are no more extensions rather than the split one, consider the central subgroup V of $\text{SL}_2(p)$ generated by the involution $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. Since $p \geq 3$, multiplication by $[V] = 2$ is invertible in P and so $H^k(V, P) = 0$ for all $k > 0$, and because V acts on P without fixed points then also $H^0(V, P) = 0$. Now the Hochschild-Serre spectral sequence corresponding to the normal subgroup $V \leq \text{SL}_2(p)$ gives us that $H^k(\text{SL}_2(p), P) = 0$ for all $k \geq 0$.

Now, as $H^2(\text{SL}_2(p), P) = 0$, the short exact sequence above splits, and thus $M \cong P : \text{SL}_2(p) \leq \text{Aut}_L(P)$. The inclusion $\text{SL}_2(p) \hookrightarrow \text{Aut}_F(P)$ is a section of the reduction modulo p $\text{Aut}_F(P) \rightarrow \text{GL}_2(p)$. Thus the action of the Sylow $\mathbb{Z}/p \cong \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle$ of $\text{SL}_2(p)$ on $\mathbb{Z}/p \times \mathbb{Z}/p \cong \langle (p^{a-1}, 0), (0, p^{a-1}) \rangle \subseteq P$ gives $(\mathbb{Z}/p \times \mathbb{Z}/p) : \mathbb{Z}/p \cong p_{\pm}^{1+2}$.

As we are assuming that the abelian p-group P is fully normalized and that F is saturated, then, by Definitions 2.2 and 2.7(A), the Sylow p-subgroup of $\text{Aut}_L(P)$ is $N_S(P)$. Thus $p^{1+2}_{\pm} \leq P : \mathbb{Z}/p \leq N_S(P) \leq S$. \hfill \Box

Lemma 3.12 also applies for giving some restrictions to the family $C(p, r)$.

Lemma 3.15. Let F be a saturated fusion system over a p-group S with $p \geq 3$. If there is Q, a proper subgroup of S isomorphic to $C(p, r)$ (with $r \geq 3$), which is F-centric and F-radical, then $\text{SL}_2(p) \leq \text{Out}_F(Q) \leq \text{GL}_2(p)$.

Proof. If $Q \cong C(p, r)$ is F-radical, then $\text{Out}_F(Q)$ must be p-reduced. If we consider the projection $\rho: \text{Out}(Q) \rightarrow \text{GL}_2(p)$ from Lemma $A.3$ (d), we have that it must restrict to a monomorphism from $\text{Out}_F(Q)$ to $\text{GL}_2(p)$ (otherwise, by $[19]$.}
Proposition 1.4] we would have a nontrivial normal p-subgroup) so we can consider Out$_F(Q) \leq \text{GL}_2(p)$.

Now as $Q \cong C(p, r)$ is F-centric and different from S, we have an element of order p in Out$_F(Q)$. Now, using again the fact that Out$_F(Q)$ must be p reduced, the result follows from Lemma 5.12. □

4. Nonmaximal class rank two p-groups

In this section we consider the nonmaximal class rank two p-groups for odd p, among those listed in the classification in Theorem A.1.

We begin with metacyclic groups.

Theorem 4.1. Metacyclic p-groups are resistant for $p \geq 3$.

Proof. According to Lemma 2.15, it is enough to prove that if F is a saturated fusion system over $M(p, r)$, a metacyclic p-group of order p^r; then it cannot contain any proper F-Alperin subgroup.

Let P be a proper subgroup of $M(p, r)$; then it must be again metacyclic.

If P is nonabelian, we can use Corollary 3.8 to deduce that it cannot be F-Alperin.

If P is abelian, using Corollaries 3.6 and 3.7 it cannot be F-Alperin unless $P \cong \mathbb{Z}/p \times \mathbb{Z}/p$, but in this case p^{1+2} should be a subgroup of $M(p, r)$ by Lemma 3.14 which is impossible because p^{1+2} is not metacyclic. □

In the study of $C(p, r)$ in this section we assume $r \geq 4$: for $r = 3$ we have that $C(p, 3) \cong p^{1+2}$, which it is a maximal nilpotency class p-group and the fusion systems over that group are studied in [36].

Theorem 4.2. If $r > 3$ and $p \geq 3$, then $C(p, r)$ is resistant.

Proof. Let F be a saturated fusion system over $C(p, r)$. The possible proper F-Alperin subgroups are proper centric subgroups, and using Lemma A.6 these are isomorphic to $\mathbb{Z}/p^r \times \mathbb{Z}/p$. But as $r > 3$, $\mathbb{Z}/p^r \times \mathbb{Z}/p$ cannot be F-radical by Corollary 3.7. □

It remains to study the nonmaximal nilpotency class groups of type $G(p, r; \epsilon)$. By Remark A.3 the groups $G(3, 4; \pm 1)$ are of maximal nilpotency class, and thus we study them in the next section.

The study of groups of type $G(p, r; \epsilon)$ is divided in two cases: for $p \geq 5$ these are resistant groups, while for $p = 3$ we obtain saturated fusion systems with proper F-Alperin subgroups.

Theorem 4.3. If $p > 3$ and $r \geq 4$, $G(p, r; \epsilon)$ is resistant.

The proof needs the following lemma. By the inclusion $C(p, r - 1) \lhd G(p, r; \epsilon)$ we denote the centric copy of $C(p, r - 1)$ lying in $G(p, r; \epsilon)$ given in Theorem A.8. More precisely, this inclusion maps the generators given in Theorem A.1 by $a \mapsto a$, $b \mapsto b$, $c \mapsto c^{-p}$.

Lemma 4.4. Let F be a saturated fusion system over $G(p, r; \epsilon)$ with $p > 3$ and $r \geq 4$. Then $C(p, r - 1) \lhd G(p, r; \epsilon)$ is not F-radical. Moreover, Aut$_F(C(p, r - 1))$ is a subgroup of the lower triangular matrices with first diagonal entry ± 1.

Proof: Consider \(p \geq 5 \) and assume that \(C(p,r-1) \) is \(\mathcal{F} \)-radical. By Lemma 3.15, \(\text{SL}_2(p) \subseteq \text{Out}_\mathcal{F}(C(p,r-1)) \), and therefore the matrix \(\begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix} \), where \(x \) is a primitive \((p-1)\)-th root of the unity in \(\mathbb{F}_p \), is the image of some morphism \(\varphi \in \text{Aut}_\mathcal{F}(C(p,r-1)) \) under the composition

\[
\text{Aut}_\mathcal{F}(C(p,r-1)) \xrightarrow{\pi} \text{Out}_\mathcal{F}(C(p,r-1)) \xrightarrow{\rho} \text{GL}_2(p)
\]

of the projection and \(\rho \) from Lemma A.3. As we are assuming that \(C(p,r-1) \) is fully normalized, we can compute \(N_\varphi \) from Definition 2.2. For any integer \(k \) we have, by the commutator rules on \(G(p,r;\epsilon) \), \(a^k = ab^k \) and \(b^k = b \). Thus, the restriction of conjugation by \(c^k \) to the normal subgroup \(C(p,r-1) \) maps by the composition above to the matrix \(\begin{pmatrix} 1 & 0 \\ 0 & x \end{pmatrix} \in \text{GL}_2(p) \). The straightforward identity

\[
\begin{pmatrix} x^{-1} & 0 \\ 0 & x \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ x^2 & 1 \end{pmatrix}
\]

implies that \(c \in N_\varphi = G(p,r;\epsilon) \). Thus the morphism \(\varphi \) must lift to \(\text{Aut}_\mathcal{F}(G(p,r;\epsilon)) \) as a morphism that maps \(a \) to \(a^2 \), where \(A = b^m \) for some integers \(n \) and \(m \). But automorphisms of \(G(p,r;\epsilon) \) map \(a \) to \(a^2 \), where \(A \) is as before, by Lemma A.7. As \(-1 \) is not a primitive \((p-1)\)-th root of the unity in \(\mathbb{F}_p \) for \(p \geq 5 \), then \(C(p,r-1) \) is not \(\mathcal{F} \)-radical.

Finally, as \(C(p,r-1) \) is not \(\mathcal{F} \)-radical, then \(\pi(\text{Aut}_\mathcal{F}(C(p,r-1))) < N_{\text{GL}_2(p)}(V) \), where \(V \) is the group generated by \(\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{x} \end{pmatrix} \), that is, the projection \(\pi(\text{Aut}_\mathcal{F}(C(p,r-1))) \) is a subgroup of the lower triangular matrices. Then all morphisms in \(\text{Aut}_\mathcal{F}(C(p,r-1)) \) must lift to \(\text{Aut}_\mathcal{F}(G(p,r;\epsilon)) \), and again only those with \(\pm 1 \) in the first diagonal entry are allowed, which proves the second part of the lemma. \(\square \)

Proof of Theorem 4.3. We prove that \(G(p,r;\epsilon) \) itself is the only \(\mathcal{F} \)-Alperin subgroup. By Lemma A.8, the only candidates to \(\mathcal{F} \)-Alperin proper subgroups are the two elementary abelian subgroups of isomorphism type \(\mathbb{Z}/p \times \mathbb{Z}/p^{r-2} \), \(\mathbb{Z}/p^{r-2} \), \(M(p,r-1) \) (nonabelian), \(\mathbb{Z}/p \times \mathbb{Z}/p^{r-3} \) or \(C(p,r-1) \). If \(r > 4 \), then Corollaries 3.7, 3.6 and 3.8 and the previous lemma imply that any of these proper subgroups can be \(\mathcal{F} \)-Alperin.

If \(r = 4 \) then the only candidates are the rank two elementary abelian subgroups \(\mathbb{Z}/p \times \mathbb{Z}/p \). According to Lemma A.8 there are exactly \(p \) of these subgroups, namely, \(V_i \overset{\text{def}}{=} \langle ab^i,c^p \rangle \) for \(i = 0,...,p-1 \), and all of them lie inside \(C(p,3) \cong p^{1+2} \). Note that conjugation by \(c \) permutes all of them cyclically, and so they are \(\mathcal{F} \)-conjugate in any saturated fusion system over \(G(p,4;\epsilon) \). Thus if any of them is \(\mathcal{F} \)-radical, then all of them are \(\mathcal{F} \)-radical.

If this is the case, fix \(x \) a primitive \((p-1)\)-th root of the unity in \(\mathbb{F}_p \) and let \(V_i \) be one of these rank two \(p \)-subgroups with \(\mathbb{F}_p \) basis \(\langle ab^i,c^{-p} \rangle \). Then \(\text{SL}_2(p) \leq \text{Aut}_\mathcal{F}(V_i) \) by Lemma A.12. Now, the element \(\begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix} \in \text{Aut}_\mathcal{F}(V) \) must lift to an automorphism of \(p_1^{1+2} \) by Definition 2.2. The image of this extension in \(\text{Out}_\mathcal{F}(p_1^{1+2}) \) is \(\text{GL}_2(p) \) is a matrix \(L_i \) with \(x \) as eigenvalue and with determinant \(x^{-1} \), so it has \(x^{-2} \) as the other eigenvalue. Note that each \(V_i \) gives a different matrix \(L_i \in \text{GL}_2(p) \), so different elements of order \(p-1 \) in \(\text{Out}_\mathcal{F}(p_1^{1+2}) \). But the description of \(\text{Aut}_\mathcal{F}(p_1^{1+2}) \) in Lemma 4.4 shows us that there are no such matrices \(L_i \) if \(p > 5 \) and at most one when \(p = 5 \) (cf. [38], Section 4]). \(\square \)

So in this section it remains to check the nonmaximal nilpotency class groups with \(p = 3 \).
Lemma 4.5. Fix $r \geq 4$ and let $W \leq \operatorname{Out}(C(3, r-1))$ be isomorphic to either $\operatorname{SL}_2(3)$ or $\operatorname{GL}_2(3)$. Let $S \in \operatorname{Syl}_3(W)$ and assume moreover that the induced representation of $S \cong \mathbb{Z}/3$ in $\operatorname{Out}(C(3, r-1))$ gives rise to the exact sequence

$$1 \longrightarrow C(3, r-1) \longrightarrow G(3, r; \epsilon) \longrightarrow S \longrightarrow 1$$

for $\epsilon = 1$ or -1. Then there exists a unique finite group $C(3, r-1) \rtimes W$ which fits in the following commutative diagram:

$$\begin{array}{ccc}
1 & \longrightarrow & C(3, r-1) \longrightarrow G(3, r; \epsilon) \longrightarrow S \longrightarrow 1 \\
\downarrow & & \downarrow \\
1 & \longrightarrow & C(3, r-1) \longrightarrow C(3, r-1) \rtimes W \longrightarrow W \longrightarrow 1
\end{array}$$

where the last column is the inclusion $S \leq W$.

Proof. First, note that by Lemma A.5(e), $\operatorname{Aut}(C(3, r-1))$ is the semidirect product $\operatorname{Inn}(C(3, r-1)) : \operatorname{Out}(C(3, r-1))$. Therefore for any $W \leq \operatorname{Out}(C(3, r-1))$ there exists a lift $W \leq \operatorname{Aut}(C(3, r-1))$ that gives rise to the split exact sequence

$$1 \longrightarrow C(3, r-1) \longrightarrow C(3, r-1) : W \longrightarrow W \longrightarrow 1.$$

Thus, exact sequences

$$(1) \quad 1 \longrightarrow C(3, r-1) \longrightarrow E \longrightarrow W \longrightarrow 1$$

with a fixed $W \leq \operatorname{Out}(C(3, r-1))$ are indexed by $H^2(W; Z(C(3, r-1)))$ [8, Theorem IV.6.6]. Moreover, we are only interested in those extensions E such that any Sylow 3-subgroup of E is isomorphic to $G(3, r; \epsilon)$, thus the action of any $S \in \operatorname{Syl}_3(W)$ on $Z(C(3, r-1))$ must be trivial (otherwise the center of a Sylow 3-subgroup in E would be smaller than $3^{r-3} = |Z(G(3, r; \epsilon))|$. Recall that the description of $\operatorname{Out}(C(3, r-1))$ in Lemma A.5 shows that W acts on $Z(C(3, r-1))$ by multiplication by the determinant of the representative matrices.

We now prove that for any $W \leq \operatorname{Out}(C(3, r-1))$ as in the hypotheses, $H^2(W; Z(C(3, r-1))) = \mathbb{Z}/3$: since $\mathbb{Z}/3 \cong S \in \operatorname{Syl}_3(W)$ is abelian,

$$H^2(W; Z(C(3, r-1))) = H^2(N; Z(C(3, r-1)))$$

where $N = N_W(S)$. Then:

- If $W \cong \operatorname{SL}_2(3)$, then $N \cong \mathbb{Z}/2 \times \mathbb{Z}/3$. Moreover, the action of $\operatorname{SL}_2(3)$ on $Z(C(3, r-1))$ is trivial, hence

 $$H^2(N; Z(C(3, r-1))) = H^2(\mathbb{Z}/3; \mathbb{Z}/3^{r-3}) = \mathbb{Z}/3.$$

- If $W \cong \operatorname{GL}_2(3)$, then $N \cong \mathbb{Z}/2 \times \Sigma_3$ (Σ_3 is the symmetric group). Moreover, the action of the $\mathbb{Z}/2$ factor on $Z(C(3, r-1))$ is trivial (that factor is contained in $\operatorname{SL}_2(3)$), hence

 $$H^2(N; Z(C(3, r-1))) = H^2(\Sigma_3; Z(C(3, r-1)))$$

 $$= \left(H^2(\mathbb{Z}/3; Z(C(3, r-1)))\right)^{\mathbb{Z}/2}.$$

Now, $\mathbb{Z}/3 \leq \operatorname{SL}_2(3)$ and therefore the action on $Z(C(3, r-1))$ is trivial, thus $H^2(\mathbb{Z}/3; Z(C(3, r-1))) = \mathbb{Z}/3$. Finally, the $\mathbb{Z}/2$ action on
Theorem 4.7. The 3-local finite groups over $G(3, r; \epsilon)$ with $r \geq 5$ and at least one proper \mathcal{F}-Alperin subgroup are characterized by the following parameters:

Table 1. s.f.s. over $G(3, r; \epsilon)$ for $r \geq 5$.

