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RAPID DECAY OF CORRELATIONS
FOR NONUNIFORMLY HYPERBOLIC FLOWS

IAN MELBOURNE

Abstract. We show that superpolynomial decay of correlations (rapid mix-
ing) is prevalent for a class of nonuniformly hyperbolic flows. These flows are
the continuous time analogue of the class of nonuniformly hyperbolic maps for
which Young proved exponential decay of correlations. The proof combines
techniques of Dolgopyat and operator renewal theory.

It follows from our results that planar periodic Lorentz flows with finite
horizons and flows near homoclinic tangencies are typically rapid mixing.

1. Introduction

Let (M, ν) be a probability space. Given a measure preserving flow φt : M →
M and observables v, w ∈ L2(M), we define the correlation function ρv,w(t) =∫

M
v w ◦ φt dν −

∫
M

v dν
∫

M
w dν. The flow is mixing if limt→∞ ρv,w(t) = 0 for all

v, w ∈ L2(M).
Of interest is the rate of decay of correlations, namely the rate at which ρv,w(t)

converges to zero. For nontrivial mixing flows, the decay rate is arbitrarily slow
for L2 observables. Hence the aim is to establish decay rates under regularity
hypotheses on the flow φt, the measure ν, and the observables v, w.

Suppose that Λ ⊂ M is a uniformly hyperbolic (Axiom A) basic set for a smooth
flow φt : M → M and that ν is an equilibrium state for a Hölder potential [7]. If
Λ is mixing, then Bowen and Ruelle [7] asked whether Λ has exponential decay of
correlations (ρv,w(t) = O(e−ct) for some c > 0) for sufficiently regular v, w. (In the
discrete time case, it is well-known that Axiom A diffeomorphisms enjoy exponential
decay of correlations.) Until recently, exponential decay was established only for
Anosov flows with additional algebraic structure. Moreover, Ruelle [30] showed
that mixing Axiom A flows need not have exponential decay of correlations, and
Pollicott [28] showed that the decay rates could be arbitrarily slow.

In 1998, Dolgopyat [17] (building upon results of Chernov [12]) showed that geo-
desic flows on surfaces of negative curvature have exponential decay of correlations
for Hölder observables. Liverani [23] extended this result to arbitrary dimensional
geodesic flows in negative curvature and more generally to contact Anosov flows.
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Pollicott [29] proved exponential decay for a class of uniformly hyperbolic attrac-
tors with one-dimensional unstable manifolds. However, it remains an open ques-
tion whether exponential decay of correlations is typical in any reasonable sense for
Axiom A (even Anosov) flows.

Dolgopyat [18] introduced the weaker notion of rapid mixing (superpolynomial
decay of correlations) where for any n ≥ 1, ρv,w(t) = O(t−n) for sufficiently reg-
ular observables, and showed that rapid mixing is ‘prevalent’: it suffices that the
flow contains two periodic solutions with periods whose ratio is Diophantine. In
addition, Dolgopyat [17] showed that for Anosov flows, joint nonintegrability of
the stable and unstable foliations (an open and dense condition by methods of
Brin [8, 9]) implies rapid mixing. Field, Melbourne and Török [19] introduced new
techniques and combined them with Dolgopyat’s work to prove that amongst Cr

Axiom A flows, r ≥ 2, an open and dense set of flows is rapid mixing, with uniform
implied constants — stable rapid mixing. (In [15], this result is misattributed to
Dolgopyat.)

Rapid mixing for nonuniformly hyperbolic flows. Parallel to the advances for uni-
formly hyperbolic flows above, Young [35] established exponential decay of correla-
tions for a class of nonuniformly hyperbolic maps including billiards and Hénon-like
maps [4]. In this paper, we use operator renewal theory [31, 20] to extend the ideas
of Dolgopyat [18] to a large class of nonuniformly hyperbolic flows, namely the con-
tinuous time analogue of the nonuniformly hyperbolic maps studied in Young [35].
Roughly speaking, the main result of this paper is that

A ‘prevalent’ set of nonuniformly hyperbolic flows are rapid mixing.

Again, rapid mixing is established for sufficiently regular observables, and preva-
lence is understood in the sense that a Diophantine condition on finitely many
periods is sufficient to guarantee rapid mixing.

Limit laws for time-one maps of nonuniformly hyperbolic flows. A simple conse-
quence of our main result, following [25], is that the (functional) central limit the-
orem holds for the time-one map of a typical nonuniformly hyperbolic flow. (The
central limit theorem for the flow itself is a weaker property and holds regardless of
rapid mixing [26].) A stronger result than the central limit theorem is the almost
sure invariance principle. This is known for nonuniformly hyperbolic flows [24] and
a natural question is to establish this (at least typically) for their time-one maps.
The methods in [24, 25] do not seem to resolve this issue.

Lorentz gases. See [15] for a survey of results about Lorentz gases. The planar
periodic Lorentz gas is a class of examples introduced by Sinăı [32]. The Lorentz
flow is a billiard flow on T

2 − Ω where Ω is a disjoint union of convex regions with
C3 boundaries. (The phase-space of the flow is three-dimensional; planar position
and direction.) The flow has a natural global cross-section M = ∂Ω × [−π/2, π/2]
corresponding to collisions, and the Poincaré map T : M → M is called the billiard
map. Bunimovich, Sinăı and Chernov [11] proved stretched exponential decay rates
for the billiard map and exponential decay rates were established by Young [35].
Denote the return time function by h : M → R

+. The Lorentz flow satisfies the
finite horizon condition if h is uniformly bounded. It is strongly conjectured that
exponential decay of correlations holds for the Lorentz flow with finite horizons,
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but previously no results on the rate of decay were available. It follows from our
main result that

A prevalent set of planar periodic Lorentz flows with finite horizon
are rapid mixing.

Once again, we emphasize that rapid mixing is proved for observables which are
smooth along the the flow (which is not the case for position or velocity). Con-
sequences of this result include the central limit theorem for the time-one map of
a typical planar periodic Lorentz flow with finite horizon. (The central limit the-
orem and almost sure invariance principle are always satisfied by the flows them-
selves [11, 24].)

Our results also apply to externally forced periodic Lorentz gases and to planar
dispersing billiards on a table whose sides are convex inwards, under the hypoth-
esis that the corner points have positive angles. (The corresponding billiard maps
were studied by Chernov in [14] and [13] respectively, and have exponential decay
of correlations. In the case of the billiards with corners, a technical assumption
(condition (*) in [15, Section 5.1, paragraph B]) is required.)

Flows near homoclinic tangencies. Benedicks and Carleson [2] studied the Hénon
map Ta,b(x, y) = (1−ax2+y, bx) and proved the existence of a strange attractor for
a positive measure of parameters a, b. The attractor admits an SRB measure [3] and
was shown to have exponential decay of correlations by Benedicks and Young [4].

Mora and Viana [27] showed that Hénon-like attractors arise for positive measure
sets of parameters in the unfoldings of homoclinic tangencies for surface diffeomor-
phisms, and these results were extended to higher dimensions by [34, 16].

The above results combined with those in this paper show that a positive measure
set of flows near a homoclinic tangency are rapid mixing.

. The above examples can be viewed as suspension flows over a nonuniformly hy-
perbolic map T : M → M . In general, we do not require a global cross-section
M . It suffices that the flow can be modelled by a suspension of a nonuniformly
hyperbolic map (in the same way that a hyperbolic basic set for an Axiom A flow
is modelled by a suspension of a uniformly hyperbolic map [5]).

Remark 1.1. Two natural directions in which our results might be extended are:
(1) The class of nonuniformly hyperbolic maps studied by Young [35] possess

exponential decay of correlations, and we prove rapid mixing for the analogous class
of flows in this paper. In a subsequent paper, Young [36] introduces a more general
class of nonuniformly hyperbolic maps with subexponential decay of correlations.
Presently, we have no results for the corresponding class of flows.

(2) Our boundedness assumption on the roof function h excludes an important
class of flows known as singular hyperbolic flows (including geometric Lorenz attrac-
tors) for which h has a logarithmic singularity. It is plausible that the techniques
in this paper apply to such flows, and this will be the subject of future work. (In
the present paper, the boundedness assumption is relaxed in Section 3.)

The remainder of the paper is organised as follows. In Section 2, we state our
results on rapid mixing, first for nonuniformly expanding semiflows, and then for
nonuniformly hyperbolic flows. Nonuniformly expanding maps have an induced
return map that is Gibbs-Markov [1], and in Section 3 we study rapid mixing for
suspension semiflows over such maps. In Section 4, we use operator renewal theory
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to reduce the nonuniformly expanding case to the Gibbs-Markov case. In Section 5,
we use an approximation argument to extend our results to the nonuniformly hy-
perbolic case.

