THIN STATIONARY SETS AND DISJOINT CLUB SEQUENCES #### SY-DAVID FRIEDMAN AND JOHN KRUEGER ABSTRACT. We describe two opposing combinatorial properties related to adding clubs to ω_2 : the existence of a thin stationary subset of $P_{\omega_1}(\omega_2)$ and the existence of a disjoint club sequence on ω_2 . A special Aronszajn tree on ω_2 implies there exists a thin stationary set. If there exists a disjoint club sequence, then there is no thin stationary set, and moreover there is a fat stationary subset of ω_2 which cannot acquire a club subset by any forcing poset which preserves ω_1 and ω_2 . We prove that the existence of a disjoint club sequence follows from Martin's Maximum and is equiconsistent with a Mahlo cardinal. Suppose that S is a fat stationary subset of ω_2 , that is, for every club set $C \subseteq \omega_2$, $S \cap C$ contains a closed subset with order type $\omega_1 + 1$. A number of forcing posets have been defined which add a club subset to S and preserve cardinals under various assumptions. Abraham and Shelah [1] proved that, assuming CH, the poset consisting of closed bounded subsets of S ordered by end-extension adds a club subset to S and is ω_1 -distributive. S. Friedman [5] discovered a different poset for adding a club subset to a fat set $S \subseteq \omega_2$ with finite conditions. This finite club poset preserves all cardinals provided that there exists a thin stationary subset of $P_{\omega_1}(\omega_2)$, that is, a stationary set $T \subseteq P_{\omega_1}(\omega_2)$ such that for all $S \in S$ independently by Friedman. The question remained whether it is always possible to add a club subset to a given fat set and preserve cardinals, without any assumptions. J. Krueger introduced a combinatorial principle on ω_2 which asserts the existence of a disjoint club sequence, which is a pairwise disjoint sequence $\langle \mathcal{C}_{\alpha} : \alpha \in A \rangle$ indexed by a stationary subset of $\omega_2 \cap \operatorname{cof}(\omega_1)$, where each \mathcal{C}_{α} is club in $P_{\omega_1}(\alpha)$. Krueger proved that the existence of such a sequence implies there is a fat stationary set $S \subseteq \omega_2$ which cannot acquire a club subset by any forcing poset which preserves ω_1 and ω_2 . We prove that a special Aronszajn tree on ω_2 implies there exists a thin stationary subset of $P_{\omega_1}(\omega_2)$. On the other hand assuming Martin's Maximum there exists a disjoint club sequence on ω_2 . Moreover, we have the following equiconsistency result. **Theorem 0.1.** Each of the following statements is equiconsistent with a Mahlo cardinal: (1) There does not exist a thin stationary subset of $P_{\omega_1}(\omega_2)$. (2) There exists a disjoint club sequence on ω_2 . (3) There exists a fat stationary set $S \subseteq \omega_2$ Received by the editors June 28, 2005. ²⁰⁰⁰ Mathematics Subject Classification. Primary 03E35, 03E40. The authors were supported by FWF project number P16790-N04. ¹A similar poset was defined independently by Mitchell [7]. such that any forcing poset which preserves ω_1 and ω_2 does not add a club subset to S. Our proof of this theorem gives a totally different construction of the following result of Mitchell [8]: If κ is Mahlo in L, then there is a generic extension of L in which $\kappa = \omega_2$ and there is no special Aronszajn tree on ω_2 . The consistency of Theorem 0.1(3) provides a negative solution to the following problem of Abraham and Shelah [1]: If $S \subseteq \omega_2$ is fat, does there exist an ω_1 -distributive forcing poset which adds a club subset to S? Section 1 outlines notation and background material. In Section 2 we discuss thin stationarity and prove that a special Aronszajn tree implies the existence of a thin stationary set. In Section 3 we introduce disjoint club sequences and prove that the existence of such a sequence implies there is a fat stationary set in ω_2 which cannot acquire a club subset by any forcing poset which preserves ω_1 and ω_2 . In Section 4 we prove that Martin's Maximum implies there exists a disjoint club sequence. In Section 5 we construct a model in which there is a disjoint club sequence using an RCS iteration up to a Mahlo cardinal. Sections 3 and 4 are due for the most part to J. Krueger. We would like to thank Boban Veličković and Mirna Džamonja for pointing out Theorem 2.3 to the authors. ## 1. Preliminaries For a set X which contains ω_1 , $P_{\omega_1}(X)$ denotes the collection of countable subsets of X. A set $C \subseteq P_{\omega_1}(X)$ is club if it is closed under unions of countable increasing sequences and is cofinal. A set $S \subseteq P_{\omega_1}(X)$ is stationary if it meets every club. If $C \subseteq P_{\omega_1}(X)$ is club, then there exists a function $F: X^{<\omega} \to X$ such that every a in $P_{\omega_1}(X)$ closed under F is in C. If $F: X^{<\omega} \to P_{\omega_1}(X)$ is a function and $Y \subseteq X$, we say that Y is closed under F if for all $\vec{\gamma}$ from $Y^{<\omega}$, $F(\vec{\gamma}) \subseteq Y$. A partial function $H: P_{\omega_1}(X) \to X$ is regressive if for all a in the domain of H, H(a) is a member of a. Fodor's Lemma asserts that whenever $S \subseteq P_{\omega_1}(X)$ is stationary and $H: S \to X$ is a total regressive function, there is a stationary set $S^* \subseteq S$ and a set x in X such that for all a in S^* , H(a) = x. If κ is a regular cardinal let $\operatorname{cof}(\kappa)$ (respectively, $\operatorname{cof}(<\kappa)$) denote the class of ordinals with cofinality κ (respectively, cofinality less than κ). If A is a cofinal subset of a cardinal λ and $\kappa < \lambda$, we write for example $A \cup \operatorname{cof}(\kappa)$ to abbreviate $A \cup (\lambda \cap \operatorname{cof}(\kappa))$. A stationary set $S \subseteq \kappa$ is fat if for every club $C \subseteq \kappa$, $S \cap C$ contains closed subsets with arbitrarily large order types less than κ . If κ is the successor of a regular uncountable cardinal μ , this is equivalent to the statement that for every club $C \subseteq \kappa$, $S \cap C$ contains a closed subset with order type $\mu + 1$. In particular, if $A \subseteq \kappa^+ \cap \operatorname{cof}(\mu)$ is stationary, then $A \cup \operatorname{cof}(< \mu)$ is fat. We write $\theta \gg \kappa$ to indicate θ is larger than $2^{2^{|H(\kappa)|}}$. A tree \mathcal{T} is a special Aronszajn tree on ω_2 if: - (1) \mathcal{T} has height ω_2 and each level has size less than ω_2 , - (2) each node in \mathcal{T} is an injective function $f: \alpha \to \omega_1$ for some $\alpha < \omega_2$, - (3) the ordering on \mathcal{T} is by extension of functions, and if f is in \mathcal{T} , then $f \upharpoonright \beta$ is in \mathcal{T} for all $\beta < \text{dom}(f)$. By [8] if there does not exist a special Aronszajn tree on ω_2 , then ω_2 is a Mahlo cardinal in L. If V is a transitive model of ZFC, we say that W is an *outer model of* V if W is a transitive model of ZFC such that $V \subseteq W$ and W has the same ordinals as V. A forcing poset \mathbb{P} is κ -distributive if forcing with \mathbb{P} does not add any new sets of ordinals with size κ . If \mathbb{P} is a forcing poset, \dot{a} is a \mathbb{P} -name, and G is a generic filter for \mathbb{P} , we write a for the set \dot{a}^G . Martin's Maximum is the statement that whenever \mathbb{P} is a forcing poset which preserves stationary subsets of ω_1 , then for any collection \mathcal{D} of dense subsets of \mathbb{P} with $|\mathcal{D}| \leq \omega_1$, there is a filter $G \subseteq \mathbb{P}$ which intersects each dense set in \mathcal{D} . A forcing poset \mathbb{P} is proper if for all sufficiently large regular cardinals $\theta > 2^{|\mathbb{P}|}$, there is a club of countable elementary substructures N of $\langle H(\theta), \in \rangle$ such that for all p in $N \cap \mathbb{P}$, there is $q \leq p$ which is generic for N, i.e. q forces $N[\dot{G}] \cap \mathbf{On} = N \cap \mathbf{On}$. If \mathbb{P} is proper, then \mathbb{P} preserves ω_1 and preserves stationary subsets of $P_{\omega_1}(\lambda)$ for all $\lambda \geq \omega_1$. A forcing poset \mathbb{P} is semiproper if the same statement holds as above except the requirement that q is generic is replaced by q being semigeneric, i.e. q forces $N[\dot{G}] \cap \omega_1 = N \cap \omega_1$. If \mathbb{P} is semigeneric, then \mathbb{P} preserves ω_1 and preserves stationary subsets of ω_1 . If \mathbb{P} is ω_1 -c.c. and N is a countable elementary substructure of $H(\theta)$, then \mathbb{P} forces $N[\dot{G}] \cap \mathbf{On} = N \cap \mathbf{On}$; so every condition in \mathbb{P} is generic for N. We let ${}^{<\omega}\mathbf{On}$ denote the class of finite strictly increasing sequences of ordinals. If η and ν are in ${}^{<\omega}\mathbf{On}$, write $\eta \leq \nu$ if η is an initial segment of ν , and write $\eta \leq \nu$ if $\eta \leq \nu$ and $\eta \neq \nu$. Let $l(\eta)$ denote the length of η . A set $T \subseteq {}^{<\omega}\mathbf{On}$ is a *tree* if for all η in T and $k < l(\eta)$, $\eta \upharpoonright k$ is in T. A *cofinal branch of* T is a function $b : \omega \to \kappa$ such that for all $n < \omega$, $b \upharpoonright n$ is in T. Suppose I is an ideal on a set X. Then I^+ is the collection of subsets of X which are not in I. If S is in I^+ let $I \upharpoonright S$ denote the ideal $I \cap \mathcal{P}(S)$. For example if $I = NS_{\kappa}$, the ideal of non-stationary subsets of κ , a set S is in I^+ iff S is stationary. In this case $NS_{\kappa}
\upharpoonright S$ is the ideal of non-stationary subsets of S, and $(NS_{\kappa} \upharpoonright S)^+$ is the collection of stationary subsets of S. If κ is regular and $\lambda \geq \kappa$ is a cardinal, then $\mathrm{Coll}(\kappa, \lambda)$ is a forcing poset for collapsing λ to have cardinality κ : Conditions are partial functions $p:\kappa\to\lambda$ with size less than κ , ordered by an extension of functions. ### 2. Thin stationary sets Let T be a cofinal subset of $P_{\omega_1}(\omega_2)$. We say that T is thin if for all $\beta < \omega_2$ the set $\{a \cap \beta : a \in T\}$ has size less than ω_2 . Note that if CH holds, then $P_{\omega_1}(\omega_2)$ itself is thin. A set $S \subseteq P_{\omega_1}(\omega_2)$ is closed under initial segments if for all a in S and $\beta < \omega_2$, $a \cap \beta$ is in S. **Lemma 2.1.** If $S \subseteq P_{\omega_1}(\omega_2)$ is stationary and closed under initial segments, then for all uncountable $\beta < \omega_2$, the set $S \cap P_{\omega_1}(\beta)$ is stationary in $P_{\omega_1}(\beta)$. *Proof.* Consider $\beta < \omega_2$ and let $C \subseteq P_{\omega_1}(\beta)$ be a club set. Then the set $D = \{a \in P_{\omega_1}(\omega_2) : a \cap \beta \in C\}$ is a club subset of $P_{\omega_1}(\omega_2)$. Fix a in $S \cap D$. Since S is closed under initial segments, $a \cap \beta$ is in $S \cap C$. **Lemma 2.2.** If there exists a thin stationary subset of $P_{\omega_1}(\omega_2)$, then there is a thin stationary set S such that for all uncountable $\beta < \omega_2$, $S \cap P_{\omega_1}(\beta)$ is stationary in $P_{\omega_1}(\beta)$. *Proof.* Let T be a thin stationary set. Define $S = \{a \cap \beta : a \in T, \beta < \omega_2\}$. Then S is thin stationary and closed under initial segments. A set $S \subseteq P_{\omega_1}(\omega_2)$ is a *local club* if there is a club set $C \subseteq \omega_2$ such that for all uncountable α in C, $S \cap P_{\omega_1}(\alpha)$ contains a club in $P_{\omega_1}(\alpha)$ (see [3]). Note that local clubs are stationary. **Theorem 2.3.** If there is a special Aronszajn tree on ω_2 , then there is a thin local club subset of $P_{\omega_1}(\omega_2)$. Proof. Let \mathcal{T} be a special Aronszajn tree on ω_2 . For each f in \mathcal{T} with $\mathrm{dom}(f) \geq \omega_1$, define $S_f = \{\{\alpha \in \mathrm{dom}(f) : f(\alpha) < i\} : i < \omega_1\}$. Note that S_f is a club subset of $P_{\omega_1}(\mathrm{dom}f)$. For each uncountable $\beta < \omega_2$ define $S_\beta = \bigcup \{S_f : f \in \mathcal{T}, \mathrm{dom}(f) = \beta\}$. Then S_β has size ω_1 . Now define $S = \bigcup \{S_\beta : \omega_1 \leq \beta < \omega_2\}$. Clearly S is a local club. To show S is thin, it suffices to prove that whenever $\beta < \gamma$ are uncountable and a is in S_γ , then $a \cap \beta$ is in S_β . Fix f in \mathcal{T} and $i < \omega_1$ such that $a = f^{-1}$ "i. Then $f \upharpoonright \beta$ is in \mathcal{T} , so $(f \upharpoonright \beta)^{-1}$ "i is in S_β . But $(f \upharpoonright \beta)^{-1}$ "i $= (f^{-1}$ "i) $\cap \beta = a \cap \beta$. In later sections of the paper we will construct models in which there does not exist a thin stationary subset of $P_{\omega_1}(\omega_2)$. Theorem 2.3 shows that in such a model there cannot exist a special Aronszajn tree on ω_2 , so by [8] ω_2 is Mahlo in L. Mitchell [8] constructed a model in which there is no special Aronszajn tree on ω_2 by collapsing a Mahlo cardinal in L to become ω_2 with a proper forcing poset. However, in Mitchell's model the set $(P_{\omega_1}(\kappa))^L$ is a thin stationary subset of $P_{\omega_1}(\omega_2)$. **Lemma 2.4.** Suppose $S \subseteq P_{\omega_1}(\omega_2)$ is a local club. Then S is a local club in any outer model W with the same ω_1 and ω_2 . Proof. Let C be a club subset of ω_2 such that for every uncountable α in C, $S \cap P_{\omega_1}(\alpha)$ contains a club in $P_{\omega_1}(\alpha)$. Then C remains club in W. For each uncountable α in C, fix a bijection $g_{\alpha}: \omega_1 \to \alpha$. Then $\{g_{\alpha}"i: i < \omega_1\}$ is a club subset of $P_{\omega_1}(\alpha)$. By intersecting this club with S, we get a club subset of $S \cap P_{\omega_1}(\alpha)$ of the form $\{a_i^{\alpha}: i < \omega_1\}$ which is increasing and continuous. Clearly this set remains a club subset of $P_{\omega_1}(\alpha)$ in W. **Proposition 2.5.** (1) Suppose there exists a thin local club in $P_{\omega_1}(\omega_2)$. Then there exists a thin local club in any outer model with the same ω_1 and ω_2 . (2) Suppose κ is a cardinal such that for all $\mu < \kappa$, $\mu^{\omega} < \kappa$, and assume $\mathbb P$ is a proper forcing poset which collapses κ to become ω_2 . Then $\mathbb P$ forces that there is a thin stationary subset of $P_{\omega_1}(\omega_2)$. Proof. (1) is immediate from Lemma 2.4 and the absoluteness of thinness. (2) Let G be generic for \mathbb{P} over V and work in V[G]. Since \mathbb{P} is proper, ω_1 is preserved and the set $S = (P_{\omega_1}(\kappa))^V$ is stationary in $P_{\omega_1}(\omega_2)$. We claim that S is thin. If $\beta < \omega_2$, then $\{a \cap \beta : a \in S\} = (P_{\omega_1}(\beta))^V$, and $|(P_{\omega_1}(\beta))^V| \le |(P_{\omega_1}(\beta))^V|^V = |(\beta^{\omega})^V|^V < \kappa$. \square As we mentioned above, if CH holds, then the set $P_{\omega_1}(\omega_2)$ itself is thin. We show on the other hand that if CH fails, then no club subset of $P_{\omega_1}(\omega_2)$ is thin. The proof is due to Baumgartner and Taylor [2] who showed that for any club set $C \subseteq P_{\omega_1}(\omega_2)$, there is a countable set $A \subseteq \omega_2$ such that $C \cap \mathcal{P}(A)$ has size at least 2^{ω} . Their method of proof is described in the next lemma; we include the proof since we will use similar arguments later in the paper. **Lemma 2.6.