<table>
<thead>
<tr>
<th>Out$_{\mathcal{F}}(G(3, r; \epsilon))$</th>
<th>Out$_{\mathcal{F}}(C(3, r - 1))$</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Z}/2$</td>
<td>$\mathrm{SL}_2(3)$</td>
<td>$C(3, r - 1) \cdot \epsilon \mathrm{SL}_2(3)$</td>
</tr>
<tr>
<td>$\mathbb{Z}/2 \times \mathbb{Z}/2$</td>
<td>$\mathrm{GL}_2(3)$</td>
<td>$C(3, r - 1) \cdot \epsilon \mathrm{GL}_2(3)$</td>
</tr>
</tbody>
</table>

Here the second column gives the outer automorphism group over the only proper \mathcal{F}-Alperin subgroup, which is isomorphic to $C(3, r - 1)$. The last column gives the nonsplit extension whose Sylow 3-subgroup is isomorphic to $G(3, r; \epsilon)$ (see Lemma 4.5) and has the desired fusion system.

Proof. Assume now that $C(3, r - 1) \leq G(3, r; \epsilon)$ is \mathcal{F}-Alperin. Then either Out$_{\mathcal{F}}(C(3, r - 1)) \cong \mathrm{SL}_2(3)$ or Out$_{\mathcal{F}}(C(3, r - 1)) \cong \mathrm{GL}_2(3)$.

Checking all the possible Out$_{\mathcal{F}}(G(3, r; \epsilon))$ ([19] Proposition 1.6) we get that it is either

- $\mathbb{Z}/2$, generated by a matrix which induces $-\text{Id}$ in the identification Out$_{\mathcal{F}}(C(3, r - 1)) \leq \mathrm{GL}_2(3)$, or
- $\mathbb{Z}/2 \times \mathbb{Z}/2$, generated by $-\text{Id}$ and a matrix in Out$_{\mathcal{F}}(C(3, r - 1)) \leq \mathrm{GL}_2(3)$ of determinant -1.

Remark 4.6. The previous assertion fails for $p > 3$ because, following the same notation as in the proof, we get that $N = \left\{ \left(\begin{smallmatrix} a & b \\ 0 & a^{-1} \end{smallmatrix} \right) : a \in \mathbb{F}_p^* \right\} \cong \mathbb{Z}/p : \mathbb{Z}/(p - 1)$, where $a \in \mathbb{Z}/(p - 1) \cong \mathbb{F}_p^*$ acts on \mathbb{Z}/p by multiplication by a^2 (which is not always 1 when $p > 3$). Therefore

$$H^2(\mathrm{SL}_2(p); Z(C(p, r - 1))) = 0$$

(thus $H^2(\mathrm{GL}_2(p); Z(C(p, r - 1))) = 0$ too), and the only extensions are the split ones which have Sylow p-subgroup of p-rank three.

Fix the notation $C(3, r - 1) \cdot \epsilon W$ for the groups in Lemma 4.5 with Sylow 3-subgroup isomorphic to $G(3, r; \epsilon)$.
From here we deduce that if $\text{Out}_F(G(3, r; c)) \cong \mathbb{Z}/2$ and $C(3, r - 1)$ is F-radical, then $\text{Out}_F(C(3, r - 1)) \cong \text{SL}_2(3)$, while if $\text{Out}_F(G(3, r; c)) \cong \mathbb{Z}/2 \times \mathbb{Z}/2$, then $\text{Out}_F(C(3, r - 1)) \cong \text{GL}_2(3)$, which completes the table.

All of them are saturated because they are the fusion systems of the finite groups described in Lemma A.6. □

5. Maximal nilpotency class rank two p-groups

In this section we classify the p-local finite groups over p-groups of maximal nilpotency class and p-rank two. Recall that by Corollary 2.10 we just have to classify the saturated fusion systems over these groups.

Consider S a p-rank two maximal nilpotency class p-group of order p^r. For $r = 2$, then $S \cong \mathbb{Z}/p \times \mathbb{Z}/p$, which is resistant by Corollary 3.4. If $r = 3$, then $S \cong p_+^{1+2}$, and this case has been studied in [36]. For $r \geq 4$ all the p-rank two maximal nilpotency class groups appear only at $p = 3$, and we use the description and properties given in Appendix A.1

The description of the maximal nilpotency class 3-groups of order bigger than 3^3 depends on three parameters β, γ and δ, and we use the notation given in Theorem A.2, so we call the groups $B(3; r; \beta, \gamma, \delta)$ and $\{s, s_1, s_2, \ldots, s_{r-1}\}$ the generators.

First we consider the nonsplit case, that is, $\delta > 0$ (see Proposition A.9(c)).

Theorem 5.1. Every group of type $B(3; r; \beta, \gamma, \delta)$, $\delta > 0$, is resistant.

Proof. Let F be a saturated fusion system over $B(3; r; \beta, \gamma, \delta)$. Using Alperin’s fusion theorem for saturated fusion systems (Theorem 2.3), it is enough to see whether $B(3; r; \beta, \gamma, \delta)$ is the only F-Alperin subgroup. So let P be a proper subgroup.

If P has 3-rank one, then it is cyclic and we can apply Corollary 3.6 to obtain that P cannot be F-Alperin.

Now assume that P has 3-rank two. Then, by Theorems A.1 and A.2 P is one of the following:

- $M(3, m)$, a nonabelian metacyclic 3-group of order 3^m: according to Corollary 3.8 P cannot be F-Alperin.
- $G(3, m; c)$ group: it cannot be F-Alperin by Corollary 3.10
- $B(3, m; \beta, \gamma, \delta)$: by Corollary 3.11 P cannot be F-Alperin.
- $C(3, m)$ group: as $3_+^{1+2} = C(3, 3)$ is contained in $C(3, m)$ we obtain that $3_+^{1+2} \leq B(3, r; \beta, \gamma, \delta)$.
- Abelian: say $P = \mathbb{Z}/3^m \times \mathbb{Z}/3^m$. If $m \neq n$, then P cannot be F-Alperin by Corollary 3.7 and if $m = n$, then again $3_+^{1+2} \leq B(3, r; \beta, \gamma, \delta)$ by Lemma 3.14

So if P is F-Alperin, then $B(3, r; \beta, \gamma, \delta)$ must contain 3_+^{1+2}.

We finish the proof by showing that $3_+^{1+2} \not\leq B(3, r; \beta, \gamma, \delta)$ since we are in the nonsplit case ($\delta > 0$). Consider the nonsplit short exact sequence

$$1 \rightarrow \gamma_1 \rightarrow B(3, r; \beta, \gamma, \delta) \twoheadrightarrow \mathbb{Z}/3 \rightarrow 1,$$

and assume that $3_+^{1+2} \leq B(3, r; \beta, \gamma, \delta)$. If $\pi(3_+^{1+2})$ is trivial, then $3_+^{1+2} \leq \gamma_1$. But by [26 Satz III.\S14.17] γ_1 is metacyclic, and consequently all its subgroups are metacyclic, too. Thus γ_1 cannot contain 3_+^{1+2}, and we then obtain the short exact
sequence
\[1 \to \mathbb{Z}/3 \times \mathbb{Z}/3 \to 3^{1+2}_+ \gamma \to \mathbb{Z}/3 \to 1. \]

As this sequence splits, it implies that the exact sequence (2) splits, too, and this is impossible. \qed

We now consider the split case, that is \(\delta = 0 \). We prove that for \(\beta = 1 \) these maximal nilpotency class groups are resistant, while for \(\beta = 0 \) they are not. We use the information about centric subgroups of \(B(3, r; \beta, \gamma, 0) \) contained in Lemmas \ref{lem:15} and \ref{lem:16}. According to Alperin’s fusion theorem for saturated fusion systems (Theorem \ref{thm:2x}) the automorphism groups of the \(F \)-Alperin subgroups determine the whole category \(\mathcal{F} \). The next two lemmas list the subgroup candidates for being \(F \)-Alperin in a saturated fusion system over \(B(3, r; 0, \gamma, 0) \) and \(B(3, r; 1, 0, 0) \).

Lemma 5.2. Let \(\mathcal{F} \) be a saturated fusion system over \(B(3, r; 0, \gamma, 0) \). Then all the proper \(\mathcal{F} \)-Alperin subgroups are contained in the following table:

<table>
<thead>
<tr>
<th>Isomorphism type</th>
<th>Subgroup (up to conjugation)</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{Z}/3^k \times \mathbb{Z}/3^k)</td>
<td>(\gamma_1 = \langle s_1, s_2 \rangle)</td>
<td>(r = 2k + 1).</td>
</tr>
<tr>
<td>(3^{1+2}_+)</td>
<td>(E_1 \overset{\text{def}}{=} \langle \zeta, \zeta' \rangle)</td>
<td>(\zeta = s_2 3^{k-1}, \zeta' = s_1 3^{k-1}) for (r = 2k + 1), (\zeta = s_1 3^{k-1}, \zeta' = s_2 3^{k-2}) for (r = 2k);</td>
</tr>
<tr>
<td>(\mathbb{Z}/3 \times \mathbb{Z}/3)</td>
<td>(V_i \overset{\text{def}}{=} \langle \zeta, s_{s_1} \rangle)</td>
<td>(i \in {-1, 0, 0}) if (\gamma = 0) and (i = 0) if (\gamma = 1, 2).</td>
</tr>
</tbody>
</table>

Moreover, for the subgroups in the table, \(\gamma_1 \) and any \(E_i \) are \(\mathcal{F} \)-centric for any saturated fusion system \(\mathcal{F} \) over \(B(3, r; 0, \gamma, 0) \), while any \(V_i \) is \(\mathcal{F} \)-centric only if it is not \(\mathcal{F} \)-conjugate to \(\langle \zeta, \zeta' \rangle \cong \mathbb{Z}/3 \times \mathbb{Z}/3 \).

Proof. Let \(P \) be a proper \(\mathcal{F} \)-Alperin subgroup. If \(P \) has 3-rank one, then it is cyclic and it cannot be \(\mathcal{F} \)-Alperin by Corollary \ref{cor:6}. If \(P \) has 3-rank two, then by Theorems \ref{thm:1} and \ref{thm:2} \(P \) has the isomorphism type of one of the following groups:

- \(M(3, m) \), \(G(3, m; \epsilon) \), \(B(3, m; \beta, \gamma, \delta) \), \(C(3, m) \) or \(P = \mathbb{Z}/3^m \times \mathbb{Z}/3^n \).

By Corollaries \ref{cor:8} and \ref{cor:10} \(P \) cannot have the isomorphism type of \(M(3, r) \), \(G(3, r; \epsilon) \) or \(B(3, m; \beta, \gamma, \delta) \), respectively. If \(m \neq n \), then \(P \) cannot have the isomorphism type of \(\mathbb{Z}/3^m \times \mathbb{Z}/3^n \) by Corollary \ref{cor:7}. Thus

\[P \cong \mathbb{Z}/3^m \times \mathbb{Z}/3^n \text{ or } P \cong C(3, m). \]

Then, using Lemma \ref{lem:15} we reach the subgroups in the statement.

To check that indeed \(\gamma_1 \) is \(\mathcal{F} \)-centric it is enough to note that it is self-centralizing and that \(\gamma_1 \) is \(\mathcal{F} \)-conjugate just to itself in any fusion system \(\mathcal{F} \) (\(\gamma_1 \) is strongly characteristic in \(B(3, r; 0, \gamma, 0) \)). It is clear that the copies of \(3^{1+2}_+ \) are \(\mathcal{F} \)-centric because these are the only copies lying in \(B(3, r; 0, \gamma, 0) \), and the center of all of them is \(\langle \zeta \rangle \). To conclude the lemma, note that the only copies of \(\mathbb{Z}/3 \times \mathbb{Z}/3 \) in \(B(3, r; 0, \gamma, 0) \) are the subgroups \(V_i \) and \(\langle \zeta, \zeta' \rangle \), and that the former are self-centralizing while the centralizer of the latter is \(\gamma_1 \). \qed
Lemma 5.3. Let \mathcal{F} be a saturated fusion system over $B(3, r; 1, 0, 0)$. Then all the proper \mathcal{F}-Alperin subgroups are contained in the following table:

<table>
<thead>
<tr>
<th>Isomorphism type</th>
<th>Subgroup (up to conjugation)</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Z}/3^{k-1} \times \mathbb{Z}/3^{k-1}$</td>
<td>$\gamma_2 = \langle s_2, s_3 \rangle$</td>
<td>$r = 2k$.</td>
</tr>
<tr>
<td>3_1^{1+2}</td>
<td>$E_0 \overset{\text{def}}{=} \langle \zeta, \zeta' \rangle$</td>
<td>$\zeta = s_2^{3^{k-1}}, \zeta' = s_3^{-3^{k-2}}$ for $r = 2k + 1$, $\zeta = s_3^{3^{k-2}}, \zeta' = s_2^{3^{k-2}}$ for $r = 2k$.</td>
</tr>
<tr>
<td>$\mathbb{Z}/3 \times \mathbb{Z}/3$</td>
<td>$V_0 \overset{\text{def}}{=} \langle \zeta, s \rangle$</td>
<td></td>
</tr>
</tbody>
</table>

Moreover, for the subgroups in the table, γ_2 and E_0 are \mathcal{F}-centric for any saturated fusion system \mathcal{F} over $B(3, r; 1, 0, 0)$, and V_0 is \mathcal{F}-centric only when it is not \mathcal{F}-conjugate to $\langle \zeta, \zeta' \rangle \cong \mathbb{Z}/3 \times \mathbb{Z}/3$.

Proof. The reasoning is totally analogous to that of the previous lemma using Lemma A.16.

When studying a saturated fusion system \mathcal{F} over $B(3, r; 0, \gamma, 0)$ or $B(3, r; 1, 0, 0)$ it is enough to study the representative subgroups given in the tables of Lemmas 5.2 and 5.3 because properties that are invariant under \mathcal{F}-conjugation are invariant under conjugation, too.

As a last step before the classification itself, we work out some information on lifts and restrictions of automorphisms of some subgroups of $B(3, r; \beta, \gamma, 0)$. Consider a saturated fusion system \mathcal{F} over $B(3, r; \beta, \gamma, 0)$ and a subgroup $P \subseteq B(3, r; \beta, \gamma, 0)$ which is the whole group or one of those listed in the tables of Lemmas 5.2 or 5.3. The Frattini map

$$P \rightarrow P/\Phi(P) \cong \mathbb{Z}/3 \times \mathbb{Z}/3$$

induces the map

$$\text{Out}(P) \xrightarrow{\ell} \text{GL}_2(3)$$

whose kernel is a 3-group [35 Corollary 11.13]. Consider the restriction

$$\text{Out}_{\mathcal{F}}(P) \xrightarrow{\ell} \text{GL}_2(3).$$

Note that by Remark 2.3 this restriction is a monomorphism for $P = B(3, r; \beta, \gamma, 0)$. For $P = \gamma_1$ or γ_2 it is a monomorphism if P is \mathcal{F}-Alperin as $\text{Out}_{\mathcal{F}}(P)$ is 3-reduced. For $P = E_i$ or V_i they are inclusions by [36 Lemma 3.1] and by definition, respectively. In the case that this restriction is a monomorphism we identify $\text{Out}_{\mathcal{F}}(P)$ with its image in $\text{GL}_2(3)$ without explicit mention.

Remark 5.4. We fix the following (ordered) basis on $P/\Phi(P) \cong \mathbb{Z}/3 \times \mathbb{Z}/3$: $\{s, s_1\}$ for $P = B(3, r; \beta, \gamma, 0), \{s_1, s_2\}$ for $P = \gamma_1$, $\{s_2, s_3\}$ for $P = \gamma_2$, $\{s_3, s s_1\}$ for $P = E_i$ and $\{s, ss_1\}$ for $P = V_i$.