2. Statement of the main results

In this section, we state our main results about rapid mixing. In Subsection 2.1,
we consider the technically simpler case of nonuniformly expanding semiflows; here
all definitions are given explicitly. In Subsection 2.2, we consider nonuniformly
hyperbolic flows, referring to Young [35] for precise definitions.

2.1. Nonuniformly expanding semiflows. Let (X, d) be a locally compact sep-
arable bounded metric space with Borel probability measure m0 and let T : X → X
be a nonsingular transformation for which m0 is ergodic. Let Y ⊂ X be a mea-
surable subset with m0(Y ) > 0, and let {Yj} be an at most countable measurable
partition of Y with m0(Yj) > 0. We suppose that there is an L1 return time func-
tion r : Y → Z+, constant on each Yj with value r(j) ≥ 1, and constants λ > 1,
η ∈ (0, 1), C ≥ 1 such that for each j ≥ 1,

(1) F = T r(j) : Yj → Y is a bijection.
(2) d(Fx, Fy) ≥ λd(x, y) for all x, y ∈ Yj .
(3) d(T �x, T �y) ≤ Cd(Fx, Fy) for all x, y ∈ Yj , 0 ≤ � < r(j).

(4) gj = d(m0|Yj◦F−1)
dm0|Y satisfies | log gj(x)−log gj(y)| ≤ Cd(x, y)η for all x, y ∈ Y .

Such a dynamical system T : X → X is called nonuniformly expanding. There
is a unique T -invariant probability measure m on X equivalent to m0 (see for
example [36, Theorem 1]).

Remark 2.1. Discarding sets of zero measure, we have assumed without loss that
the induced map F : Y → Y is defined everywhere on Y . This simplifies the
formulation below of certain hypotheses involving periodic points.

Let h : X → R+ be a roof function such that for all j ≥ 1,
(5) h ∈ L∞(X) and |h(x)− h(y)| ≤ Cd(x, y)η for all x, y ∈ T �Yj , 0 ≤ � < r(j).

Define the suspension Xh = {(x, u) ∈ X × [0,∞) : u ∈ [0, h(x)]}/ ∼ where
(x, h(x)) ∼ (Tx, 0). Define the suspension semiflow Tt : Xh → Xh by setting
Tt(x, u) = (x, u + t) computed modulo identifications. We obtain an invariant
probability measure on Xh given by mh = m × �/|h|1 where � denotes Lebesgue
measure. For m ≥ 1, η > 0, let Cm,η(Xh) consist of those v : Xh → R for which
‖v‖m,η = ‖v‖η + ‖∂tv‖η + · · · + ‖∂m

t v‖η < ∞, where ∂t denotes the derivative in
the flow direction and

‖v‖η = |v|∞ + sup
x�=y

|v(x, u) − v(y, u)|/d(x, y)η.

Definition 2.2. The suspension semiflow Tt is rapid mixing if for any n ≥ 1 there
exists m ≥ 1 and C ≥ 1 such that |ρv,w(t)| ≤ C‖v‖m,η|w|∞t−n for all v ∈ Cm,η(Xh)
and w ∈ L∞(Xh), and all t > 0.

Suppose that Z ⊂ Y is a finite union of partition elements Yj . Let p ∈ Z be a
periodic point for F : Y → Y such that F ip ∈ Z for all i ≥ 1. We associate to p
the triple (τ, d, q) ∈ R+ × Z+ × Z+ where τ is the period of p under the semiflow
Tt, d is the period under the map T , and q is the period under the induced map F

(so d =
∑q−1

i=0 r(F ip) and τ =
∑d−1

i=0 h(T ip)). Let TZ denote the set of such triples.
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Theorem 2.3. Let T : X → X be a nonuniformly expanding map and h : X → R+

a roof function satisfying properties (1)–(5). Assume that m0(r > n) = O(γn) for
some γ ∈ (0, 1). Let Z ⊂ Y be a finite union of partition elements Yj.

Suppose that the suspension semiflow Tt : Xh → Xh is not rapid mixing. Then
there exist sequences bk ∈ R with |bk| → ∞, and ωk, ϕk ∈ [0, 2π), and constants
α > 0 arbitrarily large, C, β ≥ 1, such that

dist(bknkτ + ωknkd + qϕk, 2πZ) ≤ Cq|bk|−α,(2.1)

for all k ≥ 1 and all (τ, d, q) ∈ TZ , where nk = [β ln |bk|].

Corollary 2.4. Let T : X → X be a nonuniformly expanding map and h : X → R+

a roof function satisfying properties (1)–(5). Assume that m0(r > n) = O(γn) for
some γ ∈ (0, 1). Fix four periodic solutions for Tt : Xh → Xh that each intersect
Y , and let τ1, . . . , τ4 be the periods. For Lebesgue almost all (τ1, · · · , τ4) ∈ (R+)4,
the suspension semiflow Tt : Xh → Xh is rapid mixing.

Proof. Let Z be the union of those partition elements Yj intersected by the four
periodic solutions. We work with the triples (τi, di, qi) ∈ TZ , i = 1, . . . , 4, where
di, qi ∈ Z+. For simplicity, suppose that qi = 1.

Suppose that Tt is not rapid mixing and let α > 2. Eliminating ϕk from (2.1),
we obtain dist(bknkτ12 + ωknkd12, 2πZ) ≤ 2C|bk|−α where τ12 = τ1 − τ2 and d12 =
d1 −d2. Similar expressions hold for (τ13, d13) and (τ14, d14). Next, eliminate ωk to
obtain dist(bknkψ1, 2πZ) ≤ 2C(d12 + d13)|bk|−α where ψ1 = d13τ12 − d12τ13, and
similarly for ψ2 = d14τ12 − d12τ14.

Let α′ ∈ (2, α). Arguing as in [18, Section 13], we obtain (m1, m2) ∈ N2 with
|m| = m1 + m2 → ∞ such that m1ψ1 + m2ψ2 = O(|m|−α′

). This sequence of
conditions is satisfied only by a measure zero set of pairs ψ1, ψ2. Hence for almost
every (τ1, . . . , τ4) we obtain a contradiction, and so Tt is rapid mixing. �

Remark 2.5. Similarly, it suffices that there is a sequence of periodic orbits in Z
with good asymptotics in the sense of [19]. As shown in [19], good asymptotics is
an open-dense condition for smooth systems. Hence, results on stable rapid mixing
reduce to stability of the partition {Yj}. We do not explore this issue further in
this paper.

2.2. Nonuniformly hyperbolic flows. Let (M, d) be a Riemannian manifold.
Young [35] introduced a class of nonuniformly hyperbolic maps T : M → M (possi-
bly with singularities) with the property that there is an ergodic T -invariant SRB
measure for which exponential decay of correlations holds for Hölder observables.
We refer to [35] for precise definitions, but some of the notions and notation are
required to state our main results. (The further structure from [35] required for our
proofs is postponed until Section 5.1.) In particular, there is a “uniformly hyper-
bolic” subset Y ⊂ M with partition {Yj} and a return time function r : Y → Z+

(denoted R in [35]) constant on partition elements such that, modulo uniformly
contracting directions, F = T r(j) : Yj → Y is a bijection.

The statement of our main result is completely analogous to that of Theorem 2.3.
Given a roof function h : M → R

+, the suspension flow Tt : Mh → Mh is defined
as before. We define rapid mixing as in Definition 2.2 except that we now assume
that both observables v, w lie in Cm,η(Mh) and |w|∞ is replaced by ‖w‖m,η.
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Suppose that Z ⊂ Y is a finite union of partition elements Yj . As in the nonuni-
formly expanding case, we define the set TZ consisting of triples (τ, d, q) correspond-
ing to periodic orbits for F : Y → Y lying entirely in Z.

Theorem 2.6. Let T : M → M be nonuniformly hyperbolic in the sense of
Young [35] with m0(r > n) = O(γn) for some γ ∈ (0, 1). Let h : M → R+ be
a roof function with h ∈ L∞(M) and |h(x)− h(y)| ≤ Cd(x, y)η for all x, y ∈ T �Yj,
0 ≤ � < r(j). Let Z ⊂ Y be a finite union of partition elements Yj.

If the suspension flow Tt : Mh → Mh is not rapid mixing, then condition (2.1)
holds as in Theorem 2.3.

Remark 2.7. Our criterion (2.1) for nonuniformly expanding/hyperbolic flows in
Theorems 2.3 and 2.6 is more complicated than the corresponding criterion for
uniformly hyperbolic flows [18, 19]. In the uniformly hyperbolic case, the subset
Z and the sequence ωk do not arise. Moreover, the phases ϕk can be taken to be
zero. A consequence is that a pair of periodic solutions suffices in Corollary 2.4.

It is not clear whether these extra complications can be removed with further
work, or by using different techniques, but as shown by Corollary 2.4 and Re-
mark 2.5, for many practical purposes the complications are not too serious.

3. Suspensions of Gibbs-Markov systems

In this section, we consider rapid decay of correlations for a class of suspended
Gibbs-Markov systems, where the roof function is piecewise Lipschitz (but not
bounded).