** Suppose Z is a stationary subset of $\omega_2 \cap \operatorname{cof}(\omega)$ and for each α in Z, M_{α} is a countable cofinal subset of α . Then there is a sequence $\langle Z_s, \xi_s : s \in {}^{<\omega} 2 \rangle$ satisfying: - (1) each Z_s is a stationary subset of Z, - (2) if $s \leq t$, then $Z_t \subseteq Z_s$, - (3) if α is in Z_s , then ξ_s is in M_{α} , - (4) if α is in $Z_s \smallfrown_0$ and β is in $Z_s \smallfrown_1$, then $\xi_s \smallfrown_0$ is not in M_{β} and $\xi_s \smallfrown_1$ is not in M_{α} . Proof. Let $Z_{\langle \rangle} = Z$ and let $\xi_{\langle \rangle} = 0$. Suppose Z_s is given. Define X_s as the set of ξ in ω_2 such that the set $\{\alpha \in Z_s : \xi \in M_\alpha\}$ is stationary. A straightforward argument using Fodor's Lemma shows that X_s is unbounded in ω_2 . For each α in Z_s such that $X_s \cap \alpha$ has size ω_1 , there exists $\xi < \alpha$ in X_s such that ξ is not in M_α . By Fodor's Lemma there is a stationary set $Z'_{s^{\smallfrown 1}} \subseteq Z_s$ and $\xi_{s^{\smallfrown 0}}$ in X_s such that for all α in $Z'_{s^{\smallfrown 1}}$, $\xi_{s^{\smallfrown 0}}$ is not in M_α . Let $Z'_{s^{\smallfrown 0}}$ denote the set of α in Z_s such that $\xi_{s^{\smallfrown 0}}$ is in M_α , which is stationary since $\xi_{s^{\smallfrown 0}}$ is in X_s . Now define Y_s as the set of ξ in ω_2 such that $\{\alpha \in Z'_{s^{\smallfrown 1}} : \xi \in M_\alpha\}$ is stationary. Then Y_s is unbounded in ω_2 . So for each α in $Z'_{s^{\smallfrown 0}}$ such that $Y_s \cap \alpha$ has size ω_1 , there is $\xi < \alpha$ in Y_s which is not in M_α . By Fodor's Lemma there is $\xi_{s^{\smallfrown 1}}$ in Y_s and $Z_{s^{\smallfrown 0}} \subseteq Z'_{s^{\smallfrown 0}}$ stationary such that for all α in $Z_{s^{\backsim 0}}$, $\xi_{s^{\backsim 1}}$ is not in M_α . Now define $Z_{s^{\backsim 1}}$ as the set of α in $Z'_{s^{\backsim 1}}$ such that $\xi_{s^{\backsim 1}}$ is in M_α . **Theorem 2.7** (Baumgartner and Taylor). If $C \subseteq P_{\omega_1}(\omega_2)$ is club, then there is a countable set $A \subseteq \omega_2$ such that $C \cap \mathcal{P}(A)$ has size at least 2^{ω} . Hence if CH fails, then there does not exist a thin club subset of $P_{\omega_1}(\omega_2)$. *Proof.* Let $F: \omega_2^{<\omega} \to \omega_2$ be a function such that any a in $P_{\omega_1}(\omega_2)$ closed under F is in C. Let Z be the stationary set of α in $\omega_2 \cap \operatorname{cof}(\omega)$ closed under F. For each α in Z fix a countable set $M_{\alpha} \subseteq \alpha$ such that $\sup(M_{\alpha}) = \alpha$ and M_{α} is closed under F. Fix a sequence $\langle Z_s, \xi_s : s \in {}^{<\omega} 2 \rangle$ as described in Lemma 2.6. For each function $f: \omega \to 2$ define $b_f = cl_F(\{\xi_{f \mid n} : n < \omega\})$. Then b_f is in C. Note that if $n < \omega$ and α is in $Z_{f \mid n}$, then $cl_F(\{\xi_{f \mid m} : m \leq n\}) \subseteq M_{\alpha}$. For by Lemma 2.6(2), for $m \leq n$, $Z_{f \mid n} \subseteq Z_{f \mid m}$. So α is in $Z_{f \mid m}$, and hence $\xi_{f \mid m}$ is in M_{α} by (3). But M_{α} is closed under F. Let $A = cl_F(\{\xi_s : s \in {}^{<\omega}2\})$. Since ${}^{<\omega}2$ has size ω , A is countable, and clearly each b_f is a subset of A. We claim that for distinct f and g, $b_f \neq b_g$. Let $n < \omega$ be least such that $f(n) \neq g(n)$. If $b_f = b_g$, then there is k > n such that $\xi_{g \uparrow (n+1)}$ is in $cl_F(\{\xi_{f \mid m} : m \leq k\})$. Fix α in $Z_{f \uparrow k}$. By the last paragraph, $\xi_{g \uparrow (n+1)}$ is in M_{α} . But α is in $Z_{f \uparrow (n+1)}$ by
(2), which contradicts (4). Let κ be an uncountable cardinal. The Weak Reflection Principle at κ is the statement that whenever S is a stationary subset of $P_{\omega_1}(\kappa)$, there is a set Y in $P_{\omega_2}(\kappa)$ such that $\omega_1 \subseteq Y$ and $S \cap P_{\omega_1}(Y)$ is stationary in $P_{\omega_1}(Y)$. Martin's Maximum implies the Weak Reflection Principle holds for all uncountable cardinals κ [4]. The Weak Reflection Principle at ω_2 is equivalent to the statement that for every stationary set $S \subseteq P_{\omega_1}(\omega_2)$, there is a stationary set of uncountable $\beta < \omega_2$ such that $S \cap P_{\omega_1}(\beta)$ is stationary in $P_{\omega_1}(\beta)$. This is equivalent to the statement that every local club subset of $P_{\omega_1}(\omega_2)$ contains a club. The Weak Reflection Principle at ω_2 is equiconsistent with a weakly compact cardinal [3]. Corollary 2.8. Suppose CH fails and there is a special Aronszajn tree on ω_2 . Then the Weak Reflection Principle at ω_2 fails. *Proof.* By Theorems 2.3 and 2.7, there is a thin local club subset of $P_{\omega_1}(\omega_2)$ which is not club. Hence the Weak Reflection Principle at ω_2 fails. In Sections 4 and 5 we describe models in which there is no thin stationary subset of $P_{\omega_1}(\omega_2)$. On the other hand S. Friedman proved there always exists a thin cofinal set. **Theorem 2.9** (Friedman). There exists a thin cofinal subset of $P_{\omega_1}(\omega_2)$. *Proof.* We construct by induction a sequence $\langle S_{\alpha} : \omega_1 \leq \alpha < \omega_2 \rangle$ satisfying the properties: (1) each S_{α} is a cofinal subset of $P_{\omega_1}(\alpha)$ with size ω_1 , (2) for uncountable $\beta < \gamma$, if a is in S_{γ} , then $a \cap \beta$ is in $\bigcup \{S_{\alpha} : \omega_1 \leq \alpha \leq \beta\}$, and (3) if $\beta < \gamma < \omega_2$, a is in $P_{\omega_1}(\gamma)$, and $a \cap \beta$ is in S_{β} , then there is b in S_{γ} such that $a \subseteq b$ and $a \cap \beta = b \cap \beta$. Let $S_{\omega_1} = \omega_1$. Given S_{α} , let $S_{\alpha+1}$ be the collection $\{b \cup \{\alpha\} : b \in S_{\alpha}\}$. Conditions (1), (2), and (3) follow by induction. Suppose $\gamma < \omega_2$ is an uncountable limit ordinal and S_{α} is defined for all uncountable $\alpha < \gamma$. If $\mathrm{cf}(\gamma) = \omega_1$, then let $S_{\gamma} = \bigcup \{S_{\alpha} : \omega_1 \leq \alpha < \gamma\}$. The required conditions follow by induction. Assume $\operatorname{cf}(\gamma) = \omega$. Fix an increasing sequence of uncountable ordinals $\langle \gamma_n : n < \omega \rangle$ unbounded in γ . Let T_γ be some cofinal subset of $P_{\omega_1}(\gamma)$ with size ω_1 . Fix $n < \omega$. For each x in T_γ and a in S_{γ_n} define a set b(a,x,n) in $P_{\omega_1}(\gamma)$ inductively as follows. Let $b(a,x,n) \cap \gamma_n = a$. Given $b(a,x,n) \cap \gamma_m$ in S_{γ_m} for some $m \geq n$, apply condition (3) to γ_m , γ_{m+1} , and the set $$(b(a, x, n) \cap \gamma_m) \cup (x \cap [\gamma_m, \gamma_{m+1}))$$ to find y in $S_{\gamma_{m+1}}$ such that $y \cap \gamma_m = b(a, x, n) \cap \gamma_m$ and $x \cap [\gamma_m, \gamma_{m+1}) \subseteq y$. Let $b(a, x, n) \cap \gamma_{m+1} = y$. This completes the definition of b(a, x, n). Clearly $b(a, x, n) \cap \gamma_n = a, x \setminus \gamma_n \subseteq b(a, x, n)$, and for all $k \geq n$, $b(a, x, n) \cap \gamma_k$ is in S_{γ_k} . Now define $S_{\gamma} = \{b(a, x, n) : n < \omega, a \in S_{\gamma_n}, x \in T_{\gamma}\}$. We verify conditions (1), (2), and (3). Clearly S_{γ} has size ω_1 . Let $\beta < \gamma$ and consider b(a, x, n) in S_{γ} . Fix k > n such that $\beta < \gamma_k$. Then $b(a, x, n) \cap \gamma_k$ is in S_{γ_k} . So by induction $b(a, x, n) \cap \beta$ is in $\bigcup \{S_{\alpha} : \omega_1 \leq \alpha \leq \beta\}$. Now assume a is in $P_{\omega_1}(\gamma)$, $\beta < \gamma$, and $a \cap \beta$ is in S_{β} . Choose x in T_{γ} such that $a \subseteq x$. Fix k such that $\beta < \gamma_k$. By the induction hypothesis there is a' in S_{γ_k} such that $a \cap \gamma_k \subseteq a'$ and $a' \cap \beta = a \cap \beta$. Let c = b(a', x, k). Then c is in S_{γ} , $c \cap \beta = (c \cap \gamma_k) \cap \beta = a' \cap \beta = a \cap \beta$, and $a \subseteq c$. To prove S_{γ} is cofinal consider a in $P_{\omega_1}(\gamma)$. Fix x in T_{γ} such that $a \subseteq x$. By induction S_{γ_0} is cofinal in $P_{\omega_1}(\gamma_0)$. So let y be in S_{γ_0} such that $x \cap \gamma_0 \subseteq y$. Then a is a subset of b(y, x, 0). Now define $S = \bigcup \{S_{\beta} : \omega_1 \leq \beta < \omega_2\}$. Conditions (1) and (2) imply that S is thin and cofinal in $P_{\omega_1}(\omega_2)$. #### 3. Disjoint club sequences We introduce a combinatorial property of ω_2 which implies there does not exist a thin stationary subset of $P_{\omega_1}(\omega_2)$. This property follows from Martin's Maximum and is equiconsistent with a Mahlo cardinal. It implies there exists a fat stationary subset of ω_2 which cannot acquire a club subset by any forcing poset which preserves ω_1 and ω_2 . **Definition 3.1.** A disjoint club sequence on ω_2 is a sequence $\langle \mathcal{C}_{\alpha} : \alpha \in A \rangle$ such that A is a stationary subset of $\omega_2 \cap \operatorname{cof}(\omega_1)$, each \mathcal{C}_{α} is a club subset of $P_{\omega_1}(\alpha)$, and $\mathcal{C}_{\alpha} \cap \mathcal{C}_{\beta}$ is empty for all $\alpha < \beta$ in A. **Proposition 3.2.** Suppose there is a disjoint club sequence on ω_2 . Then there does not exist a thin stationary subset of $P_{\omega_1}(\omega_2)$. Proof. Let $\langle \mathcal{C}_{\alpha} : \alpha \in A \rangle$ be a disjoint club sequence. Suppose for a contradiction there exists a thin stationary set. By Lemma 2.2 fix a thin stationary set $T \subseteq P_{\omega_1}(\omega_2)$ such that for all uncountable $\beta < \omega_2, T \cap P_{\omega_1}(\beta)$ is stationary in $P_{\omega_1}(\beta)$. Then for each β in A we can choose a set a_{β} in $\mathcal{C}_{\beta} \cap T$. Since $\operatorname{cf}(\beta) = \omega_1, \sup(a_{\beta}) < \beta$. By Fodor's Lemma there is a stationary set $B \subseteq A$ and a fixed $\gamma < \omega_2$ such that for all β in B, $\sup(a_{\beta}) = \gamma$. If $\alpha < \beta$ are in B, then $a_{\alpha} \neq a_{\beta}$ since $\mathcal{C}_{\alpha} \cap \mathcal{C}_{\beta}$ is empty. So the set $\{a_{\beta} : \beta \in B\}$ witnesses that T is not thin, which is a contradiction. \square **Lemma 3.3.** Suppose there is a disjoint club sequence $\langle \mathcal{C}_{\alpha} : \alpha \in A \rangle$ on ω_2 . Let W be an outer model with the same ω_1 and ω_2 in which A is still stationary. Then there is a disjoint club sequence $\langle \mathcal{D}_{\alpha} : \alpha \in A \rangle$ in W. *Proof.* By the proof of Lemma 2.4, each C_{α} contains a club set D_{α} in W. Since ω_1 is preserved, each α in A still has cofinality ω_1 . **Theorem 3.4.** Suppose $\langle \mathcal{C}_{\alpha} : \alpha \in A \rangle$ is a disjoint club sequence on ω_2 . Then $A \cup \operatorname{cof}(\omega)$ does not contain a club. *Proof.* Suppose for a contradiction that $A \cup \text{cof}(\omega)$ contains a club. Without loss of generality $2^{\omega_1} = \omega_2$. Otherwise work in a generic extension W by $\text{Coll}(\omega_2, 2^{\omega_1})$: In W the set $A \cup \text{cof}(\omega)$ contains a club, and by Lemma 3.3 there is a disjoint club sequence $\langle \mathcal{D}_{\alpha} : \alpha \in A \rangle$. Since $2^{\omega_1} = \omega_2$, $H(\omega_2)$ has size ω_2 . Fix a bijection $h: H(\omega_2) \to \omega_2$. Let \mathcal{A} denote the structure $\langle H(\omega_2), \in, h \rangle$. Define B as the set of α in $\omega_2 \cap \operatorname{cof}(\omega_1)$ such that there exists an increasing and continuous sequence $\langle N_i : i < \omega_1 \rangle$ of countable elementary substructures of \mathcal{A} such that: - (1) for $i < \omega_1, N_i$ is in N_{i+1} , - (2) the set $\{N_i \cap \omega_2 : i < \omega_1\}$ is club in $P_{\omega_1}(\alpha)$. We claim that B is stationary in ω_2 . To prove this let $C \subseteq \omega_2$ be club. Let \mathcal{B} be the expansion of \mathcal{A} by the function $\alpha \mapsto \min(C \setminus \alpha)$. Define by induction an increasing and continuous sequence $\langle N_i : i < \omega_1 \rangle$ of elementary substructures of \mathcal{B} such that for all $i < \omega_1$, N_i is in N_{i+1} . Let $N = \bigcup \{N_i : i < \omega_1\}$. Then $\omega_1 \subseteq N$ so $N \cap \omega_2$ is an ordinal. Write $\alpha = N \cap \omega_2$. Then α is in C and $\{N_i \cap \omega_2 : i < \omega_1\}$ is club in $P_{\omega_1}(\alpha)$. So α is in $B \cap C$. Since $A \cup \operatorname{cof}(\omega)$ contains a club, $A \cap B$ is stationary. For each α in $A \cap B$ fix a sequence $\langle N_i^{\alpha} : i < \omega_1 \rangle$ as described in the definition of B. Then $\{N_i^{\alpha} \cap \omega_2 : i < \omega_1\} \cap \mathcal{C}_{\alpha}$ is club in $P_{\omega_1}(\alpha)$. So there exists a club set $c_{\alpha} \subseteq \omega_1$ such that $\{N_i^{\alpha} \cap \omega_2 : i \in c_{\alpha}\}$ is club and is a subset of \mathcal{C}_{α} . Write $i_{\alpha} = \min(c_{\alpha})$ and let $d_{\alpha} = c_{\alpha} \setminus \{i_{\alpha}\}$. Define $S = \{N_i^{\alpha} : \alpha \in A \cap B, i \in d_{\alpha}\}$. If N is in S, then there is a unique pair α in $A \cap B$ and i in d_{α} such that $N = N_i^{\alpha}$. For if $N =