We divide the results into three lemmas, the first gives a description of $\text{Out}_{\mathcal{F}}(P)$ for P an \mathcal{F}-Alperin subgroup, the second deals with restrictions and the third with lifts.
Lemma 5.5. Let \mathcal{F} be a saturated fusion system over $B(3, r; \beta, \gamma, 0)$. Then:

(a) $\rho(\text{Out}_\mathcal{F}(B(3, r; \beta, \gamma, 0)))$ is a subgroup of the lower triangular matrices,
(b) $\text{Out}_\mathcal{F}(B(3, 2k; 0, \gamma, 0)) \leq \mathbb{Z}/2 \times \mathbb{Z}/2$,
(c) $\text{Out}_\mathcal{F}(B(3, 2k + 1; 0, 1, 0)) \leq \mathbb{Z}/2$,
(d) $\text{Out}_\mathcal{F}(B(3, r; 1, 0, 0)) \leq \mathbb{Z}/2$ and
(e) If $P = \gamma_1, \gamma_2, E_i$ or V_i is \mathcal{F}-Alperin, then $\text{Out}_\mathcal{F}(P) = \text{SL}_2(3)$ or $\text{GL}_2(3)$.

Proof. For the first claim note that from the order of $\text{Aut}(B(3, r; \beta, \gamma, 0))$ we deduce that a 3' element φ should have order 2 or 4. Now, as the Frattini subgroup of $B(3, r; \beta, \gamma, 0)$ is $\langle s_2, s_3 \rangle$, the projection on the Frattini quotient induces

$$\text{Out}_\mathcal{F}(B(3, r; \beta, \gamma, 0)) \rightarrow \text{GL}_2(3),$$

where if φ maps s to $s^e s_1^e s_2^e$ and s_1 to $s_1^e s_2^e$, then $\rho(\varphi) = (e \begin{smallmatrix} s_1 & 0 \\ 0 & 1 \end{smallmatrix})$. So we obtain lower triangular matrices. Checking cases leads us to obtain that the order of φ is two, and that $\varphi \in \{ (\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}), (\begin{smallmatrix} -1 & 0 \\ 0 & -1 \end{smallmatrix}), (\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}), (\begin{smallmatrix} -1 & 0 \\ 0 & -1 \end{smallmatrix}), (\begin{smallmatrix} -1 & 0 \\ 0 & -1 \end{smallmatrix}) \}$. For $\beta = 0, \gamma = 1$ and odd r, or $\beta = 1$, Lemma A.13 tells us that e must be equal to 1, and then it is easily deduced that $\text{Out}_\mathcal{F}(B(3, r; \beta, \gamma, 0))$ must have order two.

For the last point just use Lemma 3.12 and that $[\text{GL}_2(3) : \text{SL}_2(3)] = 2$. \hfill \Box

Now we focus on the restrictions. For the study of possible saturated fusion systems \mathcal{F} it is enough to consider diagonal matrices of $\text{Out}_\mathcal{F}(B(3, r; \beta, \gamma, 0))$ instead of lower triangular ones. This is because every $Z/2$ and $Z/2 \times Z/2$ in $\text{Out}_\mathcal{F}(B(3, r; \beta, \gamma, 0))$ is conjugated to a diagonal one.

Lemma 5.6. Let \mathcal{F} be a saturated fusion system over $B(3, r; \beta, \gamma, 0)$. Then:

(a) If $\beta = 0$ the restrictions of the elements $\varphi \in \text{Out}_\mathcal{F}(B(3, r; 0, \gamma, 0))$ to $\text{Out}_\mathcal{F}(\gamma_1)$ are given by the following table. This table also describes the permutation of the subgroups E_i induced by φ, and the restrictions to $\text{Out}_\mathcal{F}(E_{i_0})$ for $i_0 \in \{-1, 0, 1\}$ such that E_{i_0} is fixed by the permutation.

<table>
<thead>
<tr>
<th>$\text{Out}_\mathcal{F}(B(3, r; 0, \gamma, 0))$</th>
<th>$\begin{smallmatrix} 1 & 0 \ 0 & -1 \end{smallmatrix}$</th>
<th>$\begin{smallmatrix} -1 & 0 \ 0 & 1 \end{smallmatrix}$</th>
<th>$\begin{smallmatrix} -1 & 0 \ 0 & -1 \end{smallmatrix}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Out}_\mathcal{F}(\gamma_1)$</td>
<td>$\begin{smallmatrix} -1 & 0 \ 0 & -1 \end{smallmatrix}$</td>
<td>$\begin{smallmatrix} 1 & 0 \ 0 & -1 \end{smallmatrix}$</td>
<td>$\begin{smallmatrix} -1 & 0 \ 0 & 1 \end{smallmatrix}$</td>
</tr>
<tr>
<td>\mathcal{F}-conjugation</td>
<td>$E_1 \leftrightarrow E_{-1}$</td>
<td>$E_1 \leftrightarrow E_{-1}$</td>
<td>$-$</td>
</tr>
<tr>
<td>$\text{Out}\mathcal{F}(E{i_0})$, r odd</td>
<td>$\begin{smallmatrix} -1 & 0 \ 0 & 1 \end{smallmatrix}$</td>
<td>$\begin{smallmatrix} 1 & 0 \ 0 & -1 \end{smallmatrix}$</td>
<td>$\begin{smallmatrix} -1 & 0 \ 0 & -1 \end{smallmatrix}$</td>
</tr>
<tr>
<td>$\text{Out}\mathcal{F}(E{i_0})$, r even</td>
<td>$\begin{smallmatrix} -1 & 0 \ 0 & 1 \end{smallmatrix}$</td>
<td>$\begin{smallmatrix} -1 & 0 \ 0 & -1 \end{smallmatrix}$</td>
<td>$\begin{smallmatrix} 1 & 0 \ 0 & -1 \end{smallmatrix}$</td>
</tr>
</tbody>
</table>

(b) If $\beta = 1$ (thus $\gamma = 0$) the restrictions to $\text{Out}_\mathcal{F}(\gamma_2)$ and to $\text{Out}_\mathcal{F}(E_0)$ of outer automorphisms $\varphi \in \text{Out}_\mathcal{F}(B(3, r; 1, 0, 0))$ are given by the following table:

<table>
<thead>
<tr>
<th>$\text{Out}_\mathcal{F}(B(3, r; 1, 0, 0))$</th>
<th>$\begin{smallmatrix} 0 & 1 \ 1 & 0 \end{smallmatrix}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Out}_\mathcal{F}(\gamma_2)$</td>
<td>$\begin{smallmatrix} -1 & 0 \ 0 & -1 \end{smallmatrix}$</td>
</tr>
<tr>
<td>$\text{Out}_\mathcal{F}(E_0)$</td>
<td>$\begin{smallmatrix} -1 & 0 \ 0 & 1 \end{smallmatrix}$</td>
</tr>
</tbody>
</table>
For the outer automorphism groups of E_i and V_i we have the following restrictions:

<table>
<thead>
<tr>
<th>$\text{Out}_F(E_i)$</th>
<th>$(\frac{1}{0} \ 0 \ 1)$</th>
<th>$(-\frac{1}{0} \ 0 \ 1)$</th>
<th>$(-\frac{1}{0} \ 0 \ 1)$</th>
<th>$(\frac{1}{0} \ 0 \ 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Out}_F(V_i)$</td>
<td>$(-\frac{1}{0} \ 0 \ -1)$</td>
<td>$(-\frac{1}{0} \ 0 \ 1)$</td>
<td>$(\frac{1}{0} \ 0 \ -1)$</td>
<td>$(\frac{1}{0} \ 0 \ 1)$</td>
</tr>
</tbody>
</table>

Proof. As $\gamma_1 = \langle s_1, s_2 \rangle$ is characteristic and $B(3, r; \beta, \gamma, 0)$ is generated by s and s_1, every homomorphism $\varphi \in B(3, r; \beta, \gamma, 0)$ is determined by

$$s \mapsto s^e s_1^e s_2^e s_1^f s_2^f$$

for some integers e, e', e'', f, f''. The composition

$$\text{Aut}(B(3, r; \beta, \gamma, 0)) \to \text{Out}(B(3, r; \beta, \gamma, 0)) \to \text{GL}_2(3)$$

maps φ to $(\frac{e}{e'}, \frac{f}{f''})$, with respect to the basis of Remark 5.3. By Lemma A.14 the matrices $\left(\frac{1}{0} \ 0 \ 1\right)$ and $\left(-\frac{1}{0} \ 0 \ 1\right)$ can appear in $\text{Out}_F(B(3, r; \beta, \gamma, 0))$ except in case $\beta = 0$, r odd and $\gamma = 1$, or in case $\beta = 1$. In these cases only $\left(\frac{1}{0} \ 0 \ 1\right)$ can appear as outer automorphism. The morphisms which send $\{s, s_1\}$ to $\{s, s_1^{-1}\}$, $\{s^{-1}, s_1\}$ and $\{s^{-1}, s_1^{-1}\}$ give pre-images for the matrices $\left(\frac{1}{0} \ 0 \ 1\right)$ and $\left(-\frac{1}{0} \ 0 \ 1\right)$, respectively in case they can appear in $\text{Out}_F(B(3, r; \beta, \gamma, 0))$.

For $\beta = 0$ the composition (recall that γ_1 is characteristic)

$$\text{Aut}(B(3, r; 0, \gamma, 0)) \to \text{Out}(\gamma_1) \to \text{Out}_F(\gamma_1) \to \text{GL}_2(3)$$

maps φ to $(\frac{e}{e'}, \frac{f}{f''})$, again with respect to the basis of Remark 5.4. This gives the second row of the first table. The $B(3, r; 0, \gamma, 0)$-conjugation class of E_i consists of the subgroups $\langle \zeta, \zeta', sa \rangle$, where $a \in \gamma_1$, sa has order 3 and $a = s_1^{a_1} s_2^{a_2}$ with $a_1 \equiv i \mod 3$. By taking square powers it is straightforward that these subgroups are exactly the same as the subgroups $\langle \zeta, \zeta', s^2a \rangle$, where $a \in \gamma_1$, s^2a has order 3 and $a = s_1^{a_1} s_2^{a_2}$ with $2a_1 \equiv i \mod 3$. As $\gamma_1 = \langle s_1, s_2 \rangle$ is abelian for $\beta = 0$ (see Proposition A.9(d)) we have

$$\varphi(\langle s_1^i \rangle) = \varphi(s) \varphi(s_1)^i = s^e s_1^{e'} s_2^{e''} (s_1^f s_2^f)^i = s^e s_1^{e'+if'} s_2^{e''+if''}.$$

If $e = 1$, then the subgroup $\varphi(E_i)$ belongs to the conjugation class of $E_7 \cong E_7$, where $e'+if'$ denotes the modulo 3 class of $e'+if'$. If $e = 2$, then $\varphi(E_i)$ belongs to the conjugation class of $E_2 \cong E_2$. This gives the third row of the first table. The fourth and fifth rows are obtained from (3).

The case $\beta = 1$ is proved by similar arguments and by using the commutator rules for powers of s, s_1 and s_2.

For the restriction of outer automorphisms from E_i to V_i recall that in Remark 5.4 we fixed the basis $\{\zeta', ss_1^i\}$ for E_i and $\{\zeta, ss_1^i\}$ for V_i. By Lemma 3.1 the outer automorphism $(\zeta', r') \in \text{Out}(E_i) = \text{GL}_2(3)$ maps ζ to $\zeta' rs r'$. From this information the third table is fulfilled.

Finally we reach the lemma about lifts.

Lemma 5.7. Let F be a saturated fusion system over $B(3, r; \beta, \gamma, 0)$, and let P be one of the proper subgroups appearing in the tables of Lemmas 5.2 or 5.3. Then every diagonal outer automorphism of P in F (like those appearing in Lemma
5.6) can be lifted to the whole \(B(3, r; \beta, \gamma, 0)\). In particular, every diagonal outer automorphism in \(\text{Out}_F(P)\) is listed in the tables of restrictions of Lemma 5.6.

Proof. We study the two cases \(\beta = 0\) and \(\beta = 1\) separately.

If \(\beta = 0\) we begin with the morphisms from \(B(3, r; 0, \gamma, 0)\) restricted to \(\gamma_1\). If \(\gamma_1\) is not \(F\)-Alperin, then every morphism in \(\text{Aut}_F(\gamma_1)\) can be lifted by Theorem 2.5. Suppose then that \(\gamma_1\) is \(F\)-Alperin. Take \(\varphi \in \text{Out}_F(\gamma_1)\) appearing in the table of Lemma 5.6 and consider the images \(c_s, c_{s^2} \in \text{Out}_F(\gamma_1)\) of the restrictions to \(\gamma_1\) of conjugation by \(s\) and \(s^2\). Then it can be checked that \(\varphi c_s \varphi^{-1} = c_s\) or \(c_{s_2}\). Now apply (II) from Definition 2.2.

For \(E_i \leq B(3, r; 0, \gamma, 0)\) there is a little bit more work to do. If \(E_i\) is not \(F\)-Alperin apply Theorem 2.5 again. So suppose \(E_i\) is \(F\)-Alperin, take \(\varphi \in \text{Out}_F(E_i)\) and compute \(N_2\) from Definition 2.2. The normalizer of \(E_i\) is \(\langle \zeta, \zeta' \rangle \cong (\mathbb{Z}/9 \times \mathbb{Z}/3) : \mathbb{Z}/3\) where the order of \(\zeta''\) equals 9, and \(\varphi c_{\zeta''} \varphi^{-1} = c_{\zeta''}\) or \(c_{\zeta''}\). So \(\varphi\) can be lifted to the normalizer (Definition 2.2) and, as this subgroup cannot be \(F\)-Alperin by Lemma 5.2, we can extend again to the whole \(B(3, r; 0, \gamma, 0)\) by Theorem 2.5.

For the case \(V_i \leq E_i\) the details are similar using \(c_{\zeta''}\) instead of \(c_{\zeta''}\).

If \(\beta = 1\), then \(P\) is a centric subgroup of \(B(3, r - 1; 0, 0, 0) \cong \langle s_2, s_3, s \rangle < B(3, r - 1; 0, 0, 0)\). Finally use saturation to extend the morphisms to \(B(3, r; 1, 0, 0)\).

\[\square\]

Theorem 5.8. Every rank two 3-group isomorphic to \(B(3, r; 1, 0, 0)\) is resistant.

Proof. Using Lemma 5.3 the only possible \(F\)-Alperin proper subgroups of \(B(3, r; 1, 0, 0)\) are \(E_0\) and \(V_0\) if \(r\) is odd, and \(\gamma_2\), \(E_0\) and \(V_0\) if \(r\) is even. According to Lemma 5.3 if \(E_0\) (respectively \(V_0\)) is \(F\)-Alperin, then \(\text{Out}_F(E_0)\) (respectively \(\text{Out}_F(V_0)\)) contains \(\text{SL}_2(3)\). Then the matrix \(-\text{Id}\) of determinant 1 must be an outer automorphism of \(E_0\) (respectively \(V_0\)). By Lemmas 5.6 and 5.7 this diagonal outer automorphism cannot appear in \(\text{Out}_F(E_0)\). If \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \text{Out}_F(V_0)\), then by Lemmas 5.6 and 5.7 it must lift to \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \text{Out}_F(E_0)\). Again by Lemmas 5.6 and 5.7 this matrix cannot appear as an outer automorphism of \(E_0\).

Therefore we are left with the case of \(r = 2k\) when \(\gamma_2\) is the only \(F\)-Alperin proper subgroup. Because \(F\) is a saturated fusion system and \(\gamma_2\) is fully normalized, then, by Definition 2.2 \(\text{Aut}_{B(3, r; 1, 0, 0)}(\gamma_2)\) is a Sylow of \(\text{Aut}_F(\gamma_2)\). As \(\gamma_2\) is normal in \(B(3, r; 1, 0, 0)\) then \(\text{Aut}_{B(3, r; 1, 0, 0)}(\gamma_2) = N_{B(3, r; 1, 0, 0)}(\gamma_2)/\gamma_2\) has order 9. This contradicts the fact that \(\text{Aut}_F(\gamma_2) = \text{Out}_F(\gamma_2) \leq \text{GL}_2(3)\).

\[\square\]

It remains to study the case \(B(3, r; 0, \gamma, 0)\). In this case we obtain saturated fusion systems with proper \(F\)-Alperin subgroups.