We assume that (Y, µ) is a probability space, and that {Yj , j ≥ 1} is a measurable
partition of Y . Let F : Y → Y be a measure-preserving map. It is assumed that the
partition {Yj} separates orbits of F and that F |Yj

: Yj → Y is a bijection for each j.
If a0, . . . , an−1 ∈ {Yj}, we define the n-cylinder [a0, . . . , an−1] =

⋂n−1
i=0 F−iai. Fix

θ ∈ (0, 1) and define dθ(x, y) = θs(x,y) where the separation time s(x, y) is the
greatest integer n ≥ 0 such that x and y lie in the same n-cylinder.

Define Fθ(Y ) to be the Banach space of functions v : Y → R that are Lipschitz
with respect to dθ with norm ‖v‖θ = |v|∞ + |v|θ where |v|θ is the least Lipschitz
constant.

A function v : Y → R is called piecewise Lipschitz if v|Yj
is Lipschitz for each

j. It is uniformly piecewise Lipschitz if the Lipschitz constants can be chosen
independent of j. Note that v ∈ Fθ(Y ) if and only if v is uniformly piecewise
Lipschitz and uniformly bounded.

We assume that µ is an invariant ergodic probability measure on Y . Define the
potential function p = log dµ

dµ◦F : Y → R and assume that p is uniformly piecewise
Lipschitz. In particular, F : Y → Y is Gibbs-Markov [1]. It follows in the usual
way that there exists a constant C1 ≥ 1 such that for all x, y ∈ [a0, . . . , ak−1],∣∣∣epk(x)

epk(y)
− 1

∣∣∣ ≤ C1θ
−kdθ(x, y) and C−1

1 ≤ µ[a0, . . . , ak−1]
epk(x)

≤ C1,(3.1)

where pk(x) = p(x) + p(Fx) + · · · + p(F k−1x). (Note that in general p 
∈ Fθ(Y ).
Indeed, p is bounded below if and only if the partition {Yj} is finite.)

Let R : L1(Y ) → L1(Y ) denote the transfer operator corresponding to F : Y →
Y . So

∫
Y

v w ◦F dµ =
∫

Y
Rv w dµ for all v ∈ L1(Y ) and w ∈ L∞(Y ). A calculation
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shows that (Rv)(x) =
∑

Fy=x ep(y)v(y) =
∑

j≥1 ep(yj)v(yj), where yj is the unique
preimage of x in Yj .

Let H : Y → R+ be a piecewise Lipschitz roof function with H ∈ L1(Y ).

Definition 3.1. The roof function H has exponential tails if there is a partition
{Zn} of Y that is coarser than {Yj} such that µ(Zn) = O(γn

1 ) and ‖1Zn
H‖θ = O(n).

(We do not assume that H is bounded nor that the Lipschitz constants of 1Yj
H

are bounded.)

Remark 3.2. Throughout this paper, C1, C2, . . . ≥ 1 denote universal constants
that depend only on the Gibbs-Markov system F : Y → Y , the partition {Yj}, the
metric dθ, the potential p and the roof function H (or the nonuniformly expanding
map T : X → X and roof function h : X → R, etc., as appropriate). Similarly,
γ1, γ2, . . . ∈ (0, 1) denote universal constants.

Define the family of twisted transfer operators Rs : L1(Y ) → L1(Y ), s ∈ C,

Rsv = R(esHv).

For purely imaginary s = ib, we define the one-sided inverses Mb : L∞(Y ) →
L∞(Y ),

Mbv = e−ibHv ◦ F.

Definition 3.3. A subset Z0 ⊂ Y is a finite subsystem of Y if Z0 =
⋂

n≥1 F−nZ

where Z is the union of finitely many elements from the partition {Yj}. (Note that
F |Z0 : Z0 → Z0 is a full one-sided shift on finitely many symbols.)

Definition 3.4. We say that Mb has an approximate eigenfunction on a subset
Z ⊂ Y if there exist constants α > 0 arbitrarily large, β > 0 and C ≥ 1, and
sequences |bk| → ∞, ϕk ∈ [0, 2π), uk ∈ Fθ(Y ) with |uk| ≡ 1, such that setting
nk = [β ln |bk|],

|(Mnk

bk
uk)(y) − eiϕkuk(y)| ≤ C|bk|−α,

for all y ∈ Z and all k ≥ 1.

Our main result in this section is the following result about the spectra of the
twisted transfer operators Rs for Gibbs-Markov maps.

Lemma 3.5. Let F : Y → Y be a Gibbs-Markov map and let H : Y → R
+ be a

piecewise Lipschitz roof function satisfying exponential tails. Let Z0 ⊂ Y be a finite
subsystem and suppose that Mb has no approximate eigenfunctions on Z0.

Then there exists α > 0, ε > 0 and C ≥ 1 such that

‖(I − Rs)−1‖θ ≤ C|b|α for all s = a + ib with |b| > 1 and |a| < ε|b|−α.

Decay of correlations is a standard consequence of Lemma 3.5. For completeness,
we state this result. Define the suspension semiflow Ft : Y H → Y H and define
spaces of observables Fm,θ(Y H) analogously to Cm,η(XH) as in Section 2.1, but
with ‖ ‖η replaced by ‖ ‖θ.

Proposition 3.6. Let F : Y → Y be a Gibbs-Markov map and let H : Y → R+

be a piecewise Lipschitz roof function satisfying exponential tails. Suppose further
that the suspension flow Ft : Y H → Y H is mixing and that there exist constants
ε > 0 and C ≥ 1 such that ‖(I − Rs)−1‖θ ≤ C|b|α for all s = a + ib with |b| > 1
and |a| < ε|b|−α.
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Then Ft : Y H → Y H is rapid mixing: for any n ≥ 1, there exists m ≥ 1 and
C ≥ 1 such that |ρv,w(t)| ≤ C‖v‖m,θ|w|∞t−n for all v ∈ Fm,θ(Y H), w ∈ L∞(Y H),
t > 0.

Proof. Fix k ≥ 1 and write v = ṽ + (v − ṽ) where ṽ is supported on the part of
the suspension over

⋃k
j=1 Zj . Then ρv,w(t) = ρṽ,w(t) + ρv−ṽ,w(t) and |ρv−ṽ,w(t)| ≤

2|v|∞|w|∞
∑

j>k µ(Zj)|1Zj
H|∞ ≤ C2|v|∞|w|∞γk

2 .
The remaining term ρṽ,w(t) is studied in the standard way ([17, 28] and specif-

ically [18, Section 10]) via the Laplace transform ρ̂ṽ,w(s). Ignoring an analytic
term, ρ̂ṽ,w(s) =

∫
Y

[(I − R−s)−1vs]ws dµ where vs(y) =
∫ H(y)

0
esuṽ(y, u)du and

ws(y) =
∫ H(y)

0
e−suw(y, u)du.

By exponential tails,

|ws|1 ≤
∑
j≥1

|1Yj
ws|1 ≤

∑
j≥1

µ(Yj)|1Yj
ws|∞ ≤

∑
j≥1

µ(Yj)|1Yj
H|∞eε|1Yj

H|∞ |w|∞

≤
∑
n≥1

µ(Zn)|1Zn
H|∞eε|1Zn H|∞ ≤ C3|w|∞,

and a straightforward calculation shows that ‖vs‖θ ≤ C4keεk‖v‖θ ≤ C5e
2εk‖v‖θ.

Hence |ρ̂ṽ,w(s)| ≤ C ′|b|αe2εk‖v‖θ|w|∞, for |b| > 1, |a| < ε|b|−α. Since |ρ̂v,w(s)| ≤
|b|−m|ρ̂∂m

t v,w(s)|, we deduce that |ρ̂ṽ,w(s)| ≤ C ′|b|α−me2εk‖v‖m,θ|w|∞, and it fol-
lows as in [18, Section 10] that for any n ≥ 1, there exists m ≥ 1 such that
|ρṽ,w(t)| ≤ C ′′e2εkt−(n+1)‖v‖m,θ|w|∞ for m sufficiently large. Hence

|ρv,w(t)| ≤ C ′′(e2εkt−(n+1) + γk
2 )‖v‖m,θ|w|∞.

Taking k = [(ln t)/(2ε)] with ε sufficiently small yields the required result. �

In the remainder of this section, we prove Lemma 3.5.

3.1. Preliminary estimates. In this subsection, we write s = a+ ib and we carry
out estimates for 0 ≤ a < 1 and b > 1. (The calculations are identical for b < −1,
and simpler for −1 < a ≤ 0.)

Proposition 3.7. (a) |Rib|∞ ≤ 1.
(b) |Rn

ibv|θ ≤ C6{b|v|∞ + θn|v|θ} for all n ≥ 1 and v ∈ Fθ(Y ).
(c) ‖Rnv −

∫
Y

v‖θ ≤ C7γ
n
3 ‖v‖θ for all n ≥ 1 and v ∈ Fθ(Y ).