N_i^{\alpha} = N_j^{\beta}$, then $N \cap \omega_2$ is in $\mathcal{C}_{\alpha} \cap \mathcal{C}_{\beta}$, so $\alpha = \beta$. Clearly then i = j. Also note that if N_i^{α} is in S, then $N_{i_{\alpha}}^{\alpha}$ is in N_i^{α} . So the function $H: S \to H(\omega_2)$ defined by $H(N_i^{\alpha}) = N_{i_{\alpha}}^{\alpha}$ is well defined and regressive. We claim that S is stationary in $P_{\omega_1}(H(\omega_2))$. To prove this let $F:H(\omega_2)^{<\omega}\to H(\omega_2)$ be a function. Define $G:\omega_2^{<\omega}\to\omega_2$ by letting $G(\alpha_0,\ldots,\alpha_n)$ be equal to $h(F(h^{-1}(\alpha_0),\ldots,h^{-1}(\alpha_n)))$. Let E be the club set of α in ω_2 closed under G. Fix α in $E\cap A\cap B$. Then there is i in d_α such that $N_i^\alpha\cap\omega_2$ is closed under G. We claim that N_i^α is closed under F. Given a_0,\ldots,a_n in N_i^α , the ordinals $h(a_0),\ldots,h(a_n)$ are in $N_i^\alpha\cap\omega_2$. So $\gamma=G(h(a_0),\ldots,h(a_n))=h(F(a_0,\ldots,a_n))$ is in $N_i^\alpha\cap\omega_2$. Therefore $h^{-1}(\gamma)=F(a_0,\ldots,a_n)$ is in N_i^α . Since S is stationary and $H: S \to H(\omega_2)$ is regressive, there is a stationary set $S^* \subseteq S$ and a fixed N such that for all N_i^{α} in S^* , $H(N_i^{\alpha}) = N$. The set S^* , being stationary, must have size ω_2 . So there are distinct α and β such that for some i in d_{α} and j in d_{β} , N_i^{α} and N_j^{β} are in S^* . Then $N = N_{i_{\alpha}}^{\alpha} = N_{i_{\beta}}^{\beta}$. So $N \cap \omega_2$ is in $\mathcal{C}_{\alpha} \cap \mathcal{C}_{\beta}$, which is a contradiction. Abraham and Shelah [1] asked the following question: Assume that A is a stationary subset of $\omega_2 \cap \operatorname{cof}(\omega_1)$. Does there exist an ω_1 -distributive forcing poset which adds a club subset to $A \cup \operatorname{cof}(\omega)$? We answer this question in the negative. **Corollary 3.5.** Assume that $\langle \mathcal{C}_{\alpha} : \alpha \in A \rangle$ is a disjoint club sequence. Let W be an outer model of V with the same ω_1 and ω_2 . Then in W, $A \cup \operatorname{cof}(\omega)$ does not contain a club subset. *Proof.* If A remains stationary in W, then by Lemma 3.3 there is a disjoint club sequence $\langle \mathcal{D}_{\alpha} : \alpha \in A \rangle$ in W. By Theorem 3.4 $A \cup \operatorname{cof}(\omega)$ does not contain a club in W. # 4. Martin's Maximum In this section we prove that Martin's Maximum implies there exists a disjoint club sequence on ω_2 . We apply MM to the poset for adding a Cohen real and then forcing a continuous ω_1 -chain through $P_{\omega_1}(\omega_2) \setminus V$. **Theorem 4.1** (Krueger). Martin's Maximum implies there exists a disjoint club sequence on ω_2 . We will use the following theorem from [1]. **Theorem 4.2.** Suppose \mathbb{P} is ω_1 -c.c. and adds a real. Then \mathbb{P} forces that $(P_{\omega_1}(\omega_2) \setminus V)$ is stationary in $P_{\omega_1}(\omega_2)$. Note: Gitik [6] proved that the conclusion of Theorem 4.2 holds for any outer model of V which contains a new real and computes the same ω_1 . Suppose that S is a stationary subset of $P_{\omega_1}(\omega_2)$. Following [3] we define a forcing poset $\mathbb{P}(S)$ which adds a continuous ω_1 -chain through S. A condition in $\mathbb{P}(S)$ is a countable increasing and continuous sequence $\langle a_i : i \leq \beta \rangle$ of elements from S, where for each $i < \beta$, $a_i \cap \omega_1 < a_{i+1} \cap \omega_1$. The ordering on $\mathbb{P}(S)$ is by extension of sequences. **Proposition 4.3.** If $S \subseteq P_{\omega_1}(\omega_2)$ is stationary, then $\mathbb{P}(S)$ is ω -distributive. *Proof.* Suppose p forces $\dot{f}:\omega\to\mathbf{On}$. Let $\theta\gg\omega_2$ be a regular cardinal such that \dot{f} is in $H(\theta)$. Since S is stationary, we can fix a countable elementary substructure N of the model $$\langle H(\theta), \in, S, \mathbb{P}(S), p, \dot{f} \rangle$$ such that $N \cap \omega_2$ is in S. Let $\langle D_n : n < \omega \rangle$ be an enumeration of all the dense subsets of $\mathbb{P}(S)$ in N. Inductively define a decreasing sequence $\langle p_n : n < \omega \rangle$ of elements of $N \cap \mathbb{P}$ such that $p_0 = p$ and p_{n+1} is a refinement of p_n in $D_n \cap N$. Write $\bigcup \{p_n : n < \omega\} = \langle b_i : i < \gamma \rangle$. Clearly $\bigcup \{b_i : i < \gamma\} = N \cap \omega_2$. Since $N \cap \omega_2$ is in S, the sequence $\langle b_i : i < \gamma \rangle \cup \{\langle \gamma, N \cap \omega_2 \rangle\}$ is a condition below p which decides $\dot{f}(n)$ for all $n < \omega$. **Theorem 4.4.** Suppose \mathbb{P} is an ω_1 -c.c. forcing poset which adds a real. Let \dot{S} be a name such that \mathbb{P} forces $\dot{S} = (P_{\omega_1}(\omega_2) \setminus V)$. Then $\mathbb{P} * \mathbb{P}(\dot{S})$ preserves stationary subsets of ω_1 . *Proof.* By Theorem 4.2 and Proposition 4.3, the poset $\mathbb{P} * \mathbb{P}(\dot{S})$ preserves ω_1 . Let A be a stationary subset of ω_1 in V. Suppose $p * \dot{q}$ is a condition in $\mathbb{P} * \mathbb{P}(\dot{S})$ which forces that \dot{C} is a club subset of ω_1 . Let G be a generic filter for $\mathbb P$ over V which contains p. In V[G] fix a regular cardinal $\theta\gg\omega_2$ and let $$\mathcal{A} = \langle H(\theta), \in, A, S, q, \dot{C} \rangle.$$ Fix a Skolem function $F: H(\theta)^{<\omega} \to H(\theta)$ for \mathcal{A} . Define $F^*: \omega_2^{<\omega} \to P_{\omega_1}(\omega_2)$ by letting $$F^*(\alpha_0,\ldots,\alpha_n) = cl_F(\{\alpha_0,\ldots,\alpha_n\}) \cap \omega_2.$$ Since \mathbb{P} is ω_1 -c.c. there is a function $H: \omega_2^{<\omega} \to P_{\omega_1}(\omega_2)$ in V such that for all $\vec{\alpha}$ in $\omega_2^{<\omega}$, $F^*(\vec{\alpha}) \subseteq H(\vec{\alpha})$. Let Z^* be the stationary set of α in $\omega_2 \cap \operatorname{cof}(\omega)$ closed under H. Working in V, since A is stationary we can fix for each α in Z^* a countable cofinal set $M_{\alpha} \subseteq \alpha$ closed under H with $M_{\alpha} \cap \omega_1$ in A. By Fodor's Lemma there is $Z \subseteq Z^*$ stationary and δ in A such that for all α in Z, $M_{\alpha} \cap \omega_1 = \delta$. Fix a sequence $\langle \xi_s, Z_s : s \in {}^{<\omega} 2 \rangle$ satisfying conditions (1)–(4) of Lemma 2.6. Let $f: \omega \to 2$ be a function in $V[G] \setminus V$. For each $n < \omega$ let M_n denote $cl_H(\delta \cup \{\xi_{f \upharpoonright m} : m \leq n\})$. Define $M = \bigcup \{M_n : n < \omega\}$. Note that M is closed under H and hence it is closed under F^* . Therefore $N = cl_F(M)$ is an elementary substructure of A such that $N \cap \omega_2 = M$. As in the proof of Theorem 2.7, for all $n < \omega$, if α is in $Z_{f \upharpoonright n}$ then $M_n \subseteq M_\alpha$. Note that $M \cap \omega_1 = \delta$. For if γ is in $M \cap \omega_1$, there is $n < \omega$ such that γ is in M_n . Fix α in $Z_{f \upharpoonright n}$. Then γ is in $M_\alpha \cap \omega_1 = \delta$. We prove that M is not in V by showing how to compute f by induction from M. Suppose $f \upharpoonright n$ is known. Fix j < 2 such that $f(n) \neq j$. We claim that $\xi_{(f \upharpoonright n) \smallfrown j}$ is not in M. Otherwise there is k > n such that $\xi_{(f \upharpoonright n) \smallfrown j}$ is in M_k . Fix α in $Z_{f \upharpoonright k}$. Then $\xi_{(f \upharpoonright n) \smallfrown j}$ is in M_α . But α is in $Z_{f \upharpoonright (n+1)}$, contradicting Lemma 2.6(4). So f(n) is the unique i < 2 such that $\xi_{(f \upharpoonright n) \smallfrown i}$ is in M. This completes the definition of f from M. Since f is not in V, neither is M. Let $\langle D_n:n<\omega\rangle$ enumerate the dense subsets of $\mathbb{P}(S)$ lying in N. Inductively define a decreasing sequence $\langle q_n:n<\omega\rangle$ in $N\cap\mathbb{P}(S)$ such that $q_0=q$ and q_{n+1} is in $D_n\cap N$. Write $\bigcup\{q_n:n<\omega\}=\langle b_i:i<\gamma\rangle$. Clearly $\bigcup\{b_i:i<\gamma\}=N\cap\omega_2=M$, and since M is not in $V,\ r=\langle b_i:i<\gamma\rangle\cup\{\langle\gamma,M\rangle\}$ is a condition in $\mathbb{P}(S)$. By an easy density argument, r forces that $N\cap\omega_1=\delta$ is a limit point of \dot{C} , and hence is in \dot{C} . Let \dot{r} be a name for r. Then $p*\dot{r}\leq p*\dot{q}$ and $p*\dot{r}$ forces that δ is in $A\cap\dot{C}$. Now we are ready to prove that MM implies there