Notation 5.9. In what follows we consider the following notation:

- Fix the following elements in \(\text{Aut}(B(3, r; \beta, \gamma, 0))\):
 - \(\eta\) an element of order two which fixes \(E_0\) and permutes \(E_1\) with \(E_{-1}\) and such that it projects to \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) in \(\text{Out}(B(3, r; \beta, \gamma, 0))\).
 - \(\omega\) an element of order two which commutes with \(\eta\), which projects to \(-\text{Id}\) in \(\text{Out}(B(3, r; \beta, \gamma, 0))\), and such that it fixes \(E_i\) for \(i \in \{-1, 0, 1\}\).
- By \(N \cdot \gamma, W\) we denote an extension of type \(N \cdot W\) such that its Sylow 3-subgroup is isomorphic to \(B(3, r; 0, \gamma, 0)\).
With all that information we now get the tables with the possible fusion systems over $B(3,r;0,\gamma,0)$ which are not the normalizer of the Sylow 3-subgroup.

Theorem 5.10. Let B be a rank two 3-group of maximal nilpotency class of order at least 3^4, and let (B,\mathcal{F}) be a saturated fusion system with at least one proper \mathcal{F}-Alperin subgroup. Then it must correspond to one of the cases listed in the following tables.

- If $B \cong B(3,4;0,0,0)$, then the outer automorphism group of the \mathcal{F}-Alperin subgroups are in the following table:

<table>
<thead>
<tr>
<th>B</th>
<th>E_0</th>
<th>E_1</th>
<th>E_{-1}</th>
<th>V_0</th>
<th>V_1</th>
<th>V_{-1}</th>
<th>p-lfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \omega \rangle$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SL$_2(3)$</td>
<td>-</td>
<td>-</td>
<td>$\mathcal{F}(3^4,1)$</td>
</tr>
<tr>
<td>$\langle \eta, \omega \rangle$</td>
<td>SL$_2(3)$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SL$_2(3)$</td>
<td>SL$_2(3)$</td>
<td>$\mathcal{F}(3^4,2)$</td>
</tr>
<tr>
<td>SL$_2(3)$</td>
<td>SL$_2(3)$</td>
<td>SL$_2(3)$</td>
<td>$L_3^+\left(q_1\right)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle \eta_\omega \rangle$</td>
<td>-</td>
<td>-</td>
<td>GL$_2(3)$</td>
<td>-</td>
<td>SL$_2(3)$</td>
<td>$L_3^+\left(q_1\right)$: 2</td>
<td></td>
</tr>
<tr>
<td>GL$_2(3)$</td>
<td>-</td>
<td>-</td>
<td>SL$_2(3)$</td>
<td>$E_0 \cdot_0 GL_2(3)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL$_2(3)$</td>
<td>$^3D_4(q_2)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Here q_1 and q_2 are prime powers such that

$$\nu_3(q_1 + 1) = 2 \quad \text{and} \quad \nu_3(q_2^2 - 1) = 1.$$

- If $B \cong B(3,4;0,2,0)$, then the outer automorphism group of the \mathcal{F}-Alperin subgroups are in the following table:

<table>
<thead>
<tr>
<th>B</th>
<th>E_0</th>
<th>V_0</th>
<th>p-lfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \omega \rangle$</td>
<td>-</td>
<td>SL$_2(3)$</td>
<td>$\mathcal{F}(3^4,3)$</td>
</tr>
<tr>
<td>$\langle \eta \omega \rangle$</td>
<td>SL$_2(3)$</td>
<td>-</td>
<td>$E_0 \cdot_2 SL_2(3)$</td>
</tr>
<tr>
<td>$\langle \eta, \omega \rangle$</td>
<td>-</td>
<td>GL$_2(3)$</td>
<td>$\mathcal{F}(3^4,3)$</td>
</tr>
<tr>
<td>GL$_2(3)$</td>
<td>-</td>
<td>$E_0 \cdot_2 GL_2(3)$</td>
<td></td>
</tr>
</tbody>
</table>
• If $B \cong B(3, 2k; 0, 0, 0)$ with $k \geq 3$, then the outer automorphism group of the \mathcal{F}-Alperin subgroups are in the following table:

<table>
<thead>
<tr>
<th>B</th>
<th>E_0</th>
<th>E_1</th>
<th>E_{-1}</th>
<th>V_0</th>
<th>V_1</th>
<th>V_{-1}</th>
<th>p-lfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \omega \rangle$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SL$_2$(3)</td>
<td>-</td>
<td>-</td>
<td>$\mathcal{F}(3^{2k}, 1)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>SL$_2$(3)</td>
<td>SL$_2$(3)</td>
<td>$\mathcal{F}(3^{2k}, 2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SL$_2$(3)</td>
<td>SL$_2$(3)</td>
<td>SL$_2$(3)</td>
<td>$L_3^+(q_1)$</td>
</tr>
<tr>
<td>$\langle \eta \omega \rangle$</td>
<td>SL$_2$(3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SL$_2$(3)</td>
<td>-</td>
<td>$3 \cdot_0 \text{PGL}_3(q_2)$</td>
</tr>
<tr>
<td>$\langle \eta, \omega \rangle$</td>
<td>-</td>
<td>-</td>
<td>GL$_2$(3)</td>
<td>-</td>
<td>-</td>
<td>$\mathcal{F}(3^{2k}, 2), 2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SL$_2$(3)</td>
<td>-</td>
<td>$L_3^+(q_1) : 2$</td>
<td>$3 \cdot_0 \text{PGL}_3(q_2) : 2$</td>
</tr>
<tr>
<td>GL$_2$(3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SL$_2$(3)</td>
<td>$3 \cdot_0 \text{PGL}_3(q_2) : 2$</td>
<td>$3 \cdot D_4(q_3)$</td>
</tr>
</tbody>
</table>

Here q_i are prime powers such that

$\nu_3(q_1 + 1) = k,$
$\nu_3(q_2 - 1) = k - 1$

and

$\nu_3(q_2^2 - 1) = k - 1.$

• If $B \cong B(3, 2k; 0, \gamma, 0)$ with $k \geq 3$ and $\gamma = 1, 2$, then the outer automorphism group of the \mathcal{F}-Alperin subgroups are in the following table:

<table>
<thead>
<tr>
<th>B</th>
<th>E_0</th>
<th>V_0</th>
<th>p-lfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \omega \rangle$</td>
<td>-</td>
<td>SL$_2$(3)</td>
<td>$\mathcal{F}(3^{2k}, 2 + \gamma)$</td>
</tr>
<tr>
<td>$\langle \eta \omega \rangle$</td>
<td>SL$_2$(3)</td>
<td>-</td>
<td>$3 \cdot_\gamma \text{PGL}_3(q)$</td>
</tr>
<tr>
<td>$\langle \eta, \omega \rangle$</td>
<td>-</td>
<td>GL$_2$(3)</td>
<td>$\mathcal{F}(3^{2k}, 2 + \gamma), 2$</td>
</tr>
<tr>
<td>GL$_2$(3)</td>
<td>-</td>
<td>-</td>
<td>$3 \cdot_\gamma \text{PGL}_3(q) \cdot 2$</td>
</tr>
</tbody>
</table>

Here q is a prime power such that $\nu_3(q - 1) = k - 1.$
If $B \cong B(3, 2k + 1; 0, 0, 0)$ with $k \geq 2$, then the outer automorphism group of the F-Alperin subgroups are in the following table:

Table 6. s.f.s. over $B(3, 2k + 1; 0, 0, 0)$ with $k \geq 2$.

<table>
<thead>
<tr>
<th>B</th>
<th>V_0</th>
<th>V_1</th>
<th>V_{-1}</th>
<th>E_0</th>
<th>E_1</th>
<th>E_{-1}</th>
<th>γ_1</th>
<th>p-lfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \omega \rangle$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SL$_2$(3)</td>
<td>-</td>
<td>-</td>
<td>3.$\mathcal{F}(3^{2k}, 1)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>SL$_2$(3)</td>
<td>SL$_2$(3)</td>
<td>-</td>
<td>3.$\mathcal{F}(3^{2k}, 2)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SL$_2$(3)</td>
<td>SL$_2$(3)</td>
<td>SL$_2$(3)</td>
<td>-</td>
<td>3 \cdot L$_3^+$$(q_1)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle \eta \rangle$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SL$_2$(3)</td>
<td>$\gamma_1 :$ SL$_2$(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle \eta \omega \rangle$</td>
<td>SL$_2$(3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>PGL$_3(q_2)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle \eta, \omega \rangle$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>GL$_2$(3)</td>
<td>-</td>
<td>GL$_2$(3)</td>
<td>3.$\mathcal{F}(3^{2k}, 1).2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GL$_2$(3)</td>
<td>-</td>
<td>GL$_2$(3)</td>
<td>$\mathcal{F}(3^{2k+1}, 1)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GL$_2$(3)</td>
<td>-</td>
<td>GL$_2$(3)</td>
<td>$\mathcal{F}(3^{2k+1}, 2)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SL$_2$(3)</td>
<td>-</td>
<td>-</td>
<td>3 \cdot L$_3^+$$(q_1) : 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL$_2$(3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>PGL$_3(q_2) : 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GL$_2$(3)</td>
<td>$\mathcal{F}(3^{2k+1}, 3)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SL$_2$(3)</td>
<td>-</td>
<td>GL$_2$(3)</td>
<td>$\mathcal{F}(3^{2k+1}, 4)$</td>
<td></td>
</tr>
</tbody>
</table>

Here q_i are prime powers such that $\nu_3(q_1 + 1) = k$, $\nu_3(q_2 - 1) = k$, $\nu_3(q_3 - 1) = k$ and $\nu_3(q_4^2 - 1) = k - 1$.

If $B \cong B(3, 2k + 1; 0, 1, 0)$ with $k \geq 2$, then \mathcal{F} is the saturated fusion system associated to the group $\gamma_1 :$ SL$_2$(3).

The last column of all these tables gives either a group which has the corresponding fusion system at $p = 3$, or a name of type $a.\mathcal{F}(3^r, i).b$ to refer to an extension (see [9]) of the exotic 3-local finite group $\mathcal{F}(3^r, i)$.

Remark 5.11. As particular cases of the classification we find the exotic fusion systems over 3-groups of order 3^4 which were announced previously by Broto-Levi-Oliver in [12, Section 5].

Proof. We divide the proof in three parts:

Classification: In this part we describe the different possibilities for the saturated fusion system (B, \mathcal{F}) by means of the F-Alperin subgroups and their outer automorphism groups $\text{Out}_F(P)$. Because $\text{Aut}_P(P) \leq \text{Aut}_F(P)$ by Definition 2.1,
Out$_F(P) = \text{Aut}_F(P)/\text{Aut}_P(P)$ also determines Aut$_F(P)$, and by Theorem 2.5 these subgroups of automorphisms completely describe the category F.

By hypothesis we have a proper F-Alperin subgroup in $B(3,r;\beta,\gamma,\delta)$, so by Theorem 5.1 $\delta = 0$ and, using now Theorem 5.8 also $\beta = 0$. So we just have to cope with $B(3,r;0,\gamma,0)$.

First of all observe that for fixed $i \in \{-1,0,1\}$, E_i and V_i cannot be F-Alperin subgroups at the same time: if E_i is F-Alperin, then V_i is F-conjugate to (ζ,ζ'), so V_i is not F-centric.

Note that a saturated fusion system with $\text{Out}_F(B(3,r;0,\gamma,0)) = 1$ cannot contain any proper F-Alperin subgroup: if it had a proper F-Alperin subgroup, by Lemma 5.7 we would have a nontrivial morphism in $\text{Out}_F(B(3,r;0,\gamma,0))$.

We now begin the analysis depending on the parity of r.

Case $r = 2k$. Suppose that $\gamma = 0$. If $\text{Out}_F(B) = \langle \omega \rangle$, then it is immediate from Lemmas 5.6 and 5.7 that V_i may be F-Alperin but not E_i. The reason is that $(-1\ 0\ 0\ -1) \in \text{SL}_2(3)$ lifts to $\omega \in \text{Out}_F(B) = \langle \omega \rangle$ from $\text{Out}_F(V_i)$, while it would lift to $\eta\omega \notin \text{Out}_F(B)$ from $\text{Out}_F(E_0)$, and it does not lift for E_i with $i = -1,1$. It is also deduced from Lemmas 5.6 and 5.7 that no V_i can be F-conjugate to V_j for $i \neq j$ because inner conjugation in B does not move $\{V_{-1},V_0,V_1\}$ and outer conjugation is induced just by η and $\eta\omega$. If V_i is F-Alperin, then $\text{Out}_F(V_i)$ must equal $\text{SL}_2(3)$ because otherwise we would have a nontrivial element in $\text{Out}_F(B)$ different from ω for V_0, or we would have diagonal outer automorphisms that cannot appear in $\text{Out}_F(E_{-1})$ or $\text{Out}_F(E_1)$ for V_{-1} or V_1, respectively, by Lemma 5.7. So one, two or three of the subgroups V_i can be F-Alperin. A symmetry argument, obtained by conjugation by B (see remarks after Lemma 5.6), yields the first three rows of Tables 2 and 4. Now assume $\text{Out}_F(B) = \langle \eta\omega \rangle$. Looking at Lemmas 5.6, 5.7 and 5.8 we obtain that only E_0 can be F-Alperin and moreover $\text{Out}_F(E_0) = \text{SL}_2(3)$, because otherwise $\text{Out}_F(B)$ would be $\mathbb{Z}/2 \times \mathbb{Z}/2$. This is the fourth row of Tables 2 and 4. For $\text{Out}_F(B) = \langle \eta \rangle$ there is no chance for E_i or V_i to be F-Alperin. It remains to cope with the case $\text{Out}_F(B) = \langle \eta,\omega \rangle$. First, from the argument above E_1 and E_{-1} cannot be F-Alperin. Second, recall from the beginning of this proof that, for i fixed, E_i and V_i cannot be F-Alperin simultaneously. Third, note that η (and $\eta\omega$) swaps V_1 and V_{-1}, so they are F-conjugate. Lastly, from Lemma 5.8 the only possibility for the outer automorphism groups of E_0 and V_0 is $\text{GL}_2(3)$ in case they are F-Alperin. Analogously if V_i is F-Alperin, for $i = \pm 1$, then $\text{Out}_F(V_i)$ must be $\text{SL}_2(3)$. Now a case-by-case checking yields the last five entries of Tables 2 and 4. If $r \geq 4$ and $\gamma = 1,2$ (or $r = 4$ and $\gamma = 2$) recall from the conditions in the table of Lemma 5.2 that only E_0 and V_0 are allowed to be F-Alperin. Similar arguments to those above lead us to Tables 3 and 5.

Case $r = 2k + 1$. For $\gamma = 0$ the fusion systems in Table 6 are obtained by similar arguments to those of the preceding cases, bearing in mind that γ_1 may be F-Alperin too. To fill in this table, note that if some E_i or V_i is F-Alperin, then $-\text{Id}$ is an outer automorphism of this group that must lift, following Lemma 5.6 to ω or $\eta\omega$ for E_i and V_i, respectively. But ω and $\eta\omega$ restrict in $\text{Out}_F(\gamma_1)$ to automorphisms of determinant -1, so in case γ_1 is F-Alperin, when some E_i or V_i is so, its outer automorphism group must be $\text{Out}_F(\gamma_1) = \text{GL}_2(3)$. Note that when γ_1 is F-Alperin, $\text{Out}_F(B)$ must contain η by Lemma 5.6 and so E_{-1} and E_0 are F-conjugate. In the case of $\gamma = 1$, Lemmas 5.5 and 5.6 imply that only $\left(\frac{1}{0} \ 0 \ -1\right)$ can be in $\text{Out}_F(B)$. If γ_1, E_0 or V_0 were F-Alperin, then $\text{Out}_F(B)$ would contain η,
\(\omega\) or \(\eta\omega\), respectively. So the only chance is that \(\gamma_1\) is the only \(\mathcal{F}\)-Alperin subgroup. Note also that \(\Out_{\mathcal{F}}(\gamma_1)\) must equal \(\SL_2(3)\), because in other case there would be a nontrivial element in \(\Out_{\mathcal{F}}(B)\) different from \(\eta\).