Proof. (a) is immediate and (c) follows from the quasicompactness [1, Section 4.7]
of the transfer operator R. Part (b) is proved in Bruin et al. [10], where it is shown
that |Rn

ibv|θ ≤
{

C2
1 + bC1θ(1 − θ)−1

∑
|1Yj

H|θµ(Yj)
}
|v|∞ + C1θ

n|v|θ. �

Remark 3.8. As in [18, Section 6], we define ‖v‖b = max{|v|∞, |v|θ/(2C6b)}. Then
it follows from Proposition 3.7 that ‖Rn

ib‖b ≤ C6 + 1
2 for all n ≥ 1. Moreover,

‖Rn
ib‖b ≤ 1 for all n ≥ n0 (where n0 = [ln(2C6)/(− ln θ)] + 1).

Proposition 3.9. For each j ≥ 1, and all v ∈ Fθ(Y ),

(a) |Rs1Yj
|∞ ≤ C1e

a|1Yj
H|∞µ(Yj).

(b) |Rs1Yj
v|θ ≤ ea|1Yj

H|∞µ(Yj){(C2
1 + θC1|s||1Yj

H|θ)|v|∞ + θC1|v|θ}.
(c) ‖Rs1Yj

‖b ≤ C8e
a|1Yj

H|∞(
1 + |1Yj

H|θ
)
µ(Yj).

(d) ‖(Rs − Rib)1Yj
‖b ≤ C9a‖1Yj

H‖θ(1 + |1Yj
H|θ)ea|1Yj

H|∞µ(Yj).
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Proof. For x ∈ Y , we have (R1Yj
v)(x) = ep(y)v(y) where y is the unique preimage

of x in Yj . Hence |R1Yj
|∞ ≤ e|1Yj

p|∞ ≤ C1µ(Yj). Moreover,

|(R1Yj
v)(x) − (R1Yj

v)(x′)| ≤ |ep(y) − ep(y′)||v(y)| + ep(y′)|v(y) − v(y′)|

≤ ep(y′)|ep(y)−p(y′) − 1||v|∞ + ep(y′)θ|v|θdθ(x, x′)

≤ C1µ(Yj){C1dθ(x, x′)|v|∞ + θ|v|θdθ(x, x′)}

so that |R1Yj
v|θ ≤ µ(Yj){C2

1 |v|∞ + θC1|v|θ}.
Next, write Rs1Yj

v = R1Yj
(es1Yj

Hv). Using the inequality

|ez − ew| ≤
√

2|z − w|emax{�z,�w} for z, w ∈ C,

we obtain |es1Yj
H |θ ≤

√
2|s||1Yj

H|θe|�s||1Yj
H|∞ . Parts (a) and (b) follow easily.

Part (c) follows from parts (a) and (b) and the definition of ‖ ‖b.
To prove part (d), we write (Rs − Rib)1Yj

= Rib1Yj
(ea1Yj

H − 1). It suffices to
estimate ea1Yj

H − 1 and substitute into the estimates for Rib1Yj
. Since a ≥ 0,

|ea1Yj
H(x) − 1| = ea1Yj

H(x) − 1 ≤ ea|1Yj
H|∞ − 1. Also, |ea1Yj

H − 1|θ = |ea1Yj
H |θ ≤

ea|1Yj
H|∞a|1Yj

H|θ. The result follows. �

3.2. Proof of Lemma 3.5. Consider the following conditions:

(A) There exists a finite subsystem Z0 ⊂ Y such that Mb has no approximate
eigenfunctions on Z0.

(B) There exists α > 0 such that ‖(I − Rib)−1‖b = O(|b|α) as |b| → ∞.
(C) There exists α, ε > 0, C ≥ 1 such that ‖(I − Rs)−1‖b ≤ C|b|α for all

s = a + ib with |b| > 1 and |a| < ε|b|−α.

Adapting arguments of Dolgopyat [18], we show that (A) implies (B), and that (B)
implies (C).

Condition (B) implies condition (C).

Proposition 3.10. There exist ε > 0 such that ‖Rs − Rib‖b ≤ C10|a|, for all
s = a + ib with |b| > 1 and 0 ≤ |a| < ε.

Proof. Write Rs − Rib =
∑

j≥1(Rs − Rib)1Yj
. We estimated ‖(Rs − Rib)1Yj

‖b in
Proposition 3.9(d). By exponential tails, we have that ‖Rs − Rib‖b is dominated
by a uniformly convergent series for |a| ≤ ε. Moreover, the series vanishes at a = 0
and is C1 on [−ε, ε]. It follows that ‖Rs − Rib‖b = O(a) on [−ε, ε] uniformly in
b. �

Corollary 3.11. Condition (B) implies condition (C).

Proof. Following [18, Section 2], write (I − Rs)−1 = (I − Rib)−1(I − A)−1, where
A = (I − Rib)−1(Rs − Rib). By condition (B) and Proposition 3.10, there exist
constants C ≥ 1, ε1 > 0 such that ‖A‖b ≤ C|a‖b|α for all |a| < ε1 and |b| > 1. Hence
there exists ε > 0 such that ‖A‖b < 1

2 for |a| < ε|b|−α. Therefore ‖(I −A)−1‖b ≤ 2,
and the result follows. �
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Condition (A) implies condition (B). In this part of the proof, we restrict our
attention to s = ib where b > 1 (the results are identical for |b| > 1).

Since we are estimating operator norms with respect to ‖ ‖b, we consider the unit
ball Fθ(Y )b = {v ∈ Fθ : ‖v‖b ≤ 1}. It follows from Remark 3.8 that |Rn

ibv|∞ ≤ 1
and |Rn

ibv|θ ≤ 2C6b for all v ∈ Fθ(Y )b and n ≥ n0.
Throughout, Z denotes a fixed subset of Y consisting of a finite union of partition

elements of Y , and Z0 =
⋂

j≥0 F−jZ. Note that p is uniformly bounded on Z0 and
moreover |pn(x)| ≤ n|1Z0p|∞ for all x ∈ Z0 and n ≥ 1.

Lemma 3.12. Fix α2 > 0. Then there exist α1 > 0 and β > 0, such that the
following is true for each fixed b > 2, setting n(b) = [β ln b]:

Suppose that there exists v0 ∈ Fθ(Y )b such that for all x ∈ Z0 and all j = 0, 1, 2,

|(Rjn(b)
ib v0)(x)| ≥ 1 − 1/bα1 .

Then there exists w ∈ Fθ(Y ), |w(x)| ≡ 1, and ϕ ∈ [0, 2π) such that for all y ∈ Z0,

|(Mn(b)
b w)(y) − eiϕw(y)| ≤ 8/bα2 .

Proof. We write n = n(b) and C11 = 16C6. Set

β = (α2 + 2 + lnC11/ ln 2)/(− ln θ), α1 = max{1, 2α2 + β|1Z0p|∞}.

Following [18, Section 8], we write vj = Rjn
ib v0 and vj = sjwj , where |wj(x)| ≡ 1

and 1− 1/bα1 ≤ sj(x) ≤ 1 for x ∈ Z0. Note that |vj |θ ≤ 2C6b so that |wj |θ ≤ C11b.
Rearrange v1 = Rn

ibv0 to obtain w−1
1 Rn

ib(s0w0) = s1 ≥ 1 − 1/bα1 . It then follows
from the definition of Rib that epn(y)[1 − 
(eibHn(y)w0(y)w−1

1 (Fny))] ≤ 1/bα1 for
all y ∈ Y with Fny ∈ Z0. Hence |eibHn(y)w0(y) − w1(Fny)| ≤ 2(e−pn(y)/bα1)1/2.
Similarly, with w0 and w1 replaced by w1 and w2. Restricting to y ∈ Z0, we have
e−pn(y)/bα1 ≤ 1/b2α2 and hence

|eibHn(y)w0(y) − w1(Fny)| ≤ 2/bα2 , |eibHn(y)w1(y) − w2(Fny)| ≤ 2/bα2 ,

(3.2)

for all y ∈ Z0. Fix z ∈ Z0 and define wj(z) = eiϕj for j = 0, 1. To each y, we
associate y∗ = z0 · · · zn−1ynyn+1 · · · ∈ Z0. Then y∗ is within distance θn of z and
Fny∗ = Fny. We obtain

|eibHn(y∗)eiϕ0 − w1(Fny)| ≤ 2/bα2 + C11bθ
n ≤ 3/bα2 ,

|eibHn(y∗)eiϕ1 − w2(Fny)| ≤ 2/bα2 + C11bθ
n ≤ 3/bα2

(by the choice of β), and so |e−iϕw1(Fny) − w2(Fny)| ≤ 6/bα2 . Substituting
into (3.2) yields the required approximate eigenfunction w = w1. �

Lemma 3.13. For any α1, β > 0, there exists α > 0 and C ≥ 1 with the following
property.