exists a disjoint club sequence on ω_2 . Proof of Theorem 4.1. Assume Martin's Maximum. Inductively define A and $\langle \mathcal{C}_{\alpha} : \alpha \in A \rangle$ as follows. Suppose α is in $\omega_2 \cap \operatorname{cof}(\omega_1)$ and $A \cap \alpha$ and $\langle \mathcal{C}_{\beta} : \beta \in A \cap \alpha \rangle$ are defined. Let α be in A iff the set $\bigcup \{\mathcal{C}_{\beta} : \beta \in A \cap \alpha\}$ is non-stationary in $P_{\omega_1}(\alpha)$. If α is in A, then choose a club set $\mathcal{C}_{\alpha} \subseteq P_{\omega_1}(\alpha)$ with size ω_1 which is disjoint from this union. This completes the definition. We prove that A is stationary. Then clearly $\langle \mathcal{C}_{\alpha} : \alpha \in A \rangle$ is a disjoint club sequence. Fix a club set $C \subseteq \omega_2$. Let ADD denote the forcing poset for adding a single Cohen real with finite conditions and let \dot{S} be an ADD-name for the set $(P_{\omega_1}(\omega_2) \setminus V)$. By Theorem 4.4 the poset ADD * $\mathbb{P}(\dot{S})$ preserves stationary subsets of ω_1 . We will apply Martin's Maximum to this poset after choosing a suitable collection of dense sets.
For each $\alpha < \omega_2$ fix a surjection $f_\alpha : \omega_1 \to \alpha$. If β is in A enumerate \mathcal{C}_β as $\langle a_i^\beta : i < \omega_1 \rangle$. For every quadruple i, j, k, l of countable ordinals let D(i, j, k, l) denote the set of conditions $p * \dot{q}$ such that: - (1) p forces that i and j are in the domain of \dot{q} , and for some β_i and β_j , p forces $\beta_i = \sup(\dot{q}(i))$ and $\beta_j = \sup(\dot{q}(j))$, - (2) there is some $\zeta < \omega_1$ such that p forces ζ is the least element in dom (\dot{q}) such that $f_{\beta_i}(j) \in \dot{q}(\zeta)$, - (3) there is ξ in C larger than β_i and β_j such that p forces ξ is the supremum of the maximal set in \dot{q} , - (4) if $f_{\beta_j}(k) = \gamma$ is in A, then there is z such that p forces z is in the symmetric difference $\dot{q}(i) \triangle a_l^{\gamma}$. It is routine to check that D(i, j, k, l) is dense. Let G * H be a filter on ADD * $\mathbb{P}(S)$ intersecting each D(i, j, k, l). For $i < \omega_1$ define a_i as the set of β for which there exists some $p * \dot{q}$ in G * H such that p forces $i \in \text{dom}(\dot{q})$ and p forces β is in $\dot{q}(i)$. The definition of the dense sets implies that $\langle a_i : i < \omega_1 \rangle$ is increasing, continuous, and cofinal in $P_{\omega_1}(\alpha)$ for some α in $C \cap \text{cof}(\omega_1)$. By (4), for each γ in $A \cap \alpha$, $\{a_i : i < \omega_1\}$ is disjoint from \mathcal{C}_{γ} . Therefore $\bigcup \{\mathcal{C}_{\gamma} : \gamma \in A \cap \alpha\}$ is non-stationary in $P_{\omega_1}(\alpha)$, hence by the definition of A, α is in $A \cap C$. So A is stationary. #### 5. The equiconsistency result We now prove Theorem 0.1 establishing the consistency strength of each of the following statements to be exactly a Mahlo cardinal: (1) There does not exist a thin stationary subset of $P_{\omega_1}(\omega_2)$. (2) There exists a disjoint club sequence on ω_2 . (3) There exists a fat stationary set $S \subseteq \omega_2$ such that any forcing poset which preserves ω_1 and ω_2 does not add a club subset to S. By [5] if there exists a thin stationary subset of $P_{\omega_1}(\omega_2)$, then for any fat stationary set $S \subseteq \omega_2$, there is a forcing poset which preserves cardinals and adds a club subset to S. So (2) and (3) both imply (1), which in turn implies there is no special Aronszajn tree on ω_2 . So ω_2 is Mahlo in L by [8]. In the other direction assume that κ is a Mahlo cardinal. We will define a revised countable support iteration which collapses κ to become ω_2 and adds a disjoint club sequence on ω_2 . At individual stages of the iteration we force with either a collapse forcing or the poset ADD * $\mathbb{P}(\dot{S})$ from the previous section. To ensure that ω_1 is not collapsed we verify that $ADD*P(\dot{S})$ satisfies an iterable condition known as the \mathbb{I} -universal property. Our description of this construction is self-contained, except for the proof of Theorem 5.9 which summarizes the relevant properties of the RCS iteration. For more information on such iterations and the \mathbb{I} -universal property see [10]. **Definition 5.1.** A pair $\langle T, \mathbf{I} \rangle$ is a tagged tree if: - (1) $T \subseteq {}^{<\omega}\mathbf{On}$ is a tree such that each η in T has at least one successor, - (2) $\mathbf{I}: T \to V$ is a partial function such that each $\mathbf{I}(\eta)$ is an ideal on some set X_{η} and for each η in the domain of \mathbf{I} , the set $\{\alpha: \eta \widehat{\alpha} \in T\}$ is in $(\mathbf{I}(\eta))^+$, - (3) for each cofinal branch b of T, there are infinitely many $n < \omega$ such that $b \upharpoonright n$ is in the domain of \mathbf{I} . If η is in the domain of **I**, we say that η is a *splitting point of T*. It follows from (1) and (3) that for every η in T there is $\eta \triangleleft \nu$ which is a splitting point. **Definition 5.2.** Let \mathbb{I} be a family of ideals and $\langle T, \mathbf{I} \rangle$ a tagged tree. Then $\langle T, \mathbf{I} \rangle$ is an \mathbb{I} -tree if for each splitting point η in T, $\mathbf{I}(\eta)$ is in \mathbb{I} . Suppose $T \subseteq {}^{<\omega}\mathbf{On}$ is a tree. If η is in T, let $T^{[\eta]}$ denote the tree $\{\nu \in T : \nu \leq \eta \text{ or } \eta \leq \nu\}$. A set $J \subseteq T$ is called a *front* if for distinct nodes in J, neither is an initial segment of the other, and for any cofinal branch b of T there is η in J which is an initial segment of b. **Definition 5.3.** Suppose $\langle T, \mathbf{I} \rangle$ is tagged tree. Let θ be a regular cardinal such that $\langle T, \mathbf{I} \rangle$ is in $H(\theta)$, and let $<_{\theta}$ be a well-ordering of $H(\theta)$. A sequence $\langle N_{\eta} : \eta \in T \rangle$ is a tree of models for θ provided that: - (1) each N_{η} is a countable elementary substructure of $\langle H(\theta), \in, <_{\theta}, \langle T, \mathbf{I} \rangle \rangle$, - (2) if $\eta \triangleleft \nu$ in T, then $N_{\eta} \prec N_{\nu}$, - (3) for each η in T, η is in N_{η} . **Definition 5.4.** Suppose $\langle T, \mathbf{I} \rangle$ is an \mathbb{I} -tree, and θ is a regular cardinal such that $H(\theta)$ contains $\langle T, \mathbf{I} \rangle$ and \mathbb{I} . A sequence $\langle N_{\eta} : \eta \in T \rangle$ is an \mathbb{I} -suitable tree of models for θ if it is a tree of models for θ , and for every η in T and I in $\mathbb{I} \cap N_{\eta}$, the set $$\{\nu \in T^{[\eta]} : \nu \text{ is a splitting point and } \mathbf{I}(\nu) = I\}$$ contains a front in $T^{[\eta]}$. **Definition 5.5.** Let $\langle T, \mathbf{I} \rangle$, \mathbb{I} , and θ be as in Definition 5.4. A sequence $\langle N_{\eta} : \eta \in T \rangle$ is an ω_1 -strictly \mathbb{I} -suitable tree of models for θ if it is an \mathbb{I} -suitable tree of models for θ and there exists $\delta < \omega_1$ such that for all η in T, $N_{\eta} \cap \omega_1 = \delta$. If $\langle N_{\eta} : \eta \in T \rangle$ is a tree of models and b is a cofinal branch of T, write N_b for the set $\bigcup \{N_{b \mid n} : n < \omega\}$. Note that if $\langle N_{\eta} : \eta \in T \rangle$ is an ω_1 -strictly \mathbb{I} -suitable tree of models for θ , then for any cofinal branch b of T, $N_b \cap \omega_1 = N_{\langle \rangle} \cap \omega_1$. **Lemma 5.6.