Saturation: Now we prove that all the fusion systems obtained in the classification part of this proof are saturated by means of \([12]\) Proposition 5.3]. To show that a certain fusion system \((B, \mathcal{F})\) appearing in the tables is saturated, the method consists of setting \(G \overset{\text{def}}{=} B : \Out_{\mathcal{F}}(B)\), where \(\Out_{\mathcal{F}}(B)\) is the entry for \(B\) in the table, and for each \(G\)-conjugacy class of \(\mathcal{F}\)-Alperin subgroups choosing a representative \(P \leq B\) and setting \(K_P \overset{\text{def}}{=} \Out_G(P)\) \((K_P\) is determined by Lemma 5.6) and \(\Delta_P \overset{\text{def}}{=} \Out_{\mathcal{F}}(P)\), where \(\Out_{\mathcal{F}}(P)\) is the entry for \(P\) in the table. In order to obtain that the fusion system under consideration is saturated, for each chosen \(\mathcal{F}\)-Alperin subgroup \(P \leq B\) it must be checked that \([12]\) Proposition 5.3:

1) \(P\) does not contain any proper \(\mathcal{F}\)-centric subgroup.
2) \(p \nmid [\Delta_P : K_P]\), and for each \(\alpha \in \Delta_P \setminus K_P\), \(K_P \cap \alpha^{-1} K_P \alpha\) has order prime to \(p\).

On the one hand, by Lemma 5.2, the first condition is fulfilled by all the fusion systems obtained in the classification part of this proof. On the other hand, it is verified that \(\Out_B(P)\) equals \(\langle \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right) \rangle\) and \(\langle \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right) \rangle\) for \(\gamma_1\), \(E_i\) and \(V_i\), respectively. Denoting by \(\mu_P\) this order 3 outer automorphism, it is an easy check that for all the fusion systems in the tables:

- \(P\) is \(\mathcal{F}\)-Alperin with \(\Delta_P = \SL_2(3)\) just in case \(K_P = \langle \mu_P, \left(\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix}\right) \rangle\).
- \(P\) is \(\mathcal{F}\)-Alperin with \(\Delta_P = \GL_2(3)\) just in case \(K_P = \langle \mu_P, \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}\right) \rangle\).

Now the two pairs \((K_P, \Delta_P)\) above verify condition 2).

Note that the group \(G = B : \Out_{\mathcal{F}}(B)\) defined earlier can be constructed because 3 does not divide the order of \(\Out_{\mathcal{F}}(B)\) (see Remark 2.20) and the projection \(\Aut(B) \rightarrow \Out(B)\) has kernel a 3-group, and thus there is a lifting of \(\Out_{\mathcal{F}}(B)\) to \(\Aut(B)\). A more delicate point in the proofs of classification and saturation is that (recall the remarks after the Lemma 5.3) the outer automorphism groups \(\Out_{\mathcal{F}}(P)\) for \(P \leq B\ \mathcal{F}\)-Alperin \((P\) can be the whole \(B\) appearing in the tables are described as subgroups of \(\SL_2(3)\), and that while for \(P = E_i\) or \(V_i\) the Frattini maps \(\Out(P) \rightarrow \GL_2(3)\) are isomorphisms, for \(\gamma_1\) and \(B\) they are not.

The choice of \(\SL_2(3)\) and \(\GL_2(3)\) lying in \(\Out(\gamma_1) = \Aut(\gamma_1)\) and of \(\mathbb{Z}/2 \times \mathbb{Z}/2 \leq \Out(B)\) are not totally arbitrary. In fact, the choice of \(\Aut_{\mathcal{F}}(B)\) must go by the restriction map \(\Aut(B) \rightarrow \Aut(\gamma_1)\) to the choice of \(\Aut_{\mathcal{F}}(\gamma_1)\). Moreover, as \(\gamma_1\) is characteristic in \(B\) and diagonal automorphisms in \(\Aut_{\mathcal{F}}(\gamma_1) = \Out_{\mathcal{F}}(\gamma_1)\) must lift to \(\Aut_{\mathcal{F}}(B)\) (Lemma 5.7), one can check that the choice of \(\Aut_{\mathcal{F}}(\gamma_1)\) completely determines the choice of \(\Out_{\mathcal{F}}(B)\).

Now we prove that different choices give isomorphic saturated fusion systems. Let \((B, \mathcal{F})\) and \((B, \mathcal{F}')\) be saturated fusion systems that correspond to the same row in some table of the classification. Suppose first that \(\gamma_1\) is not \(\mathcal{F}\)-Alperin: the two semidirect products \(H \overset{\text{def}}{=} B : \Out_{\mathcal{F}}(B)\) and \(H' \overset{\text{def}}{=} B : \Out_{\mathcal{F}'}(B)\) are isomorphic because the lifts of \(\Out_{\mathcal{F}}(B)\) and \(\Out_{\mathcal{F}'}(B)\) to \(\Aut(B)\) are \(\Aut(B)\)-conjugate as the projection \(\Aut(B) \rightarrow \GL_2(3)\) has a kernel 3-group. Then we have an isomorphism of categories \(\mathcal{F}_B(H) \overset{\text{def}}{=} \mathcal{F}_B(H')\) which can be extended to an isomorphism \(\mathcal{F} \overset{\text{def}}{=} \mathcal{F}'\).

If \(\gamma_1\) is \(\mathcal{F}\)-Alperin, then (recall that \(\Aut_{\mathcal{F}}(\gamma_1)\) determines \(\Out_{\mathcal{F}}(B)\)) we build the semidirect products \(H \overset{\text{def}}{=} \gamma_1 : \Out_{\mathcal{F}}(\gamma_1)\) and \(H' \overset{\text{def}}{=} \gamma_1 : \Out_{\mathcal{F}'}(\gamma_1)\). These
groups are isomorphic by Corollary A.19 and have Sylow 3-subgroup B. Then we have an isomorphism of categories $\mathcal{F}_B(H) \cong \mathcal{F}_B(H')$ which can be extended to an isomorphism $\mathcal{F} \cong \mathcal{F}'$.

Exoticism: To justify the values in the last column we have to cope with the possible finite groups having the fusion systems described there.

Consider first all the fusion systems in the tables such that they have at least one \mathcal{F}-Alperin rank two elementary abelian 3-subgroup (respectively at least one \mathcal{F}-Alperin subgroup isomorphic to 3^{1+2} and also γ_1 is \mathcal{F}-Alperin). Consider $N \leq B(3, r; 0, \gamma, 0)$ a nontrivial proper normal subgroup which is strongly closed in \mathcal{F}. By Lemma A.10 N must contain the center of B, and as there is an \mathcal{F}-Alperin rank two elementary abelian 3-subgroup, N must also contain s (respectively, if γ_1 is \mathcal{F}-radical, N must also contain γ_{r-3}, and as there is an \mathcal{F}-Alperin subgroup isomorphic to 3^{1+2}, N must contain s, too). Again by Lemma A.10 N must be isomorphic to 3^{1+2} if $r = 4$ or $B(3, r - 1; 0, 0, 0)$ if $r > 4$.

In all these cases we can apply Proposition 2.19 getting that if they are the fusion system of a group G, then G can be chosen to be almost simple. Moreover the 3-rank of G and the simple group of which G is an extension must be two, so we have to look at the list of all the simple groups of 3-rank two:

a) The information about the sporadic simple groups can be deduced from Table 5.3 and 5.6.1, getting that all of the groups in that family whose 3-rank equals two, have Sylow 3-subgroup of order at most 3^3, and there are not outer automorphisms of order 3.

b) The p-rank over the Lie-type simple groups in a field of characteristic p are in Table 3.3.1, where taking $p = 3$ and the possibilities of the groups of 3-rank two one gets that the order of the Sylow 3-subgroup is at most 3^3, and again there are not outer automorphisms of order 3.

c) The Lie type simple groups in characteristic prime to 3 have a unique elementary 3-subgroup of maximal rank, out of $L_3(q)$ with $3|q - 1$, $L_\beta(q)$ with $3|q + 1$, $G_2(q)$, $3D_4(q)$ or $2F_4(q)$ by [23] 10-2. So, as 3^{1+2} and $B(3, r; 0, \gamma, 0)$ do not have a unique elementary abelian 3-subgroup of maximal rank, we have to look at the fusion systems of this small list.

The fusion systems induced by $L_3^+(q)$, when $3|(q - 1)$, and by $L_3^-(q)$, when $3|(q + 1)$, are the same, and can be deduced from [13] Example 3.6 and [5] using the fact that there is a bijection between radical subgroups in $\text{SL}_3(q)$ and radical subgroups in $\text{PSL}_3(q)$, therefore obtaining the result in Table 4. The extensions of $L_3^+(q)$ by a group of order prime to 3 must be also considered, getting fusion systems over the same 3-group. Finally, Out($L_3^+(q)$) has 3-torsion, so we must consider the possible extensions, getting the group $\text{PGL}_3(q)$ and an extension $\text{PGL}_3(q).2$. The study of the proper radical subgroups in this case is done in [5], getting that the only proper \mathcal{F}-radical is V_0.

The fusion system of $G_2(q)$ is studied in [28] and [16], getting that it corresponds to the fusion system labeled as $3L_3^+(q) : 2$.

The fusion system of $3D_4(q)$ can be deduced from [27], getting the desired result.

Finally the fusion system of $2F_4(q)$ has been studied in [13] Example 10.7.

This classification tells us that all the other cases where there is an \mathcal{F}-Alperin rank two elementary abelian 3-subgroup, and also the ones such that γ_1 and one
subgroup isomorphic to 3_{+}^{1+2} are \mathcal{F}-radical, must correspond to exotic p-local finite groups.

Consider now the cases where the only proper \mathcal{F}-Alperin subgroup is γ_1. In those cases it is straightforward to check that they correspond to the groups $\gamma_1 : SL_2(3)$ and $\gamma_1 : GL_2(3)$, where the actions are described in Lemma A.17.

In all of the remaining cases, the ones where all the proper \mathcal{F}-Alperin subgroups are isomorphic to 3_{+}^{1+2}, the normalizer of the center of $B(3; r; 0, \gamma, 0)$ in \mathcal{F} is the whole fusion system \mathcal{F} (i.e. $Z(B(3; r; 0, \gamma, 0))$ is normal in \mathcal{F}).

Consider first the ones where $Z(B(3; r; 0, \gamma, 0))$ is central in \mathcal{F}, i.e. the ones where for all E_i, a proper \mathcal{F}-radical subgroup isomorphic to 3_{+}^{1+2}, we have $\text{Out}_{\mathcal{F}}(E_i) = SL_2(3)$. Using Lemma 2.21 we get that they correspond to groups if and only if the quotient by the center also corresponds to a group, getting again the results in the tables.

Finally it remains to justify that $3\mathcal{F}(3^{2k}, 1).2$ and $3\mathcal{F}(3^{2k}, 2).2$ are not the fusion system of finite groups. Consider G a finite group with one of those fusion systems, and consider $Z(B)$ the center of $B(3, 2k+1; 0, 0, 0)$. Now consider the fusion system constructed as the centralizer of $Z(B)$ (Definition 2.11). Then, by Remark 2.12, $3\mathcal{F}(3^{2k}, 1)$ or $3\mathcal{F}(3^{2k}, 2)$ would also be the fusion system of the group $C_Z(B)(G)$, and we know that these are exotic.

\section{Appendix A. Rank two p-groups}

In this Appendix we recall all the information and properties of p-rank two p-groups that we need to classify the saturated fusion systems over these groups.

The classification of the rank two p-groups, $p > 2$, traces back to Blackburn (e.g. see [29] Theorem 3.1]).

\textbf{Theorem A.1.} Let p be an odd prime. Then the p-groups of p-rank two are the ones listed here:

(i) The noncyclic metacyclic p-groups, which we denote $M(p, r)$.

(ii) The groups $C(p, r)$, $r \geq 3$, defined by the following presentation:

\[C(p, r) = \langle a, b, c \mid a^p = b^p = c^{p^{r-2}} = 1, [a, b] = c^{p^{r-3}}, [a, c] = [b, c] = 1 \rangle. \]

(iii) The groups $G(p, r; \epsilon)$, where $r \geq 4$ and ϵ is either 1 or a quadratic nonresidue modulo p, defined by the following presentation:

\[G(p, r; \epsilon) = \langle a, b, c \mid a^p = b^p = c^{p^{r-2}} = 1, [a, b^{-1}] = c^{p^{r-3}}, [a, c] = b \rangle. \]

(iv) If $p = 3$ the 3-groups of maximal nilpotency class, except the cyclic group and the wreath product of $\mathbb{Z}/3$ by itself.

Here $[x, y]$ denotes the commutator $x^{-1}y^{-1}xy$.

\textbf{Proof.} According to [20] Theorem 5.4.15], the class of rank two p-groups $(p$ odd) agrees with the class of p-groups in which every maximal normal abelian subgroup has rank two, or equivalently every maximal normal elementary abelian subgroup has rank two. As the only group of order p^3, which requires at least three generators is $(\mathbb{Z}/p)^3$, the class of rank two p-groups $(p$ odd) agrees with the class of p-groups in which every normal subgroup of size p^3 is generated by at most two elements. The latter class of p-groups is described in [7] Theorem 4.1] when the order of the group is p^n for $n \geq 5$ (and $p > 2$), while the case $n \leq 4$ can be deduced for the classification of p-groups of size at most p^4 [14 pp. 145–146].
To complete the classification above we also need a description of maximal nilpotency class 3-groups, which is given in [6] last paragraph p. 88.

Theorem A.2. The noncyclic 3-groups of maximal nilpotency class and order greater than 3^3 are the groups $B(3, r; \beta, \gamma, \delta)$ with (β, γ, δ) taking the values:

- For any $r \geq 5$, $(\beta, \gamma, \delta) = (1, 0, \delta)$, with $\delta \in \{0, 1, 2\}$.
- For even $r \geq 4$, $(\beta, \gamma, \delta) \in \{(0, \gamma, 0), (0, 0, \delta)\}$, with $\gamma \in \{1, 2\}$ and $\delta \in \{0, 1\}$.
- For odd $r \geq 5$, $(\beta, \gamma, \delta) \in \{(0, 1, 0), (0, 0, \delta)\}$, with $\delta \in \{0, 1\}$.

With these parameters, $B(3, r; \beta, \gamma, \delta)$ is the group of order 3^r defined by the set of generators $\{s, s_1, s_2, \ldots, s_{r-1}\}$ and relations

\[s_i = [s_{i-1}, s] \text{ for } i \in \{2, 3, \ldots, r-1\}, \]

\[[s_1, s_2] = s_\delta^r, \]

\[[s_1, s_i] = 1 \text{ for } i \in \{3, 4, \ldots, r-1\}, \]

\[s^3 = s_{\delta^r-1}, \]

\[s^3_1 s^3_2 s^3_3 = s^3_{\delta^r-1}, \]

\[s^3_i s^3_{i+1} s^3_{i+2} = 1 \text{ for } i \in \{2, 3, \ldots, r-1\}, \] and assuming $s_r = s_{r+1} = 1$.

Remark A.3. For $p = 3$ and $r = 4$ we have that $B(3, 4; 0, 0, 0) \cong G(3, 4; 1)$, $B(3, 4; 0, 2, 0) \cong G(3, 4; -1)$ and $B(3, 4; 0, 1, 0)$ is the wreath product $3 \wr 3$ that has 3-rank three.

Remark A.4. In [6] the classification of the p-groups of maximal rank depends on four parameters α, β, γ and δ, but for $p = 3$ we have $\alpha = 0$. In this entire paper, with the notation $B(3, r; \beta, \gamma, \delta)$, we assume that the parameters (β, γ, δ) correspond to those stated in Theorem A.2 for rank two 3-groups.