Let b ≥ 1 and suppose that for any v ∈ Fθ(Y )b there exists x0 ∈ Z0 and j ≤
[β ln b] such that |Rj

ibv(x0)| ≤ 1 − 1/bα1 . Then ‖(I − Rib)−1‖b ≤ Cbα.

Proof. Following [18, Section 7], we use the pointwise estimate on iterates of Rib

to obtain estimates on the L1, L∞ and ‖ ‖b norms.
Write û = Rj

ibv and u = R
�(b)
ib v where �(b) = [β ln b]. Note that |û|∞ ≤ 1 and

|û|θ ≤ 2C6b. Hence, |û(x)| ≤ 1 − 1/(2bα1) for all x within distance 1/(4C6b
α1+1)

of x0. Call this subset U . If Ck is a k-cylinder, then diam Ck = θk, so provided
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θk < 1/(4C6b
α1+1), the k-cylinder containing x0 lies inside U . It suffices to take

k ∼ (α1 + 1) ln b/(− ln θ). By (3.1),

µ(U) ≥ µ(Ck) ≥ C−1
1 e−pk(x0) ≥ C−1

1 e−k|1Z0p|∞ ≥ C−1
12 b−(α1+1)α2 ,

where α2 = |1Z0p|∞/(− ln θ). Breaking up Y into U and Y − U ,

|u|1 ≤ |û|1 ≤ (1 − 1/(2bα1))µ(U) + 1 − µ(U) = 1 − µ(U)/(2bα1) ≤ 1 − C−1
13 b−α3 ,

where α3 = α1 + α2 + α1α2. Now,

|Rn
ibu|∞ ≤ |(Rn|u|)|∞ ≤ |(Rn|u| −

∫
|u|)|∞ + |u|1 ≤ C7γ

n
3 ‖u‖θ + |u|1

≤ (1 + 2C6b)C7γ
n
3 + 1 − C−1

13 b−α3 .

Choosing n = n1(b) = [β1 ln b] where β1 � 1 ensures that

|R�(b)+n1(b)
ib v|∞ = |Rn1(b)

ib u|∞ ≤ 1 − C−1
14 b−α3 .

Setting n2(b) = [β2 ln b] where β2 = β + β1,

|Rn2(b)
ib v|∞ ≤ 1 − C−1

14 b−α3 .

By Proposition 3.7(a), (b), |Rn2(b)+n
ib |∞ ≤ 1 − C−1

14 b−α3 for all n ≥ 0, and

|Rn2(b)+n
ib v|θ/(2C6b) ≤ 1

2 + θnC6 ≤ 3
4 ,

for n sufficiently large (independent of b). Increasing β2 slightly, ‖Rn2(b)
ib v‖b ≤

1 − C−1
14 b−α3 . Hence ‖(I − R

n2(b)
ib )−1‖b ≤ C14b

α3 . Using the identity (I − A)−1 =
(I + A + · · · + Am−1)(I − Am)−1 and Remark 3.8, we obtain

‖(I − Rib)−1‖b = O(n2(b)bα3) = O(bα),

for any choice of α > α3. �

Combining Lemmas 3.12 and 3.13, we obtain that condition (A) implies condi-
tion (B). This completes the proof of Lemma 3.5.

3.3. A generalisation of Lemma 3.5. We continue to suppose that F : Y → Y
is Gibbs-Markov and that H : Y → R+ is a piecewise Lipschitz roof function.
Suppose that r : Y → Z+ is constant on partition elements with value r(j) on
Yj . By exponential tails, we mean that there is a coarser partition {Zn} with
µ(Zn) = O(γn

1 ), ‖1Zn
H‖θ = O(n) and |1Zn

r|∞ = O(n).
For z ∈ C, define

Rs,zv = Rs(ezrv) = R(esHezrv).

We continue to write z = a+ ib restricting to |b| > 1, and we write z = σ + iω with
the natural restriction ω ∈ [0, 2π) (since r is integer valued). Define

Mb,ωv = Mb(e−irωv) = e−ibHe−iωrv ◦ F.

We say that Mb,ω has an approximate eigenfunction on a subset Z ⊂ Y if there exist
constants α > 0 arbitrarily large, β > 0 and C ≥ 1, and sequences |bk| → ∞, ωk ∈
[0, 2π), ϕk ∈ [0, 2π), uk ∈ Fθ(Y ) with |uk| ≡ 1, such that setting nk = [β ln |bk|],

|(Mnk

bk,ωk
uk)(y) − eiϕkuk(y)| ≤ C|bk|−α

for all y ∈ Z and all k ≥ 1.
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Lemma 3.14. Let F : Y → Y be a Gibbs-Markov map, let H : Y → R+ be
a piecewise Lipschitz roof function and let r : Y → Z+ be constant on partition
elements. Assume exponential tails. Let Z0 ⊂ Y be a finite subsystem and suppose
that Mb,ω has no approximate eigenfunctions on Z0.

Then there exists α > 0, ε > 0 and C ≥ 1 such that

‖(I − Rs,z)−1‖b ≤ C|b|α for all |b| > 1, ω ∈ [0, 2π), |a|, |σ| < ε|b|−α.

Proof. This is identical to the proof of the corresponding statements with z = 0.
Note that the ezr factor is analogous to the esH term but is easier to handle (since
r is integer-valued and constant on partition elements). �

4. Rapid mixing for nonuniformly expanding semiflows

In this section we prove Theorem 2.3. We begin by considering suspension semi-
flows over nonuniformly expanding Young towers [36]. These towers are Markov
systems (even though the underlying map need not be Markov) with additional
distortion properties. Essentially, a Markov system ∆ over a base Y is a tower if
the induced map on the base is Gibbs-Markov.

In Subsection 4.1, we introduce the tower maps f : ∆ → ∆ and roof functions
to be studied in this section. In Subsection 4.2, we use operator renewal theory
to reduce the tower case down to the Gibbs-Markov case F : Y → Y studied in
Section 3. In Subsection 4.3, we prove Theorem 2.3 by modelling the nonuniformly
expanding map T : X → X by a tower map f : ∆ → ∆.

4.1. Return times and towers. Let F : Y → Y be a Gibbs-Markov map with
invariant measure µ, partition {Yj}, separation time s(x, y) and metric dθ(x, y) as in
Section 3. Consider a return time function r : Y → Z

+ that is constant on partition
elements. Assume that r ∈ L1 and let r(j) be the value of r on Yj . We form a tower
∆ with base Y as a discrete suspension, so ∆ = {(y, �) ∈ Y ×N : � ≤ r(y)}/ ∼ where
(y, r(y)) ∼ (Fy, 0). Define the tower map f : ∆ → ∆ by setting f(y, �) = (y, � + 1)
computed modulo identifications. We obtain an invariant probability measure (also
denoted by µ) on ∆ given by µ × ν/|r|1 where ν denotes counting measure. Also
we have a countable partition on ∆ given by {∆j,� : 0 ≤ � < r(j)} where ∆j,� =
Yj × {�}. The separation time s : Y × Y → N in Section 3 extends to the tower as
follows. If x and y lie in distinct partition elements, then s(x, y) = 0. If x, y ∈ ∆j,�,
then there exist unique x′, y′ ∈ ∆j,0 such that x = f �x′ and y = f �y′. Regarding
x′, y′ as elements of Yj , set s(x, y) = s(x′, y′). This defines the separation time
s : ∆ × ∆ → N and hence a metric dθ(x, y) = θs(x,y) on ∆. Let Fθ(∆) denote the
Banach space of Lipschitz functions v : ∆ → R with norm ‖v‖θ = |v|∞ + |v|θ.

We recover the Gibbs-Markov map F : Y → Y as the induced map F (y) =
fr(y)(y).

Let h : ∆ → R+ be a Lipschitz roof function (h ∈ Fθ(∆)), and define the induced
roof function H : Y → R

+ given by H(y) = hr(y)(y) =
∑r(y)−1

j=0 h ◦ f j(y).
Define the partition {Zn} of Y where Zn = {y ∈ Y : r(y) = n}. This partition

is coarser than {Yn} and 1Zn
r = n by definition. Moreover, a calculation using the

definition of dθ on ∆ shows that ‖1Zn
H‖θ ≤ n‖h‖θ. Hence, F , H and r satisfy

the exponential tails condition in Section 3.3 if and only if µ(Zn) = O(γn
1 ). In this

case, we say that the tower ∆ has exponential tails.
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Proposition 4.1. If ∆ has exponential tails, then there exists ε1 > 0 such that
‖Rs1Zn

‖b ≤ C15γ
n
4 for all n ≥ 1 and all s = a + ib with 0 ≤ a < ε1 and b > 1.