** Let $\langle T, \mathbf{I} \rangle$, \mathbb{I} , and θ be as in Definition 5.4, and let $\langle N_{\eta} : \eta \in T \rangle$ be an ω_1 -strictly \mathbb{I} -suitable tree of models for θ . Suppose $\eta \lhd \nu$ in T and $(N_{\nu} \cap \omega_2) \setminus N_{\eta}$ is non-empty. Let γ be the minimum element of $(N_{\nu} \cap \omega_2) \setminus N_{\eta}$. Then $\gamma \geq \sup(N_{\eta} \cap \omega_2)$. *Proof.* Otherwise there is β in $N_{\eta} \cap \omega_2$ such that $\gamma < \beta$. By elementarity, there is a surjection $f : \omega_1 \to \beta$ in N_{η} . So $f^{-1}(\gamma) \in N_{\nu} \cap \omega_1 = N_{\eta} \cap \omega_1$. Hence $f(f^{-1}(\gamma)) = \gamma$ is in N_{η} , which is a contradiction. Let \mathbb{I} be a family of ideals. We say that \mathbb{I} is restriction-closed if for all I in \mathbb{I} , for any set A in I^+ , the ideal $I \upharpoonright A$ is in \mathbb{I} . If μ is a regular uncountable cardinal, we say that \mathbb{I} is μ -complete if each ideal in \mathbb{I} is μ -complete. **Definition 5.7.** Suppose that \mathbb{I} is a non-empty restriction-closed ω_2 -complete family of ideals and let \mathbb{P} be a forcing poset. Then \mathbb{P} satisfies the \mathbb{I} -universal property if for all sufficiently large regular cardinals θ with \mathbb{I} in $H(\theta)$, if $\langle N_{\eta} : \eta \in T \rangle$ is an ω_1 -strictly \mathbb{I} -suitable tree of models for θ , then for all p in $N_{\langle \rangle} \cap \mathbb{P}$ there is $q \leq p$ such that q forces that there is a cofinal branch p of p such that p forces that there is a cofinal branch p of p such that p forces that there is a cofinal branch p of p such that p forces that there is a cofinal branch p of p such that p forces that there is a cofinal branch p of p such that p forces that there is a cofinal branch p forces that there is a cofinal branch p forces that there is a cofinal branch p forces that p forces that there is a cofinal branch p forces that p forces that there is a cofinal branch p forces that p forces that there is a cofinal branch p forces that forc Definition 5.7 is Shelah's characterization of the \mathbb{I} -universal property given in [10], Chapter XV 2.11, 2.12, and 2.13. Note that in the definition, q is semigeneric for $N_{\langle\rangle}$. In 2.12 Shelah proves that there are stationarily many structures N for which $N=N_{\langle\rangle}$ for some ω_1 -strictly \mathbb{I} -suitable tree of models $\langle N_{\eta}:\eta\in T\rangle$. So by standard arguments if \mathbb{P} satisfies the \mathbb{I} -universal property, then \mathbb{P} preserves ω_1 and preserves stationary subsets of ω_1 . Note that any semiproper forcing poset satisfies the \mathbb{I} -universal property. **Theorem 5.8.** Let \mathbb{I} be the family of ideals of the form $NS_{\omega_2} \upharpoonright A$, where A is a stationary subset of $\omega_2 \cap \operatorname{cof}(\omega)$. Let \dot{S} be an ADD-name for the set $(P_{\omega_1}(\omega_2) \setminus V)$. Then ADD $*\mathbb{P}(\dot{S})$ satisfies the \mathbb{I} -universal property. *Proof.* Fix a regular cardinal $\theta \gg \omega_2$
and let $\langle N_{\eta} : \eta \in T \rangle$ be an ω_1 -strictly \mathbb{I} -suitable tree of models for θ . Let $p * \dot{q}$ be a condition in $(ADD * \mathbb{P}(\dot{S})) \cap N_{\langle \rangle}$. We find a refinement of $p * \dot{q}$ which forces that there is a cofinal branch b of T such that $N_b[\dot{G} * \dot{H}] \cap \omega_1 = N_{\langle \rangle} \cap \omega_1$. We use an argument similar to the proof of Lemma 2.6 to define a sequence $\langle \eta_s, \xi_s : s \in {}^{<\omega} 2 \rangle$ satisfying: - (1) each η_s is in T, each ξ_s is in $N_{\eta_s} \cap \omega_2$, and $s \triangleleft t$ implies $\eta_s \triangleleft \eta_t$, - (2) if $s^0 \leq t$, then ξ_{s^1} is not in N_{η_t} , and if $s^1 \leq u$, then ξ_{s^0} is not in N_{η_u} . Let $\eta_{\langle\rangle} = \langle\rangle$ and $\xi_{\langle\rangle} = 0$. Suppose η_s is defined. Choose a splitting point ν_s in T above η_s . Let Z denote the set of $\alpha < \omega_2$ such that $\nu_s \,\widehat{} \, \alpha$ is in T. Since ν_s is a splitting point, by the definition of \mathbb{I} the set Z is a stationary subset of $\omega_2 \cap \operatorname{cof}(\omega)$. For each α in Z, α is in $N_{(\nu_s \,\widehat{} \, \alpha)}$ and has cofinality ω , so $N_{(\nu_s \,\widehat{} \, \alpha)} \cap \alpha$ is a countable cofinal subset of α . Define X_s as the set of ξ in ω_2 such that the set $$\{\alpha \in Z : \xi \in N_{(\nu_s \hat{\alpha}_\alpha)} \cap \alpha\}$$ is stationary. An easy argument using Fodor's Lemma shows that X_s is unbounded in ω_2 . For all large enough α in Z, the set $(X_s \setminus \sup(N_{\nu_s} \cap \omega_2)) \cap \alpha$ has size ω_1 . So there is a stationary set $Z_1' \subseteq Z$ and an ordinal $\xi_s \cap_0$ in X_s such that $\xi_s \cap_0$ is larger than $\sup(N_{\nu_s} \cap \omega_2)$ and for all α in Z_1' , $\xi_s \cap_0$ is not in $N_{(\nu_s \cap \alpha)} \cap \alpha$. Let Z_0' be the stationary set of α in Z such that $\xi_s \cap_0$ is in $N_{(\nu_s \cap \alpha)} \cap \alpha$. Now define Y_s as the set of ξ in ω_2 such that the set $$\{\alpha \in Z_1' : \xi \in N_{(\nu_s \hat{\alpha}_\alpha)} \cap \alpha\}$$ is stationary. Again we can find $Z_0 \subseteq Z_0'$ stationary and $\xi_s \hat{\ }_1$ in Y_s such that $\xi_s \hat{\ }_1$ is larger than $\sup(N_{\nu_s} \cap \omega_2)$ and for all α in Z_0 , $\xi_s \hat{\ }_1$ is not in $N_{(\nu_s \hat{\ }\alpha_0)} \cap \alpha$. Let Z_1 be the stationary set of α in Z_1' such that $\xi_s \hat{\ }_1$ is in $N_{(\nu_s \hat{\ }\alpha_0)} \cap \alpha$. Now define $\eta_{s^{\smallfrown}0}$ to be equal to $\nu_s^{\smallfrown}\alpha$ for some α in Z_0 larger than $\xi_{s^{\smallfrown}1}$, and define $\eta_{s^{\smallfrown}1}$ to be $\nu_s^{\smallfrown}\beta$ for some β in Z_1 larger than $\xi_{s^{\smallfrown}0}$. By definition $\xi_{s^{\smallfrown}0}$ is in $N_{\eta_{s^{\smallfrown}0}}$ and $\xi_{s^{\smallfrown}1}$ is in $N_{\eta_{s^{\smallfrown}1}}$. We claim that if $\eta_s \, {}^{\smallfrown}_0 \, \unlhd \, \nu$ in T, then $\xi_s \, {}^{\smallfrown}_1$ is not in N_{ν} . Since α is in $Z_0, \, \xi_s \, {}^{\smallfrown}_1$ is not in $N_{(\eta_s \, {}^{\smallfrown}_0)} \cap \alpha$. But $\xi_s \, {}^{\smallfrown}_1 < \alpha$, so $\xi_s \, {}^{\smallfrown}_1$ is not in $N_{(\eta_s \, {}^{\smallfrown}_0)}$. By Lemma 5.6 the minimum element of $N_{\nu} \cap \omega_2$ which is not in $N_{(\eta_s \, {}^{\smallfrown}_0)}$, if such an ordinal exists, is at least $\sup(N_{(\eta_s \, {}^{\smallfrown}_0)} \cap \omega_2) \geq \alpha > \xi_s \, {}^{\smallfrown}_1$. So $\xi_s \, {}^{\smallfrown}_1$ is not in N_{ν} . Similarly if $\eta_s \, {}^{\smallfrown}_1 \, \unlhd \, \nu$ in T, then $\xi_s \, {}^{\smallfrown}_0$ is not in N_{ν} . This completes the definition. Conditions (1) and (2) are now easily verified. Since \mathbb{P} is ω_1 -c.c., the condition p itself is generic for each N_η . Let G be a generic filter for Add over V which contains p. Then for all η in T, $N_\eta[G] \cap \omega_2 = N_\eta \cap \omega_2$. So for any cofinal branch b of T in V[G], $N_b[G] \cap \omega_2 = \bigcup \{N_{b \uparrow