What follows is a description of the group theoretical properties of the groups listed in Theorems A.1 and A.2 that are used throughout the paper.

We begin with the family $C(p, r)$.

Lemma A.5. Consider $C(p, r)$ as in Theorem A.1 with the same notation for the generators:

(a) The center is $(c) \cong Z/p^{r-2}$.

(b) The commutators are determined by $[a^i b^j, a^s b^t] = c^{(i-s)j} p^{r-3}$.

(c) $C(p, r) = Z(C(p, r)) \Omega_1(C(p, r))$, and therefore $C(p, r)$ is isomorphic to the central product $Z/p^{r-2} \circ C(p, 3)$.

(d) The restriction of the elements in $\text{Aut}(C(p, r))$ to $Z(C(p, r))$ and $\Omega_1(C(p, r))$ provides an isomorphism $\text{Aut}(C(p, r)) \cong (Z/p^{r-3} \times \text{ASL}_2(p)) : (p-1) < \text{Aut}(Z/p^{r-2}) \times \text{Aut}(C(p, 3))$.

(e) $\text{Aut}(C(p, r)) = \text{Im}(\text{C}(p, r)) : \text{Out}(C(p, r)) \cong (Z/p \times Z/p) : (Z/p^{r-3} \times \text{GL}_2(p))$.

(f) For $G = \text{GL}_2(p)$ or $\text{SL}_2(p)$, the group $\text{Out}(C(p, r))$ contains just one subgroup isomorphic to G up to conjugation such that the induced action of any $S \in \text{Syl}_p(G)$ on $Z(C(p, r))$ is trivial.
The center of is a self-centralizing maximal subgroup in $C(p, r)$.

Proof. The statement (a) follows from the presentation of $C(p, r)$ while (b) can be read from [19] Lemma 1.1. The central product given in (c) is obtained by identifying \mathbb{Z}/p^{r-2} with (c) = $Z(C(p, r))$ and $C(p, 3)$ with $\langle a, b \rangle = \Omega_1(C(p, r))$, so their intersection is $\langle e^{p^{r-3}} \rangle = Z(\langle a, b \rangle)$. Moreover, $Z(C(p, r))$ and $\Omega_1(C(p, r))$ are characteristic subgroups of $C(p, r)$, and therefore every element in $\text{Aut}(C(p, r))$ maps each of these subgroups to itself. Then (c) implies that

$$\text{Aut}(C(p, r)) = \{ (f, g) \in \text{Aut}(\langle c \rangle) \times \text{Aut}(\langle a, b \rangle) | f(e^{p^{r-3}}) = g(e^{p^{r-3}}) \}$$

providing the description of $\text{Aut}(C(p, r))$ in (d), while the morphism ρ is obtained by considering outer automorphisms and projecting on the $(p, 3)$ factor (see [30] Lemma 3.1). As $\text{Aut}(G) = \text{Inn}(G) : \text{Out}(G)$ for $G = \mathbb{Z}/p^{r-2}$ and $C(p, 3)$, (d) implies (e). Note that if $G = \text{GL}_2(p)$ or $\text{SL}_2(p)$, $\text{GL}_2(p)$ contains just one copy of G up to conjugacy, and therefore, the number of subgroups of $\text{Out}(C(p, r)) \cong \mathbb{Z}/p^{r-3} \times \text{GL}_2(p)$ isomorphic to G up to conjugation depends on $\text{hom}(G, \mathbb{Z}/p^{r-2})$. Since G is p-perfect for $p > 3$, this latter set contains just one element unless $p = 3$, $r > 3$ and $G = \text{SL}_2(3)$. Now, $\text{hom}(\text{SL}_2(3), \mathbb{Z}/3^{r-3})$ contains three elements that give rise to three subgroups of type $\text{SL}_2(3)$ in $\text{Out}(C(3, r))$, determined by their Sylow 3-subgroups $S_i \triangleleft \langle (3^{r-4}i, \{2 \}) \rangle$ for $i = 0, 1, 2$ (note that $\text{SL}_2(p)$ is generated by elements of order p [20 Theorem 2.8.4]). But S_1 and S_2 are conjugate in $\text{Out}(C(3, r))$ and therefore there are just two conjugacy classes of $\text{SL}_2(3)$ in $\text{Out}(C(3, r))$ if $r > 3$. Finally, note that the p-elements of $\text{Out}(C(p, r)) \cong \mathbb{Z}/p^{r-3} \times \text{GL}_2(p)$ that act trivially on $Z(C(p, 3))$ are all contained in the $\text{GL}_2(p)$ factor, and therefore (f) follows from the description of the conjugacy classes above. \qed

Lemma A.6. Let H be a centric subgroup of $C(p, r)$; then H is either the whole group or $H \cong \mathbb{Z}/p \times \mathbb{Z}/p^{r-2}$.

Proof. Assume H is a centric subgroup of $C(p, r)$. So H must contain the center $\langle c \rangle$ as a proper subgroup. Let $a^ib^j \in H \setminus \langle c \rangle$. Then we have that $\langle a^ib^j, c \rangle \cong \mathbb{Z}/p \times \mathbb{Z}/p^{r-2}$ is a self-centralizing maximal subgroup in $C(p, r)$, so then H is either the whole group or $\langle a^ib^j, c \rangle$. \qed

The following properties of $G(p, r; \epsilon)$ can be deduced directly from [19] Section 1.

Lemma A.7. Consider $G(p, r; \epsilon)$ as in Theorem A.1 with the same notation for the generators:

(a) The commutators are determined by the formula $[a^ib^jc^k, a^ib^jc^v] = b^{iu - sk}c^n$ where $n = \epsilon p^{r-3}(u^{\frac{1}{2}} - 1) + js - it - k^{\frac{s-1}{2}}$.

(b) The center of $G(p, r; \epsilon)$ is the group generated by $\langle c^p \rangle$, and, as $r \geq 4$, it contains $\langle e^{p^{r-3}} \rangle$.

(c) There is a unique automorphism in $G(p, r; \epsilon)$ which maps $\rho(a) = a^ib^j \epsilon^{p^{r-3}}$ and $\rho(c) = b^ic^{u}$ for any $i, j, l, t, u \in \{ \pm1 \} \times \mathbb{Z}/p \times \mathbb{Z}/p \times \mathbb{Z}/p \times (\mathbb{Z}/p^{r-2})^*$.
Lemma A.8. If \((p, r; \epsilon) \neq (3, 4; 1)\), the centric subgroups of \(G(p, r; \epsilon)\) are the ones in the following table:

<table>
<thead>
<tr>
<th>Isomorphism type</th>
<th>Subgroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G(p, r; \epsilon))</td>
<td>(\langle a, b, c \rangle)</td>
</tr>
<tr>
<td>(\mathbb{Z}/p \times \mathbb{Z}/p^{r-2})</td>
<td>(\langle b, c \rangle)</td>
</tr>
<tr>
<td>(\mathbb{Z}/p^{r-2})</td>
<td>(\langle ab^j c^i \rangle \text{ with } i \in \mathbb{Z}/p \text{ and } j \in (\mathbb{Z}/p^{r-2})^*)</td>
</tr>
<tr>
<td>(M(p, r-1))</td>
<td>(\langle ac^i, b \rangle \text{ with } j \in (\mathbb{Z}/p^{r-2})^*)</td>
</tr>
<tr>
<td>(\mathbb{Z}/p \times \mathbb{Z}/p^{r-3})</td>
<td>(\langle ab^j, c^p \rangle)</td>
</tr>
<tr>
<td>(C(p, r-1))</td>
<td>(\langle a, b, c^p \rangle)</td>
</tr>
</tbody>
</table>

Proof. It is clear that the total is a centric subgroup, so let \(H < G(p, r; \epsilon)\) be a centric subgroup different from the total. As it must contain its centralizer in \(G(p, r; \epsilon)\) we have that \(\langle \epsilon^j \rangle < H\).

We divide the proof in different cases:

Case \(H \leq \langle b, c \rangle\); then, as \(\langle b, c \rangle\) is commutative, we have \(H = \langle b, c \rangle \cong \mathbb{Z}/p \times \mathbb{Z}/p^{r-2}\), and using the commutator rules of this group one can check that it is centric.

So in the following cases there is an element of the form \(\alpha = ab^i c^j\) in \(H\).

Case \(p \nmid j\) and \(H\) cyclic: as \(p \nmid j\) we can construct an automorphism of \(G(p, r; \epsilon)\) sending \(a \mapsto ab^i\) and \(c \mapsto c^j\), so we can compute the order of \(\alpha\) computing the order of \(ac\). Now one can check the following formula:

\[
(ac)^n = a^n b^{-(\binom{n}{2})} c^{n-\binom{n}{3}} p^{r-3}.
\]

So if \((p, r, \epsilon) \neq (3, 4, 1)\) we get that \((ac)^p = c^{kp}\), so \(ac\) has order \(p^{r-2}\) and it is self-centralizing, so it is centric. In this case we have \(H = \langle \alpha \rangle \cong \mathbb{Z}/p^{r-2}\).

Case \(p \mid j\) and \(H\) not cyclic: we can assume that \(H\) has two generators, and one of them is \(\alpha\): if we consider an element \(\beta = H \setminus \langle \alpha \rangle\), then the order of \(\langle \alpha, \beta \rangle\) is at least \(p^{r-1}\), so if we add another element we would have the total. As we are considering that \(H\) is not the total, we can assume \(H = \langle \alpha, \beta \rangle\). We can also assume that \(\beta = b^{k^j} c^l\) (if the generator \(a\) would appear in the expression of \(\beta\) we could take a power of \(\beta\) and multiply it by \(\alpha^{-1}\) to change the generators). So consider \(H = \langle \alpha, \beta \rangle\) with \(H\) not cyclic and different from the total, then prove that it is metacyclic: the order of \(H\) is \(p^{r-1}\) and, as \(H\) is not cyclic, then \(\beta \notin \langle \alpha \rangle\), so either \(k \neq 0\) or \(p \nmid l\). If \(k = 0\), then, as \(p \nmid l\) we have \(H = \langle ab^i, c \rangle\), and as \([ab^i, c] = b, H\) is the total, which is not considered. So \(k \neq 0\), and now we have to distinguish between two cases: \(p \mid l\) and \(p \nmid l\). If \(p \mid l\) we can consider the inverse of the automorphism \(\rho = G(p, r; \epsilon)\) with \(\rho(a) = a\) and \(\rho(c) = b^{k^j}\) and we have \(\rho^{-1}(H) = \langle ab^i c^j, c \rangle = G(p, r; \epsilon), so H = G(p, r; \epsilon)\), which implies that \(p \mid l\), and we can consider the group generated by \(\langle ab^i c^j, b^{k^j} \rangle\). One more reduction is cancellation of \(b^i\) by means of a multiplication by \((b^{k^j})^{-1}\), so the generators are \(\alpha = ac^j\) and \(\beta = b^{k^j}\). We can still simplify the generators using the fact that \(\langle \alpha^p \rangle = \langle \epsilon^p \rangle\), getting \(\langle ac^j, b \rangle\). To see that it is metacyclic just check that \([H, H] = \langle \epsilon^{p-3} \rangle \cong \mathbb{Z}/p\), and that the class of \(\alpha\) in the quotient \(H/[H, H]\) has order \(p^{r-3}\), the same order as \(H/[H, H]\), so it is cyclic, and \(H \cong M(p, r - 1)\).
Case $p | j$: we can assume that all the elements in H are of the form $a^k b^l c^m$, because if there were an element in H with an exponent in c which is not a multiple of p, then we would be in one of the previously studied cases. As c^p must be in H, then we have that $(a^k b^l, c^p) \leq H$. One can check by means of the commutator formula that the group $\langle ab^i, c^p \rangle \cong \mathbb{Z}/p \times \mathbb{Z}/p^{r-3}$ is self-centralizing, therefore centric. Moreover if $H \setminus \langle ab^i, c^p \rangle \neq \emptyset$, all the other restrictions of this case imply that there is an element of the form $a^j b^k$ in $H \setminus \langle ab^i, c^p \rangle$, and an easy calculation gives us that $\langle ab^i, a^j b^k, c^p \rangle \cong C(p, r-1)$. This also proves that there is only one centric subgroup in $G(p, r; \epsilon)$ isomorphic to $C(p, r-1)$. □

It remains to study maximal nilpotency class 3-groups, beginning with the following properties that can be read in [5] and [20, III.14].

Proposition A.9. Consider $B(3, r; \beta, \gamma, \delta)$ as defined in Theorem A.2 with the same notation for the generators. Then the following hold:

(a) From relations (4) to (9) we get

\[
(s^{\pm 1} s_1^{r_1} \cdots s_{r-1}^{r_{r-1}})^3 = s_r^{\pm \delta + \gamma \zeta_1 \pm \beta \zeta_2}.
\]

(b) $\gamma_i(B(3, r; \beta, \gamma, \delta))$ is a characteristic subgroup of order 3^{i-1} generated by s_i and s_{i+1} for $i = 1, ..., r - 1$ (assuming $s_r = 1$).

(c) $\gamma_1(B(3, r; \beta, \gamma, \delta))$ is a metacyclic subgroup.

(d) $\gamma_i(B(3, r; \beta, \gamma, \delta))$ is abelian if and only if $\beta = 0$.

(e) The extension

\[
1 \rightarrow \gamma_1 \rightarrow B(3, r; \beta, \gamma, \delta) \rightarrow \mathbb{Z}/3 \rightarrow 1
\]

is split if and only if $\delta = 0$.

(f) $Z(B(3, r; \beta, \gamma, \delta)) = \gamma_{r-1}(B(3, r; \beta, \gamma, \delta)) = \langle s_{r-1} \rangle$.

The following lemma is useful when studying the exoticism of the fusion systems constructed in Section 5.

Lemma A.10. Let N be a nontrivial proper normal subgroup in $B(3, r; 0, \gamma, 0)$. Then

(a) N contains $Z(B(3, r; 0, \gamma, 0))$.

(b) If N contains s, then $N \cong 3^1 \times 2^1$ if $r = 4$ or $N \cong B(3, r-1; 0, 0, 0)$ if $r > 4$.

Proof. According to [4, Theorem 8.1] N must intersect $Z(B(3, r; 0, 0, 0))$ in a nontrivial subgroup. As in our case the order of the center is p, we obtain (a).

From Lemma 2.1 we deduce that if the index of N in $B(3, r; 0, \gamma, 0)$ is 3^l with $l \geq 2$, then $N = \gamma_l$, and it does not contain s. So a proper normal subgroup N which contains s must be of index 3 in $B(3, r; 0, \gamma, 0)$, so $B(3, r; 0, \gamma, 0)/N$ is abelian, and the quotient morphism $B(3, r; 0, \gamma, 0) \rightarrow B(3, r; 0, \gamma, 0)/N$ factors through $B(3, r; 0, \gamma, 0)/\gamma_2(B(3, r; 0, \gamma, 0)) \cong \mathbb{Z}/3 \times \mathbb{Z}/3$ (the commutator of $B(3, r; 0, \gamma, 0)$ is $\gamma_2(B(3, r; 0, \gamma, 0))$, generated by the classes \bar{s} and \bar{s}). Now we have to take the inverse image of the proper subgroups in $\mathbb{Z}/3 \times \mathbb{Z}/3$ of order 3, getting that N must be γ_1, $\langle s, s_2 \rangle$, $\langle ss_1, s_2 \rangle$ or $\langle ss_1^{-1}, s_2 \rangle$. Only the second contains s, obtaining the second part of the result. □
Lemma A.11. For the groups $B(3, r; \beta, \gamma, 0)$ it holds that:

(a) $\gamma_2(B(3, r; \beta, \gamma, 0))$ is abelian.
(b) The orders of s_1, s_2 and s_3 are 3^k, 3^k and 3^{k-1} if $r = 2k + 1$, and 3^k, 3^{k-1} and 3^{k-1} if $r = 2k$.