Proof. Applying Proposition 3.9(c),

‖Rs1Zn
‖b =

∑
j:r(j)=n

‖Rs1Yj
‖b ≤ C8

∑
j:r(j)=n

ea|1Yj
H|∞(1 + |1Yj

H|θ)µ(Yj)

≤ C8µ(Zn)ean|h|∞(1 + n|h|θ).

Now choose ε1 > 0 and γ4 > 0 so that γ4 < γ1e
ε1‖h‖θ < 1. �

4.2. Renewal theory. Let L : L1(∆) → L1(∆) denote the transfer operator cor-
responding to f : ∆ → ∆. Let Lsv = L(eshv) be the twisted transfer operator for
s ∈ C. Then (Ln

s v)(x) =
∑

fnz=x gn(z)eshn(z)v(z) where gn(z) is the inverse of the
Jacobian of fn at z.

Renewal theory gives a mechanism for relating estimates of Ln
s , n ≥ 1, to es-

timates of Rs (where Rs is the twisted transfer operator introduced in Section 3
corresponding to the Gibbs-Markov system F : Y → Y ). Following Sarig [31] (see
also [20, 10]) we define Ts,n : L1(Y ) → L1(Y ) and Rs,n : L1(Y ) → L1(Y ) by

Ts,nv = 1Y Ln
s (1Y v), Rs,nv = 1Y Ln

s (1Zn
v).

We have the identifications Rs,n = Rs1Zn
and Rs =

∑
n≥1 Rs,n. For z ∈ C, define

Ts,z = I +
∑
n≥1

Ts,nezn, Rs,z =
∑
n≥1

Rs,nezn.

Proposition 4.2 (Renewal equation). Let s ∈ C. Assume that ω �→ Rs,iω is C1

and that I − Rs,iω is invertible for ω ∈ [0, 2π). Then Ts,iω = (I − Rs,iω)−1.

Proof. Define T̂s,iω = (I − Rs,iω)−1. Then ω �→ T̂s,iω is C1 and hence has a
convergent Fourier series with coefficients T̂s,n satisfying T̂s,n =

∑n
k=1 T̂s,n−kRs,k

and T̂0 = I.
We claim that Ts,n =

∑n
k=1 Ts,n−kRs,k (with T0 = I). It then follows that

Ts = T̂s = (I − Rs)−1 as required. To prove the claim, compute that∫
∆

(Ts,n−kRs,kv)w =
∫

∆

(Ln−k
s 1Y Lk

s1Zk
v)(1Y w)

=
∫

∆

(eshn−k1Y Lk
s1Zk

v)(1Y w) ◦ fn−k

=
∫

∆

(eshk1Zk
v)(1Y w) ◦ fneshn−k◦fk

1Y ◦ fk

=
∫

∆

(eshnv)(w ◦ fn)1Zk
1Y ◦ fn.

On the other hand,
∫
∆

(Ts,nv)w =
∫
∆

eshnv(w ◦ fn)1Y 1Y ◦ fn. The result follows
since

⋃n
k=1 Zk ∩ f−nY = Y ∩ f−nY . �

It should be noted that Rs,zv = R(esHezrv) coincides with the operator defined
in Section 3.3. (Recall that the return time function r takes the value n on Zn.)
Lemma 3.14 gives conditions under which ‖(I − Rs,z)‖−1

b ≤ C|b|α holds.
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Lemma 4.3. Suppose that there exist constants α, ε > 0, C ≥ 1 such that

‖(I − Rs,z)−1‖b ≤ C|b|α,

for all s = a + ib, z = σ + iω with |b| > 1, ω ∈ [0, 2π) and |a|, |σ| < ε|b|−α.
Then there exists δ > 0 such that

‖Ts,n‖b ≤ C|b|αe−nδ|b|−α

for all n ≥ 1, and s = a + ib with |a| < ε|b|−α and |b| > 1.

Proof. Write Rs,z =
∑

n≥1 Rs1Zn
ezn.

Restricting to z = iω, this is a Fourier series with exponentially decaying Fourier
coefficients by Proposition 4.1. Hence, the series continues analytically to an annu-
lus eσ+iω, |σ| < δ0 for some δ0 > 0. By the renewal equation, for each such s, the
Fourier series Ts,iω = (I −Rs,iω)−1 has an analytic extension to the annulus eσ+iω

with |σ| < ε|b|−α. Hence, the Fourier coefficients Ts,n decay at the required rate
for any δ < ε. �

Lemma 4.4. Assume the hypotheses of Lemma 4.3. Then there exist constants
α, δ, ε > 0, C ≥ 1, such that

|Ln
s v|1 ≤ C|b|αe−nδ|b|−α‖v‖b,

for all v ∈ Fθ(∆), n ≥ 1, and s = a + ib with |b| > 1 and |a| < ε|b|−α.

Proof. Recall that (Ln
s v)(x) =

∑
fnz=x gn(z)eshn(z)v(z). Following Gouëzel [22]

(see also [21, 10]) we write Ln
s =

∑
i+j+k=n As,iTs,jBs,k + Es,n, where

(Ts,nv)(x) =
∑

fnz=x
x,z∈Y

, (As,nv)(x) =
∑

fnz=x
z∈Y ; fz �∈Y,...,fnz �∈Y

,

(Es,nv)(x) =
∑

fnz=x
z �∈Y,...,fnz �∈Y

, (Bs,nv)(x) =
∑

fnz=x
z �∈Y,...,fn−1z �∈Y ; fnz∈Y

,

and we have suppressed the summands gn(z)eshn(z)v(z). Viewing these as operators
Ls : Fθ(∆) → L1(∆), Ts,n : Fθ(Y ) → L∞(Y ), As,n : L∞(Y ) → L1(∆), Bs,n :
Fθ(∆) → Fθ(Y ), Es,n : L∞(∆) → L1(∆) (with the ‖ ‖b norm on Fθ(Y ) and
Fθ(∆)), we can write

‖Ln
s ‖ ≤

∑
i+j+k=n

‖As,i‖ ‖Ts,j‖ ‖Bs,k‖ + ‖Es,n‖.

We claim that

‖As,n‖ ≤ C16γ
n
5 , ‖Bs,n‖ ≤ C16γ

n
5 , ‖Es,n‖ ≤ C16γ

n
5 .(4.1)

Since ‖Ts,n‖ ≤ C|b|αe−nδ|b|−α

, the result follows from elementary facts about con-
volutions of sequences. (If un = O(δn), vn = O(εn), then (u � v)n = O(δn) when
δ > ε and (u � v)n = O(nδn) when δ = ε.)

It remains to verify estimates (4.1). Note that the support of As,nv is contained
in level n of the tower and has measure at most

∑
r(j)>n µ(Yj) =

∑
k>n µ(Zk)

where µ(Zk) = O(γk
1 ). For x in level n, we have (As,nv)(x) = eshn(z)v(z) where
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z is the unique point in Y with fnz = x, and so |As,nv|∞ ≤ enε|h|∞ |v|∞. Hence
|As,nv|1 ≤ C16γ

n
5 |v|∞. Similarly,

‖Es,n‖ ≤ enε|h|∞
∑

r(j)>n
n<�<r(j)

µ(∆j,�) ≤ enε|h|∞
∑

r(j)>n

r(j)µ(Yj) ≤ C16γ
n
5 .

Finally, if v : ∆ → R and x ∈ Y , then (Bs,nv)(x) =
∑

r(j)>n ep(zj)eshn(zj)v(zj)
where zj is the unique preimage of x in ∆j,r(j)−n. Hence the estimate is obtained
in the same way as was done for ‖Rs,n‖b in proving Propositions 3.9(c) and 4.1. �

Again, decay of correlations is a standard consequence of Lemma 4.4. Define
the suspension semiflow ft : ∆h → ∆h and the space of observables Fm,θ(∆h) as
before.

Proposition 4.5. Let f : ∆ → ∆ be a tower map with exponential tails, and let
h : ∆ → R+ be a uniformly Lipschitz roof function. Suppose that the suspension
flow ft : ∆h → ∆h is mixing and that the estimates on Ln

s in Lemma 4.4 are valid.
Then ft : ∆h → ∆h is rapid mixing: for any n ≥ 1, there exists m ≥ 1 and

C ≥ 1 such that |ρv,w(t)| ≤ C‖v‖m,θ|w|∞t−n for all v ∈ Fm,θ(∆h), w ∈ L∞(∆h),
and t > 0.