n} \cap \omega_2 : n < \omega\}$; in particular, $N_b[G] \cap \omega_1 = N_{\langle \rangle} \cap \omega_1$. Let $f: \omega \to 2$ be a function in $V[G] \setminus V$. Define $b_f = \bigcup \{\eta_f \upharpoonright_n : n < \omega\}$. We prove that $N_{b_f} \cap \omega_2$ is not in V by showing how to define f inductively from this set. Suppose $f \upharpoonright n$ is known. Fix j < 2 such that $f(n) \neq j$. We claim that $\xi^* = \xi_{(f \upharpoonright n) \smallfrown_j}$ is not in $N_{b_f} \cap \omega_2$. Otherwise there is k > n such that ξ^* is in $N_{\eta_{f \upharpoonright k}}$. But $f \upharpoonright (n+1) \unlhd f \upharpoonright k$. So by condition (2), ξ^* is not in $N_{\eta_{f \upharpoonright k}}$, which is a contradiction. So f(n) is the unique i < 2 such that $\xi_{(f \upharpoonright n) \smallfrown_i}$ is in $N_{b_f} \cap \omega_2$. Let $\langle D_n:n<\omega\rangle$ enumerate all the dense subsets of $\mathbb{P}(S)$ lying in $N_{b_f}[G]$. Inductively define a sequence $\langle q_n:n<\omega\rangle$ by letting $q_0=q$ and choosing q_{n+1} to be a refinement of q in $D_n\cap N_{b_f}[G]$. Let $\langle b_i:i<\gamma\rangle=\bigcup\{q_n:n<\omega\}$. Clearly $\bigcup\{b_i:i<\gamma\}=N_{b_f}\cap\omega_2$. Since $N_{b_f}\cap\omega_2$ is not in $V, r=\langle b_i:i<\gamma\rangle^{\widehat{}}(N_{b_f}\cap\omega_2)$ is a condition in $\mathbb{P}(S)$ below q and r is generic for $N_{b_f}[G]$. So r forces $N_{b_f}[G][\dot{H}]\cap\omega_1=N_{b_f}[G]\cap\omega_1=N_{\langle\rangle}\cap\omega_1$. Let \dot{r} be a name for r. Then $p*\dot{r}\leq p*\dot{q}$ is as required. \square We state without proof the facts concerning RCS iterations which we shall use. These facts follow immediately from [10] Chapter XI 1.13 and Chapter XV 4.15. **Theorem 5.9.** Suppose $\langle \mathbb{P}_i, \mathbb{Q}_j : i \leq \alpha, j < \alpha \rangle$ is an RCS iteration. Then \mathbb{P}_{α} preserves ω_1 if the iteration satisfies the following properties: - (1) for each $i < \alpha$ there is $n < \omega$ such that $\mathbb{P}_{i+n} \Vdash |\mathbb{P}_i| \leq \omega_1$, - (2) for each $i < \alpha$ there is an uncountable regular cardinal κ_i and a \mathbb{P}_i -name \mathbb{I}_i such that \mathbb{P}_i is κ_i -c.c. and \mathbb{P}_i forces $\dot{\mathbb{I}}_i$ is a non-empty restriction-closed κ_i -complete family of ideals such that $\dot{\mathbb{Q}}_i$ satisfies the $\dot{\mathbb{I}}_i$ -universal property. **Theorem 5.10.** Let α be a strongly inaccessible cardinal. Suppose that $\langle \mathbb{P}_i, \mathbb{Q}_j : i \leq \alpha, j < \alpha \rangle$ is a revised countable support iteration such that \mathbb{P}_{α} preserves ω_1 and for all $i < \alpha$, $|\mathbb{P}_i| < \alpha$. Then \mathbb{P}_{α} is α -c.c. Suppose κ is a Mahlo cardinal and let A be the stationary set of strongly inaccessible cardinals below κ . Define an RCS iteration $\langle \mathbb{P}_i, \dot{\mathbb{Q}}_j : i \leq \kappa, j < \kappa \rangle$ by recursion as follows. Our recursion hypotheses will include that each \mathbb{P}_{α} preserves ω_1 , and is α -c.c. if α is in A. Suppose \mathbb{P}_{α} is defined. If α is not in A, then let \mathbb{Q}_{α} be a name for COLL $(\omega_1, |\mathbb{P}_{\alpha}|)$. Suppose α is in A. By the recursion hypotheses \mathbb{P}_{α} forces $\alpha = \omega_2$. Let \mathbb{Q}_{α} be a name for the poset ADD * $\mathbb{P}(\dot{S})$. If α is not in A, then choose some regular cardinal κ_{α} larger than $|\mathbb{P}_{\alpha}|$, and let $\dot{\mathbb{I}}_{\alpha}$ be a name for some non-empty restriction-closed κ_{α} -complete family of ideals on κ_{α} . Then \mathbb{P}_{α} is κ_{α} -c.c., and since $\dot{\mathbb{Q}}_{\alpha}$ is proper, \mathbb{P}_{α} forces $\dot{\mathbb{Q}}_{\alpha}$ satisfies the $\dot{\mathbb{I}}_{\alpha}$ -universal property. Suppose α is in A. Then let $\alpha = \kappa_{\alpha}$ and define $\dot{\mathbb{I}}_{\alpha}$ as a name for the family of ideals on ω_{2} as described in Theorem 5.8. Then \mathbb{P}_{α} is κ_{α} -c.c. and forces that $\dot{\mathbb{Q}}_{\alpha}$ satisfies the $\dot{\mathbb{I}}_{\alpha}$ -universal property. Suppose $\beta \leq \kappa$ is a limit ordinal and \mathbb{P}_{α} is defined for all $\alpha < \beta$. Define \mathbb{P}_{β} as the revised countable support limit of $\langle \mathbb{P}_{\alpha} : \alpha < \beta \rangle$. By Theorem 5.9 and the recursion hypotheses, \mathbb{P}_{β} preserves ω_1 . Hence if β is in $A \cup \{\kappa\}$, then \mathbb{P}_{β} is β -c.c. by Theorem 5.10. This completes the definition. Let G be generic for \mathbb{P}_{κ} . The poset \mathbb{P}_{κ} is κ -c.c. and preserves ω_1 , so in V[G] we have that $\kappa = \omega_2$ and A is a stationary subset of $\omega_2 \cap \operatorname{cof}(\omega_1)$. For each α in A let \mathcal{C}_{α} be the club on $P_{\omega_1}(\alpha)$ introduced by \mathbb{Q}_{α} . If $\alpha < \beta$ are in A, then \mathcal{C}_{α} and \mathcal{C}_{β} are disjoint since \mathcal{C}_{β} is disjoint from $V[G \upharpoonright \beta]$. So $\langle \mathcal{C}_{\alpha} : \alpha \in A \rangle$ is a disjoint club sequence on ω_2 in V[G]. We conclude the paper with several questions. - (1) Assuming Martin's Maximum, the poset ADD * $\mathbb{P}(\dot{S})$ is semiproper.
Is this poset semiproper in general? - (2) Is it consistent that there exists a stationary set $A \subseteq \omega_2 \cap \operatorname{cof}(\omega_1)$ such that neither $A \cup \operatorname{cof}(\omega)$ nor $\omega_2 \setminus A$ can acquire a club subset in an ω_1 and ω_2 preserving extension? - (3) To what extent can the results of this paper be extended to cardinals greater than ω_2 ? For example, is it consistent that there is a fat stationary subset of ω_3 which cannot acquire a club subset by any forcing poset which preserves ω_1 , ω_2 , and ω_3 ? ### References - U. Abraham and S. Shelah, Forcing closed unbounded sets, Journal of Symbolic Logic 48 (1983), no. 3, 643–657. MR0716625 (85i:03112) - J. Baumgartner and A. Taylor, Saturation properties of ideals in generic extensions I, Transactions of the American Mathematical Society 270 (1982), no. 2, 557–574. MR0645330 (83k:03040a) - 3. Q. Feng, T. Jech, and J. Zapletal, On the structure of stationary sets, Preprint. - M. Foreman, M. Magidor, and S. Shelah, Martin's maximum, saturated ideals, and non-regular ultrafilters. part I, Annals of Mathematics 127 (1988), 1–47. MR0924672 (89f:03043) - 5. S. Friedman, Forcing with finite conditions, Preprint. - 6. M. Gitik, Nonsplitting subset of $P_{\kappa}\kappa^{+}$, J. Symbolic Logic **50** (1985), no. 4, 881–894. MR0820120 (87g:03054) - 7. W. Mitchell, $I[\omega_2]$ can be the non-stationary ideal, Preprint. - 8. ______, Aronszajn trees and the independence of the transfer property, Annals of Mathematical Logic 5 (1972), 21–46. MR0313057 (47:1612) - M. Rubin and S. Shelah, Combinatorial problems on trees: Partitions, Δ-systems and large free subtrees, Annals of Pure and Applied Logic 33 (1987), 43–81. MR0870686 (88h:04005) - 10. S. Shelah, Proper and improper forcing, Springer, 1998. MR1623206 (98m:03002) KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC, UNIVERSITY OF VIENNA, WAEHRINGER STRASSE 25. A-1090 WIEN, AUSTRIA E-mail address: sdf@logic.univie.ac.at Department of Mathematics, University of California, Berkeley, California 94720 $E\text{-}mail\ address:\ jkrueger@math.berkeley.edu$