Proof. We check that $\gamma_2(B(3, r; \beta, \gamma, 0))$ is abelian. If $\beta = 0$, then γ_1 is abelian and $\gamma_2 < \gamma_1$, and if $\beta = 1$ (which implies $\gamma = 0$) we have to see that s_2 and s_3 commute. We have the following equalities:

$$[s_3, s_2] = s_3^{-1}s_2^{-1}s_3s_2 = s_3^3s_2^{-1}s_2^{-1}s_1^{-3}s_2 = s_1^3s_2^{-1}s_1^{-3}s_2.$$

So we have reduced to check that s_2 and s_3 commute.

We use (2) to deduce $s_2^{-1}s_1s_2 = s_1s_{r-1}$, and raise it to the cubic power to get $s_2^{-1}s_1^3s_2 = s_1^3s_{r-1}$. Equation (3) for $i = r - 1$ tells us that the order of s_{r-1} is 3, so s_2 and s_3^3 commute.

We now compute the orders of s_1, s_2 and s_3. Begin using that s_{r-1} has order 3. Equation (2) for $i = r - 2$ yields $s_3^3s_{r-2}^3 = 1$, from which s_{r-2} has order 3, too. For $i = r - 3$ the equation becomes $s_3^3s_{r-3}^2s_{r-1} = 1$, and so s_{r-3} has order 9. An induction procedure, taking care of the parity of r, provides us with the desired result.

The next lemma describes the conjugation by s action on γ_1.

Lemma A.12. For $B(3, r; \beta, \gamma, 0)$ the conjugation by s on the characteristic subgroup $\gamma_1(B(3, r; \beta, \gamma, 0))$ is given by:

<table>
<thead>
<tr>
<th>γ</th>
<th>$\beta = 0$, $r = 2k+1$</th>
<th>$\beta = 0$, $r = 2k$</th>
<th>$\beta = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$s_1^s = s_1s_2$</td>
<td>$s_1^s = s_1s_2$</td>
<td>$(s_1^f)^s = s_1^fs_2^fs_{r-1}^{-f}(1-f)/2$</td>
</tr>
<tr>
<td></td>
<td>$s_2^s = s_1^{-3}s_2^{-2}$</td>
<td>$s_1^{-3}s_2^{-2}$</td>
<td>$(s_2^f)^s = s_1^{-3}f s_2^{-2}f$</td>
</tr>
<tr>
<td>1</td>
<td>$s_2^s = s_1s_2$</td>
<td>$s_1^{-3}s_2^{-2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$s_2^s = s_1^{-3}(s_2^{-3})^{-1}$</td>
<td>$s_2^s = s_1^{-3}(s_2^{-3})^{-1} + 1s_2^{-2}</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$s_1^s = s_1s_2$</td>
<td>$s_1^s = s_1s_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$s_2^s = s_1^{-3}$</td>
<td>$s_2^{-3}(s_2^{-3})^{-1}$</td>
<td></td>
</tr>
</tbody>
</table>

Proof. We begin first with the case of $\beta = 0$. To find the expression for the conjugation by s action on γ_1 note that $s_1^s = s_1[s_1, s] = s_1s_2$ by (1) and that analogously $s_2^s = s_2[s_2, s] = s_2s_3$. So we need to express s_3 as a product of powers of s_1 and s_2. We begin writing s_{r-1} as a product of powers of s_2 and s_3. Bearing this objective in mind we use (2) as before, but beginning with $i = 2$. In this case we obtain $s_4 = s_2^{-3}s_3^{-3}$. For $i = 3$ the relation is

$$s_5 = s_3^{-3}s_4^{-3} = s_3^{-3}(s_2^{-3}s_3^{-3})^{-3} = s_2^{-9}s_3^{-6}.$$

If $i \geq 4$ and we obtained in an earlier stage that

$$s_i = s_2^{a_i}s_3^{b_i}, \ s_{i+1} = s_2^{a_{i+1}}s_3^{b_{i+1}},$$

then (1) would read as

$$s_{i+2} = s_i^{-3}s_{i+1}^{-3} = (s_2^{a_i}s_3^{b_i})^{-3}(s_2^{a_{i+1}}s_3^{b_{i+1}})^{-3} = s_2^{-3a_i-3a_{i+1}}s_3^{-3b_i-3b_{i+1}}.$$
So \(s_{r-1} = s_2^{a_{r-1}} s_3^{b_{r-1}} \), where \(a_{r-1} \) and \(b_{r-1} \) are obtained from the recursive sequences \(a_4 = -3, a_5 = 9, a_{i+2} = -3a_i - 3a_{i+1} \) and \(b_4 = -3, b_5 = 6, b_{i+2} = -3b_i - 3b_{i+1} \) for \(i \geq 4 \).

Substituting this last result in \((5) \) in Theorem A.2, we reach \(s_3 = s_1^{3b} s_2^{(3-\gamma a_{r-1})b'} \), where \(b'(\gamma b_{r-1} - 1) = 1 \) modulo the order of \(s_3 \) and \(s_2^s = s_1^{3b'} s_2^{1+(3-\gamma a_{r-1})b'} \). Finally, some further calculus using the recursive sequences \(\{a_i\} \) and \(\{b_i\} \) and taking into account separately the three possible values of \(\gamma \) finishes the proof for \(\beta = 0 \).

For the case \(\beta = 1 \) we use the relations in the presentation of Theorem A.2 to find the commutator rules in \(B(3, r; 1, 0, 0) \).

Remark A.13. In the cases with \(\beta = 0 \) we have that \(\gamma_1(B(3, r; 0, \gamma, 0)) \) is a rank two abelian subgroup generated by \(\{s_1, s_2\} \), so we can identify the conjugations by \(s \) with a matrix \(M_s \), obtaining

\[
M_s^{r,0} = \begin{pmatrix} 1 & -3 \\ -2 & 1 \end{pmatrix}, \quad M_s^{2k+1,1} = \begin{pmatrix} 1 & -3 \\ (-3)^k & 1 \end{pmatrix}, \\
M_s^{2k,1} = \begin{pmatrix} 1 & -3((-3)^{k-1}) \\ -2 & 1 \end{pmatrix} \quad \text{and} \quad M_s^{2k,2} = \begin{pmatrix} 1 & 3((-3)^{k-2}) \\ -2 & 1 \end{pmatrix}.
\]

Next we determine the automorphism groups of \(B(3, r; 0, \gamma, 0) \) and \(B(3, r; 1, 0, 0) \).

Lemma A.14. The automorphism group of \(B(3, r; \beta, \gamma, 0) \) consists of the homomorphisms that send

\[
s \mapsto s^s s_1^{e'} s_2^{e''}, \quad s_1 \mapsto s_1^{f'} s_2^{f''},
\]

where the parameters verify the following conditions:

<table>
<thead>
<tr>
<th></th>
<th>(\beta = 0, \ r \ odd)</th>
<th>(\beta = 0, \ r \ even)</th>
<th>(\beta = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma = 0)</td>
<td>(e = \pm 1, 3 \nmid f')</td>
<td>(e = \pm 1, 3 \nmid f')</td>
<td>(e = 1, 3 \nmid e', 3 \nmid f')</td>
</tr>
<tr>
<td>(\gamma = 1)</td>
<td>(e = 1, 3 \nmid e', 3 \nmid f')</td>
<td>(e = \pm 1, 3 \nmid e', 3 \nmid f')</td>
<td>-</td>
</tr>
<tr>
<td>(\gamma = 2)</td>
<td>-</td>
<td>(e = \pm 1, 3 \nmid e', 3 \nmid f')</td>
<td>-</td>
</tr>
</tbody>
</table>

Proof. We begin with the case of \(\beta = 0 \). As \(\gamma_1 = \langle s_1, s_2 \rangle \) is characteristic and \(B(3, r; 0, \gamma, 0) \) is generated by \(s \) and \(s_1 \), every homomorphism \(\varphi \in B(3, r; 0, \gamma, 0) \) is determined by

\[
s \mapsto s^s s_1^{e'} s_2^{e''}, \quad s_1 \mapsto s_1^{f'} s_2^{f''}
\]

for some integers \(e, e', e'', f', f'' \). In the other way, given such a set of parameters, \((4)-(9) \) from Theorem A.2 give us which conditions must verify these parameters in order to get a homomorphism \(\varphi \). In the study of these equations denote by \(M_s \) the matrix of conjugation by \(s \) on \(\gamma_1 \) described in Remark A.13.

- Equation (4): it is straightforward to check that these conditions are equivalent to \(\varphi(s_i) = s_1^{f_i} s_2^{f''} \) for every \(2 \leq i \leq n - 1 \) with \(\left(f_i \right) = M_e \left(f_i^{e-1} \right) \), where \(M_e = M_s - \text{Id} \), \(f'_i = f' \) and \(f''_i = f'' \). In particular we obtain the value of \(\varphi(s_2) \), and so we get the restriction of \(\varphi \) to \(\gamma_1 = \langle s_1, s_2 \rangle \).

- Equations (5) and (6): as \(\beta = 0 \), \(\gamma_1 \) is abelian and these equations are satisfied if the conditions for (4) are also.

- Equation (7): using (10) from Proposition A.9 we find that if \(\gamma = 0 \), there are no additional conditions and if \(\gamma = 1, 2 \) it must be verified that \(3 \nmid e' \).
• Equation \((8)\): the condition is
\[
(3 + 3M_e + M_e^2 - \gamma M_e^{-2})(f') = 0.
\]
For \(\gamma = 0\) it holds that \(3 + 3M_e + M_e^2 = 0\). So there are not more conditions on the parameters. If \(\gamma = 1, 2\), using the integer characteristic polynomial of \(M_e\) to compute \(M_e^{-1}\), we produce two recursive sequences, similar to the ones in Lemma \(A.12\) whose \((r - 1)\)-th term equals
\[
(3 + 3M_e + M_e^2 - \gamma M_e^{-2})(f') = 0.
\]
Checking details we obtain just the condition \(3 | f'\) if \(r\) is odd, \(\gamma = 1\) and \(e = -1\).

• Equation \((9)\): it is easy to check that, as \(r \geq 5\), the imposed conditions for \(i = 2, ..., r - 1\) are equivalent to
\[
M_e(3 + 3M_e + M_e^2)(f') = 0.
\]
Since \(M_3^3 = \text{Id}\), then \(M_e(3 + 3M_e + M_e^2) = 0\). So there are not additional conditions on the parameters.

So we have just got the conditions on the parameters so that there exists a homomorphism \(\phi\) such that the images on \(s\) and \(s_1\) are predetermined by the parameters \(e, e', e'', f', f''\). It just remains to look for the conditions on \(\phi\) so it is an automorphism. A quick check shows that the conditions are \(3 | e\) and the determinant of \(\phi|\gamma_1\) is invertible modulo 3, which is equivalent to \(3 | f'\).

For \(B(3, r; 1, 0, 0)\) the arguments are similar, using the commutator rules for powers of \(s, s_1\) and \(s_2\).

In the next two lemmas we find out which copies of \(\mathbb{Z}/3^n \times \mathbb{Z}/3^n\) and \(C(3, n)\) are in \(B(3, r; \beta, \gamma, 0)\) and how they lie inside this group.

Lemma A.15. Let \(P\) be a proper centric subgroup of \(B(3, r; 0, \gamma, 0)\) isomorphic to \(\mathbb{Z}/3^n \times \mathbb{Z}/3^n\) or \(C(3, n)\) for some \(n\). Then \(P\) is determined, up to conjugation, by the following table:

<table>
<thead>
<tr>
<th>Isomorphism type</th>
<th>Subgroup (up to conjugation)</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{Z}/3^k \times \mathbb{Z}/3^k)</td>
<td>(\gamma_1 = \langle s_1, s_2 \rangle)</td>
<td>(r = 2k + 1).</td>
</tr>
<tr>
<td>(3_{k+2}^1)</td>
<td>(E_i \overset{\text{def}}{=} \langle \zeta, \zeta', s_{s1}^i \rangle)</td>
<td>(\zeta = s_2^{3^{k-1}}, \zeta' = s_1^{3^{k-1}} \text{ for } r = 2k+1,) (\zeta = s_1^{3^{k-1}}, \zeta' = s_2^{-3^{k-2}} \text{ for } r = 2k,) (i \in {-1, 0, 1} \text{ if } \gamma = 0 \text{ and } i = 0 \text{ if } \gamma = 1, 2.)</td>
</tr>
<tr>
<td>(\mathbb{Z}/3 \times \mathbb{Z}/3)</td>
<td>(V_i \overset{\text{def}}{=} \langle \zeta, s_{s1}^i \rangle)</td>
<td></td>
</tr>
</tbody>
</table>

Proof. First, suppose that \(P\) is contained in \(\gamma_1\). As \(\gamma_1\) is abelian and \(P\) must contain its centralizer as it is centric, \(P\) must equal \(\gamma_1\). Recalling the orders of \(s_1\) and \(s_2\) we check that only the case \(r\) odd is allowed.

Suppose now that \(P\) is not contained in \(\gamma_1\). Then \(P\) fits in the short exact sequence
\[
1 \to K \to P \xrightarrow{\pi} \mathbb{Z}/3 \to 1,
\]
with \(K \leq \gamma_1\). If \(K = \mathbb{Z}/3^m\), then, as \(P \cong \mathbb{Z}/3^n \times \mathbb{Z}/3^n\) or \(P \cong C(3, n)\), we get that the only possibility is \(m = 1\) and \(P \cong \mathbb{Z}/3 \times \mathbb{Z}/3\). Suppose then that \(K = \mathbb{Z}/3^m \times \mathbb{Z}/3^n\). Now, checking cases again, the only chance for \(P\) to be \(C(3, n)\).
An easy calculation shows that $C_{B(3, r; 0, \gamma, 0)}(P) \cong \mathbb{Z}/3$. As this centralizer must contain the center of $P \cong C(3, n)$, which from Lemma A.5 is $Z(C(3, n)) \cong \mathbb{Z}/3^{n-2}$, n must equal 3 and $P \cong 3^{1+2}$. Now we determine precisely all the centric subgroups isomorphic to 3^{1+2} or $\mathbb{Z}/3 \times \mathbb{Z}/3$, and their orbits under $B(3, r; 0, \gamma, 0)$-conjugation.

- We begin with the centric subgroups isomorphic to 3^{1+2}. As they are centric they must contain the center of $B(3, r; 0, \gamma, 0)$, which is equal to $\langle \zeta \rangle$. So, from the earlier discussion, they are of the form $3^{1+2}_a \overset{\text{def}}{=} \langle \zeta, \zeta' : (sa) \rangle$, where ζ' is as in the statement of the lemma and $a \in \gamma_1$ is, in principle, arbitrary. Now, sa having order 3 is seen to be equivalent to $N(a) = 0$ where N is the norm operator $N = 1 + s + s^2$. On the other hand, from the description of M_s in Remark A.13 if $a = s_1a_1s_2a_2$ and $a' = s_1'a_1's_2'a_2$, then 3^{1+2} and 3^{1+2}_a are $B(3, r; 0, \gamma, 0)$-conjugate if and only if a_1 and a_1' are congruent modulo 3. As $N = 0$ for $\gamma = 0$ and $a_1 \equiv 0 \mod 3$ for every $a = s_1a_1s_2a_2 \in \text{Ker}(N)$ for $\gamma = 1, 2$, we obtain the desired results.