Proof. By assumption,
∑

n≥1 |Ln
s v|1 ≤ C|b|α(1 − e−δ|b|−α

)−1‖v‖b for all s = a + ib

with |b| > 1 and |a| ≤ ε|b|−α. But (1−e−x)−1 ≤ 2/x for x small, and ‖v‖b ≤ ‖v‖θ, so
there exists C ′ such that

∑
n≥1 |Ln

s v|1 ≤ C ′|b|2α‖v‖θ for all such s. The remainder
of the proof mimics the proof of Proposition 3.6. In fact the estimates are simpler
since h is uniformly Lipschitz, and there is no need to approximate v by ṽ. �

4.3. Proof of Theorem 2.3. Let T : X → X be a nonuniformly expanding map as
defined in Section 2, with partition

⋃
j≥1 Yj = Y , return time function r : Y → Z

+,
and ergodic invariant measure m. Note that the induced map F : Y → Y given
by F (y) = T r(y)(y) is Gibbs-Markov. We build a tower ∆ = {(y, �) : y ∈ Y, � =
0, . . . , r(y) − 1}, so ∆ is partitioned into subsets ∆j,� = Yj × {�} where j ≥ 1 and
� = 0, . . . , r(j)− 1. Define the tower map f : ∆ → ∆ by setting f(y, �) = (y, � + 1)
for 0 ≤ � < r(y) − 1 and f(y, r(y) − 1) = (Fy, 0). Let µ|∆j,�

= m|Yj
/|r|1, defining

an ergodic f -invariant probability measure µ on ∆.
The definition of a nonuniformly expanding map introduced the constants λ > 1

and η ∈ (0, 1). Setting θ = 1/λη ∈ (0, 1), we define the separation time s and metric
dθ on ∆ as in Subsection 4.1. Define the measure-preserving projection π : ∆ → X
by π(y, �) = T �y. This is a semiconjugacy between f : ∆ → ∆ and T : X → X.

Proposition 4.6. d(πp, πq)η ≤ C17dθ(p, q) for all p, q ∈ ∆.

Proof. If p, q lie in distinct partition elements, then there is nothing to prove, so
suppose that p = (x, �), q = (y, �). Then d(πp, πq) = d(T �x, T �y) ≤ Cd(Fx, Fy) by
definition of π and property (3) of T . By property (2), d(Fx, Fy) ≤ λ−s(Fx,Fy) ≤
λ(θ1/η)s(x,y) = λdθ(p, q)1/η. �

Let h : X → R+ be a roof function satisfying property (5) in Section 2, and
define h̃ = h ◦ π : ∆ → R

+. It follows from Proposition 4.6 that h̃ ∈ Fθ(∆). Define
the suspension flows Tt : Xh → Xh and ft : ∆h̃ → ∆h̃ with ergodic measures
m× �/|h|1 and µ× �/|h|1. Note that π(p, u) = (πp, u) defines a measure-preserving
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semiconjugacy between the suspension flows on ∆h̃ and Xh. Moreover, if v ∈
Cm,η(Xh), then ṽ = v ◦ π ∈ Fm,θ(∆). Indeed ‖ṽ‖m,θ ≤ C17‖v‖m,η.

Proof of Theorem 2.3. It is immediate from the discussion above that rapid mixing
for ft : ∆h̃ → ∆h̃ implies rapid mixing for Tt : Xh → Xh. Hence we may suppose
that ft is not rapid mixing. It follows from the results in Subsection 4.2 that the
estimate ‖(I − Rs,z)−1‖b ≤ C|b|α in Lemma 4.3 is violated. By Lemma 3.14, we
conclude that Mb,ω has approximate eigenfunctions when restricted to any subsys-
tem Z0 of the Gibbs-Markov map F : Y → Y . If y ∈ Z0 is a periodic point for
F : Y → Y of period q, then we define d(y) = rq(y) and τ (y) = Hq(y) where
H(x) = hr(x)(x). Observe that (Mqn

b,ωu)(y) = e−ibnτe−iωndu(y) for all u : Y → R,
n ≥ 1. Hence, the approximate eigenfunction criterion reduces to the estimate
|ei[bknkτ+ωknkd+qϕk] − 1| ≤ Cq|bk|−α for the triple (τ, d, q). �

5. Rapid mixing for nonuniformly hyperbolic flows

In this section we prove Theorem 2.6. In Subsection 5.1, we include the necessary
background material and notation from Young [35] on nonuniformly hyperbolic
maps and towers. In Subsection 5.2, we use approximation arguments to reduce
the nonuniformly hyperbolic case to the nonuniformly expanding case studied in
Section 4.

5.1. Background on nonuniformly hyperbolic maps. Let T : M → M be a
nonuniformly hyperbolic map in the sense of Young [35]. As described in Section 2.2,
there is a partition {Yj} of Y ⊂ M with return time function r : Y → Z

+, constant
on partition elements {Yj}, and induced return map F : Y → Y given by F (y) =
T r(y)(y). The hypotheses in Young [35] guarantee the existence of an ergodic T -
invariant probability measure m that is an SRB measure.

Let ∆ = {(y, �) : y ∈ Y, � = 0, . . . , r(y)−1} and define the tower map f : ∆ → ∆
by setting f(y, �) = (y, � + 1) for 0 ≤ � < r(y) − 1 and f(y, r(y) − 1) = (Fy, 0).
The projection π : ∆ → M given by π(x, �) = T �x is a semiconjugacy between
f : ∆ → ∆ and T : M → M .

The subset Y is covered by families of stable disks {W s(x), x ∈ Y } and unstable
disks {Wu(x), x ∈ Y } such that each stable disk intersects each unstable disk in
exactly one point. For p = (x, �), q = (y, �) ∈ ∆, we write q ∈ W s(p) if y ∈ W s(x)
(and q ∈ Wu(p) if y ∈ Wu(x)).

Quotienting out the stable directions, we obtain the quotient maps f̄ : ∆̄ → ∆̄
and F̄ : Ȳ → Ȳ . The hypotheses in [35] guarantee that:

Proposition 5.1. The quotient tower map f̄ : ∆̄ → ∆̄ is a nonuniformly expanding
tower map as defined in Section 4. In particular, there are measures µ̄ and µ̄×ν/|r|1
on Ȳ and ∆̄ respectively, such that F̄ : Ȳ → Ȳ is Gibbs-Markov with respect to the
quotient partition {Ȳj}. Moreover, there is an f-invariant measure µ on ∆ such
that the natural projection π̄ : ∆ → ∆̄ and the projection π : ∆ → M are measure-
preserving semiconjugacies.

In Section 4, we defined a separation time s : ∆̄ × ∆̄ → N defined relative to
returns under F̄ to the partition {Ȳj}. (This is the separation time used in [15, 36]).
For θ ∈ (0, 1), we again define the metric dθ(p, q) = θs(p,q).

We now introduce a new separation time s1 : ∆ × ∆ → N defined in terms of
f . (This plays the same role as the separation time s in [35], but it is different
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from the separation times in [35, 36].) As in Section 4.1, the quotient tower map
f̄ : ∆̄ → ∆̄ is Markov with respect to the partition {∆̄j,�} where ∆̄j,� = Ȳj × {�}
for j ≥ 1 and � = 0, . . . , r(j) − 1. Define s1 : ∆̄ × ∆̄ → N by setting s1(p̄, q̄) to be
the least integer n such that f̄np̄ and f̄nq̄ lie in distinct partition elements ∆̄j,�.
Define s1 : ∆ × ∆ → N by setting s1(p, q) = s1(π̄p, π̄q). Note that the separation
times s1 ≥ s are defined on both ∆̄ and ∆, but the metric dθ is defined only on ∆̄
and always in terms of s.

Proposition 5.2. (a) If q ∈ W s(p), then d(πfnp, πfnq) ≤ C18γ
n
6 for all

n ≥ 1.
(b) If q ∈ Wu(p), then d(πfnp, πfnq) ≤ C18γ

s1(p,q)−n
6 for 0 ≤ n < s1(p, q).

Proof. This follows from the set-up in [35], with some additional care required due
to the different definition of separation time. Write p = (x, �), q = (y, �) ∈ ∆. Then
d(πfnp, πfnq) = d(Tn+�x, Tn+�y). If q ∈ W s(p), then y ∈ W s(x), and it follows
from [35, P3] that

d(πfnp, πfnq) = d(Tn+�x, Tn+�y) ≤ C18γ
n+�
6 ≤ C18γ

n
6 .

If q ∈ Wu(p), then y ∈ Wu(x), and it follows from [35, P4a] that

d(πfnp, πfnq) = d(Tn+�x, Tn+�y) ≤ C18γ
s0(x,y)−(n+�)
6

where s0 is the separation time in [35]. Note that s0(x, y) ≥ s1((x, 0), (y, 0)), and
hence s1(p, q) = s1((x, �), (y, �)) = s1((x, 0), (y, 0)) − � ≤ s0(x, y) − �. The result
follows. �
Corollary 5.3. d(Tnπp, Tnπq) ≤ 2C18γ

min{n,s1(p,q)−n}
6 for all p, q ∈ ∆, 0 ≤ n ≤

s1(p, q).

Proof. Define z = W s(p)∩W s(q). By Proposition 5.2(a), d(πfnp, πfnz) ≤ C18γ
n
6 .

Moreover, s1(z, q)=s1(p, q). By Proposition 5.2(b), d(πfnz, πfnq)≤C18γ
s1(p,q)−n
6 .