- The argument to obtain all the centric subgroups isomorphic to $\mathbb{Z}/3 \times \mathbb{Z}/3$ is similar. First, from the earlier discussion, they must be of the form $\langle \zeta, sa \rangle$ for ζ as in the statement and some $a \in \gamma_1$. As before, the condition for $\langle sa \rangle$ to have order 3 is $N(a) = 0$, and $\langle \zeta, sa \rangle$ and $\langle \zeta, sa' \rangle$ are $B(3, r; 0, \gamma, 0)$-conjugate if and only if a_1 and a_1' are in the same class modulo 3.

\[\text{Lemma A.16.} \quad \text{Let } P \text{ be a proper centric subgroup of } B(3, r; 1, 0, 0) \text{ isomorphic to } \mathbb{Z}/3^n \times \mathbb{Z}/3^n \text{ or } C(3, n) \text{ for some } n. \text{ Then } P \text{ is determined, up to conjugation, by the following table:}\]

<table>
<thead>
<tr>
<th>Isomorphism type</th>
<th>Subgroup (up to conjugation)</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Z}/3^{k-1} \times \mathbb{Z}/3^{k-1}$</td>
<td>$\gamma_2 = \langle s_2, s_3 \rangle$</td>
<td>$r = 2k$.</td>
</tr>
<tr>
<td>3^{1+2}_a</td>
<td>$E_0 \overset{\text{def}}{=} \langle \zeta, \zeta', s \rangle$</td>
<td>$\zeta = s_23^{k-1}, \zeta' = s_3^{-3k-2}$ for $r = 2k+1,$ $\zeta = s_33^{k-2}, \zeta' = s_2^{-3k-2}$ for $r = 2k$.</td>
</tr>
<tr>
<td>$\mathbb{Z}/3 \times \mathbb{Z}/3$</td>
<td>$V_0 \overset{\text{def}}{=} \langle \zeta, s \rangle$</td>
<td></td>
</tr>
</tbody>
</table>

Moreover, P is a proper centric subgroup of $B(3, r - 1; 0, 0, 0) \cong \langle s_2, s_3, s \rangle < B(3, r; 1, 0, 0)$.

\[\text{Proof.} \quad \text{Consider the following short exact sequence induced by the abelian characteristic subgroup } \gamma_2 = \langle s_2, s_3 \rangle \text{ of } B(3, r; 1, 0, 0):\]

$$1 \rightarrow \gamma_2 \rightarrow B(3, r; 1, 0, 0) \overset{\pi}{\rightarrow} \mathbb{Z}/3 \times \mathbb{Z}/3 \cong \langle s, s_1 \rangle \rightarrow 1.$$

If P is contained in γ_2, then, as γ_2 is abelian and P must contain its centralizer, P must equal $\gamma_2 = \langle s_2, s_3 \rangle$.

Recalling the orders of s_2 and s_3 we check that only the case r even is allowed.

Suppose now that P is not contained in γ_2 and consider the nontrivial subgroup $\pi(P)$:

Case $\pi(P) = \langle s_1 \rangle, \langle s, s_1 \rangle$ or $\langle s^{-1}, s_1 \rangle$: then P fits in a nonsplit short exact sequence

$$1 \rightarrow K \rightarrow P \overset{\pi}{\rightarrow} \mathbb{Z}/3 \rightarrow 1,$$

with $K \leq \gamma_2$. Checking cases for K and P we obtain that in any case this short exact sequence would split, which is a contradiction.
Case $\pi(P) = \langle s \rangle$: then P is a subgroup of $\tau = \langle s_2, s_3, s \rangle \cong B(3, r - 1; 0, 0, 0)$. Now apply Lemma A.14 and note that conjugation by s_1 conjugates the three copies of 3_{+}^{1+2} and $\mathbb{Z}/3 \times \mathbb{Z}/3$.

Case $\pi(P) = \mathbb{Z}/3 \times \mathbb{Z}/3$: If $P \neq B(3, r; 1, 0, 0)$, then there exists a maximal proper subgroup $H < B$ containing P. As γ_2 is the Frattini subgroup of $B(3, r; 1, 0, 0)$, that is, the intersection of the maximal subgroups, then $\pi(H) = \mathbb{Z}/3$. This is a contradiction with $\pi(P) = \mathbb{Z}/3 \times \mathbb{Z}/3$, and thus P equals $B(3, r; 1, 0, 0)$.

In the proof of Theorem 5.10 we use implicitly some particular copies of $\text{SL}_2(3)$ and $\text{GL}_2(3)$ lying in $\text{Aut}(\gamma_1)$. These are characterized by containing a fixed matrix. In the next lemma we show when they do exist.

Lemma A.17. Consider $P \cong \mathbb{Z}/3^k \times \mathbb{Z}/3^k$ and $M_{s}^{2k+1,\gamma}$ the matrix defined in Remark A.13 for the case $B(3, 2k + 1; 0, \gamma, 0)$. Then:

- For $\gamma = 0$ there is, up to conjugacy, one copy of $\text{SL}_2(3)$ (respectively $\text{GL}_2(3)$) in $\text{Aut}(P)$ containing $M_{s}^{2k+1,0}$.
- For $\gamma = 1$ there is, up to conjugacy, one copy of $\text{SL}_2(3)$ (respectively none of $\text{GL}_2(3)$) in $\text{Aut}(P)$ containing $M_{s}^{2k+1,1}$.

Proof. As $\text{SL}_2(3)$ and $\text{GL}_2(3)$ are 3-reduced, any copy of these groups lying in $\text{Aut}(P)$ is a lift of a subgroup of $\text{GL}_2(3)$ by the Frattini map $\text{Aut}(P) \xrightarrow{\rho} \text{GL}_2(3)$.

It can be checked that for $k = 2$ the statements of the lemma are true. Now, call P' to the Frattini subgroup of P, $P' \overset{\text{def}}{=} \mathbb{Z}/3^{k-1} \times \mathbb{Z}/3^{k-1}$, and consider the restriction map with abelian kernel:

$$1 \to \langle \mathbb{Z}/3 \rangle^4 \to \text{Aut}(P) \xrightarrow{\pi} \text{Aut}(P') \to 1.$$

Let A denote $(\mathbb{Z}/3)^4$. We use this exact sequence to prove the statements by induction on k. We suppose the lemma is true for $k - 1$ and prove it for $k \geq 3$. We take $G = \text{SL}_2(3)$ or $\text{GL}_2(3)$ and $\gamma = 0$ or 1. Call $L_{k,\gamma} \overset{\text{def}}{=} M_{s}^{2k+1,\gamma}$, where $M_{s}^{2k+1,\gamma}$ is the matrix defined in Remark A.13. It is straightforward that $\pi(L_{k,0}^{k}) = L_{k-1,0}$ and $\pi(L_{k,1}^{k}) = L_{k-1,0}$. We prove the lemma in three steps.

Existence: We show the existence of the three stated copies. By hypothesis there exists a lift $G \xrightarrow{\sigma} \text{Aut}(P')$ such that $\rho \sigma = \text{Id}_G$ and with $\mu \overset{\text{def}}{=} L_{k-1,0}^{k} = \left(\begin{array}{cc} 1 & -3 \\ 1 & -2 \end{array} \right) \in \sigma(G)$. Write $H \overset{\text{def}}{=} \langle \mu \rangle \in \text{Syl}_3(\sigma(G))$ and take the pullback twice:

$$\begin{array}{ccc}
A' & \xrightarrow{\pi} & \text{Aut}(P') \\
\downarrow & & \downarrow \\
A'' & \xrightarrow{\pi^{-1}(\sigma(G))} & \sigma(G) \\
\downarrow & & \downarrow \\
A''' & \xrightarrow{\pi^{-1}(H)} & H.
\end{array}$$

As $L_{k,0}^{k} = \left(\begin{array}{cc} 1 & -3 \\ 1 & -2 \end{array} \right)$ lies in $\pi^{-1}(H)$ the bottom short exact sequence splits, and its middle term can be identified with $A : L_{k,0}^{k}$. Note also that $L_{k,1}^{k}$ lies in $A : L_{k,0}^{k}$, there are several lifts of H and the A-conjugacy classes of these lifts are in $1 - 1$ correspondence with $H'(H; A)$. In fact, each section $H \to \pi^{-1}(H)$ corresponds, by the earlier identification, to a derivation $d: H \to A$, such that $d(\mu) = a \mu$ and
\(d(\mu^2) = b\mu^2\) (note that the \(\mu\)'s inside and outside the \(d\) lie in different automorphism groups).

Recall that we are interested in building lifts \(G \to \text{Aut}(P)\) containing \(L^{k,\gamma}\), for which it is enough to give sections of the middle short exact sequence in the diagram above whose images contains \(L^{k,\gamma}\). If this sequence splits, then the \(A\)-conjugacy classes of its sections are in \(1-1\) correspondence with \(H^1(\sigma(G); A)\) (for clarity we do not write \(H^1(\sigma(G); A)\)), and the sections whose image contains \(L^{k,\gamma}\) are precisely those which go by the restriction map \(\text{res}^G_H:\ H^1(G; A) \to H^1(H; A)\) to the class of the section induced by \(L^{k,\gamma}\) in the bottom short exact sequence.

In fact, that the middle sequence splits is due to \(\{G : H\}\) being invertible in \(A\), and applying a transfer argument we find that \(\text{res}^G_H: H^*(G; A) \to H^*(H; A)\) is a monomorphism (and \(\text{cor}^H_G: H^*(H; A) \to H^*(G; A)\) is an epimorphism), so the class of the middle sequence goes by \(\text{res}^G_H: H^2(G; A) \to H^2(H; A)\) to the class of the bottom sequence, which is zero, and must be the zero class too, that is, the split one.

Finally, the sections \(\sigma^0, \sigma^1: H \to \pi^{-1}(H)\) which take \(\mu\) to \(L^{k,0}\) and \(L^{k,1}\) correspond to the identically zero derivation and to \(a = (\frac{1}{3}^\pm0, 1^\pm0, 1^\pm0)\), \(b = (\frac{1}{3}^0, \frac{1}{3}^0, \frac{1}{3}^0)\), respectively. These sections are in the image of the restriction map \(\text{res}^G_H: H^1(G; A) \to H^1(H; A)\) if and only if they are in the \(G\)-invariants in \(H^1(H; A)\).

An easy check shows that \(z \in H^1(H; A)\) is a \(G\)-invariant if and only if \(gz = z\) for every \(g \in N_{\sigma(G)}(H)\). Once we have computed the derivations \(\text{Der}(H, A)\) and the principal derivations \(P(H, A)\), we apply the action of \(g\) on \(\sigma^0\) and \(\sigma^1\) at the cochain level, and check that the class of \(\sigma^0\) is always \(G\)-invariant and that the class of \(\sigma^1\) is \(G\)-invariant just for \(G = \text{SL}_2(3)\) in \(H^1(H; A) \cong \text{Der}(H, A)/P(H, A)\).

Uniqueness: Now we show that the three found copies are unique up to \(\text{Aut}(P)\)-conjugation, as claimed. We use induction and the same tools as in the first step. Take two lifts \(\sigma_1, \sigma_2: G \to \text{Aut}(P)\) containing \(L^{k,\gamma}\). Composing with \(\pi\) we obtain two maps from \(G\) to \(\text{Aut}(P)\) containing \(L^{k-1,0}\). They are lifts if they are injective, that is, if \(A \cap \sigma_i(G)\) is trivial for \(i = 1, 2\). As \(\text{GL}_2(3)\) and \(\text{SL}_2(3)\) are 3-reduced, and as \(A\) is a normal 3-group, these groups are indeed trivial. So, by the induction hypothesis, the two lifts arriving at \(\text{Aut}(P)\) must be conjugated by some \(g' \in \text{Aut}(P')\) which centralizes \(L^{k-1,0}\).

It is a straightforward calculation that the order of the centralizers \(\text{CAut}(P)(L^{k,\gamma})\) for \(\gamma = 0, 1\) is \(2 \cdot 2^{2k-1}\), and that of \(A \cap \text{CAut}(P)(L^{k,\gamma})\) for \(\gamma = 0, 1\) is 9 (for every \(k \geq 2\)). Because \(\pi\) maps \(\text{CAut}(P)(L^{k,\gamma})\) to \(\text{CAut}(P')(L^{k-1,0})\), an element-counting argument shows that in fact \(\pi(\text{CAut}(P)(L^{k,\gamma})) = \text{CAut}(P')(L^{k-1,0})\).

Thus, there exists \(g \in \text{Aut}(P)\) with \(\pi(g) = g'\) and such that \(g\) centralizes \(L^{k,\gamma}\). Therefore the images of \(\sigma_1\) and \(\sigma_2\) contain \(L^{k,\gamma}\) and have the same image by \(\pi\), that is, they both lie in \(A : \sigma_1(G) = \pi^{-1}(\pi\sigma_1(G))\).

Choosing the Sylow 3-subgroup \(H = \langle \mu \rangle\) of \(\pi\sigma_1(G)\) we can construct a three rows short exact sequences diagram as before, and argue using the injectivity of the restriction map \(\text{res}^G_H: H^1(G; A) \to H^1(H; A)\) to obtain the uniqueness. More precisely, as the two sections \(\pi^{-1}: \pi\sigma_1(G) \to \sigma_1(G)\) and \(\pi^{-1}: \pi\sigma_1(G) \to \sigma_2'(G)\) of the middle sequence of the diagram induce the same section in the bottom row, that is, the one which maps \(\mu\) to \(L^{k,\gamma}\), they must be in the same class in \(H^1(G; A)\), which means that they are \(A\)-conjugate. Therefore \(\sigma_1\) and \(\sigma_2\) are \(\text{Aut}(P)\)-conjugate.

Nonexistence: The arguments of the two preceding parts also prove the nonexistence of sections \(\text{GL}_2(3) \to \text{Aut}(P)\) containing \(L^{k,1}\). \(\Box\)
Remark A.18. A cohomology-free proof of the nonexistence of copies (lifts) of \(GL_3(\mathbb{Z}/3^k) \) in \(Aut(\mathbb{Z}/3^k \times \mathbb{Z}/3^k) \) containing \(L^{k,1} = M_2^{k+1,1} \) runs as follows: if this were the case, then, as the elements of order 3 form a single conjugacy class in \(GL_3(\mathbb{Z}) \), we would obtain that \(L^{k,1} \) and its square are conjugate, and so would have same determinant and trace. But one can check that this is not the case.

If \(H \) and \(K \) are groups and \(H \) acts on \(K \) by \(\varphi : H \to Aut(K) \), then we can construct the semidirect product \(K \rtimes H \). In fact, if \(\psi : H \to Aut(K) \) is another action conjugate to \(\varphi \), that is, exists \(\alpha \in Aut(K) \) such that \(\psi(h) = \alpha^{-1} \circ \varphi(h) \circ \alpha \) for every \(h \in H \), then \(K \rtimes H \cong K \rtimes \psi H \). The lemma above implies:

Corollary A.19. There are groups \(\gamma_1 : SL_2(3) \) and \(\gamma_1 : GL_2(3) \) where the actions map \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) to \(M_2^{k+1,1,\gamma} \), with \(\gamma = 0 \) for \(SL_2(3) \) and \(\gamma = 0 \) for \(GL_2(3) \). Moreover, these semidirect products with actions as stated are unique up to isomorphism.

Acknowledgments

The authors are indebted to Ian Leary, Avinoam Mann and Bob Oliver. The first two provided us the references for stating Theorem A.1, while the latter has shown interest and made helpful comments and suggestions throughout the course of this work. The authors also thank the anonymous referee for the improvements suggested.

References

[27] P.B. Kleidman, The maximal subgroups of the Steinberg triality groups $3D_4(q)$ and of their automorphism groups, J. Algebra 115 (1988), 182–199. MR0937609 (89f:20024)

[28] P.B. Kleidman, The maximal subgroups of Chevalley groups $G_2(q)$ with q odd, the Ree groups $2G_2(q)$, and their automorphism groups, J. Algebra 117 (1988), 30–71. MR0955589 (89j:20055)

DEPARTAMENTO DE ÁLGEBRA, GEOMETRÍA Y TOPOLOGÍA, UNIVERSIDAD DE MÁLAGA, APDO CORREOS 59, 29080 MÁLAGA, SPAIN
E-mail address: adiaz@agt.cie.uma.es
Current address: Department of Mathematical Sciences, King’s College, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
E-mail address: a.diaz@maths.abdn.ac.uk

DEPARTAMENT DE MATEMÀTIQUES, UNIVERSITAT AUTÒNOMA DE BARCELONA, 08193 CERDANYOLA DEL Vallès, SPAIN
E-mail address: Albert.Ruiz@uab.es

DEPARTAMENTO DE ÁLGEBRA, GEOMETRÍA Y TOPOLOGÍA, UNIVERSIDAD DE MÁLAGA, APDO CORREOS 59, 29080 MÁLAGA, SPAIN
E-mail address: viruel@agt.cie.uma.es