�
5.2. Proof of Theorem 2.6. We continue to assume that T : M → M is a nonuni-
formly hyperbolic map, modelled by a Young tower f : ∆ → ∆ as in Subsection 5.1.
We have the measure-preserving semiconjugacy π : ∆ → M .

Let h : M → R+ be an η-Hölder roof function with associated suspension flow
Tt : Mh → Mh. Define h̃ = h ◦ π with suspension flow ft : ∆h̃ → ∆h̃. The
projection π : ∆h̃ → Mh defined by π(p, u) = (πp, u) is a measure-preserving
conjugacy.

Suppose that v, w ∈ Cη(Mh) and let ṽ = v ◦ π, w̃ = w ◦ π. It suffices to
prove decay of correlations for the observations ṽ, w̃ : ∆h̃ → R. As in pre-
vious sections, the significant part of the Laplace transform of ρ has the form
ρ̂(s) =

∑
n≥0

∫
∆

e−sh̃nvs ws ◦ fn dµ where vs(p) =
∫ h̃(p)

0
esuṽ(p, u)du and ws(p) =∫ h̃(p)

0
e−suw̃(p, u)du. Superpolynomial decay of correlations follows from an esti-

mate of the form

|ρ̂(s)| ≤ C|b|α‖v‖η‖w‖η,(5.1)

for s = a + ib with |b| > 1 and |a| ≤ ε|b|−α.
It remains to establish (5.1). The first step [33, 6] is to write h̃ as a coboundary

plus a roof function that “depends only on future coordinates”. We adapt a result
of [24, Lemma 3.2] formulated for the nonuniformly hyperbolic setting.
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Lemma 5.4. There exist functions h̄, χ : ∆ → R such that

(i) h̃ = h̄ + χ − χ ◦ f ,
(ii) χ ∈ L∞(∆),
(iii) if s1(p, q) ≥ 3k, then |χ(fkp) − χ(fkq)| ≤ C19γ

k
7 , where γ7 = γη

6 ,
(iv) h̄(p) = h̄(q) for all p ∈ W s(q),
(v) h̄ : ∆̄ → R is Lipschitz with respect to the metric dθ, for θ = γ

1/2
7 .

Proof. Fix an unstable disk Wu. Given p = (x, �) ∈ ∆, define p̂ = (x̂, �) where x̂ is
the unique point in W s(x) ∩ Wu. Define

χ(p) =
∞∑

j=0

h(πf jp) − h(πf j p̂).

It follows from Proposition 5.2(a) that

|χ(p)| ≤
∞∑

j=0

|h(πf jp) − h(πf j p̂) ≤ |h|η
∞∑

j=0

d(T jπp, T jπp̂)η

≤ |h|ηCη
18

∞∑
j=0

γj
7 = |h|ηCη

18(1 − γ7)−1,

proving (ii).
Next, we note that to estimate |χ(z1) − χ(z2)|, it suffices to estimate the four

terms
k−1∑
j=0

|h(πf jz1) − h(πf jz2)|,
k−1∑
j=0

|h(πf j ẑ1) − h(πf j ẑ2)|,

∞∑
j=k

|h(πf jz1) − h(πf j ẑ1)|,
∞∑

j=k

|h(πf jz2) − h(πf j ẑ2)|.

The computation used to prove (ii) shows that the third and fourth terms are
dominated by C19γ

k
7 for all z1, z2 ∈ ∆. Hence, to prove (iii) it suffices to estimate

the first and second terms with z1 = fkp, z2 = fkq, where s1(p, q) ≥ 3k. The first
term is dominated by |h|η

∑k−1
j=0 d(T j+kπp, T j+kπq)η. By Corollary 5.3, we obtain

the estimate C20

∑k−1
j=0 γ

min(j+k,s1(p,q)−j−k)
7 ≤ C21γ

k
7 as required. Similarly for the

second term, completing the proof of (iii).
Define h̄ = h ◦ π − χ + χ ◦ f . Then h̄(p) =

∑∞
j=0 h(πf j p̂) − h(πf j f̂p) depends

only upon future coordinates. It remains to check that h̄ is Lipschitz with respect
to the metric dθ. In fact, we show that |h̄(p)−h̄(q)| ≤ C22θ

s1(p,q). Let p, q ∈ ∆ with
s1(p, q) ≥ 2k. There exist p̄′ ∈ f̄−kp̄, q̄′ ∈ f̄−k q̄ with s1(p′, q′) ≥ 3k. By (i), (iii) and
the Hölder continuity of h, we have that |h̄(p)− h̄(q)| = |h̄(fkp′)− h̄(fkq′)| ≤ C22γ

k
7

as required. �

By Lemma 5.4, we can write ρ̂(s) =
∑

n≥0

∫
∆

e−sh̄n(e−sχvs) (esχws) ◦ fn dµ.
The next step is to approximate e−sχvs and esχws by functions that “depend only
on finitely many coordinates”.

For k ≥ 1, define vs,k(p) = inf{(e−sχvs)(fkq) : s1(p, q) ≥ 3k}.
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Lemma 5.5. The function vs,k : ∆ → R lies in L∞(∆) and projects down to a
Lipschitz observation vs,k : ∆̄ → R. Moreover, within the region s = a + ib, |a| ≤
1, |b| ≥ 1,

(a) |vs,k|∞ = |vs,k|∞ ≤ e|χ|∞ |vs|∞ ≤ C23|ṽ|∞ = C23|v|∞.
(b) |vs,k|θ ≤ 2C23θ

−3k|v|∞.
(c) |(e−sχvs) ◦ fk − vs,k|∞ ≤ C24|b|‖v‖ηγk

7 .

Proof. Define M(p̄) = {q̄ ∈ ∆̄ : s1(p̄, q̄) ≥ 3k}. It is clear that {M(p̄)} defines a
measurable partition of ∆̄ and so {π̄−1M(p̄)} is a measurable partition of ∆. By
definition vs,k is constant on such partition elements and hence is measurable.

If s1(p, q) ≥ 3k, then vs,k(p) = vs,k(q). In particular, vs,k : ∆̄ → R is well-
defined. Part (a) is immediate. Moreover, |vs,k|θ = supp�=q |vs,k(p)−vs,k(q)|/θs(p,q)

where s is the separation time defined in terms of F . If s(p, q) ≥ 3k, then certainly
s1(p, q) ≥ 3k and so vs,k(p) − vs,k(q) = 0. Hence, we can restrict to pairs p, q with
s(p, q) ≤ 3k. It follows that |vs,k|θ ≤ 2|vs,k|∞θ−3k proving part (b).

Note that |(e−sχvs)◦fk−vs,k|∞ ≤ sups1(p,q)≥3k |(e−sχvs)(fkp)−(e−sχvs)(fkq)|.
By Lemma 5.4(iii), |e−sχ(fkp) − e−sχ(fkq)| ≤ C25|b|γk

7 . Also,

|vs(p) − vs(q)| ≤ |
∫ h̃(p)

h̃(q)
esuṽ(p, u)du| + |

∫ h̃(q)

0
esu(ṽ(p, u) − ṽ(q, u))du|

≤ C26{|h̃(p) − h̃(q)||ṽ|∞ + |ṽ(p, u) − ṽ(q, u)|}
≤ C26{|h(πp) − h(πq)||v|∞ + |v(πp, u) − v(πq, u)|} ≤ C27‖v‖η d(πp, πq)η,

and so part (c) follows from Corollary 5.3. �

Write
∫
∆

e−sh̄n(e−sχvs) (esχws)◦fn dµ =
∫
∆

e−sh̄n◦fk

(e−sχvs)◦fk (esχws)◦fk ◦
fn dµ = I1 + I2 + I3, where

I1 =
∫

∆
e−sh̄n◦fk

(e−sχvs) ◦ fk ((esχws) ◦ fk − ws,k) ◦ fn dµ,

I2 =
∫

∆
e−sh̄n◦fk

((e−sχvs) ◦ fk − vs,k) ws,k ◦ fn dµ,

I3 =
∫

∆
e−sh̄n◦fk

vs,k ws,k ◦ fn dµ.

By Lemma 5.5,

|I1| ≤ en|a||h|∞ |vs|∞|(esχws) ◦ fk − ws,k|∞ ≤ C28|b|en|a||h|∞ |v|∞‖w‖ηγk
7 ,

and similarly |I2| ≤ C28|b|en|a||h|∞‖v‖η|w|∞γk
7 . The integrand in I3 projects down

to ∆̄ and h̄n ◦ f̄k = h̄n + h̄k ◦ f̄n − h̄k, so we obtain

I3 =
∫

∆̄
e−sh̄n [esh̄kvs,k] [e−sh̄kws,k] ◦ f̄ndµ =

∫
∆̄

Ln
−s[e

sh̄kvs,k] [e−sh̄kws,k]dµ.

Restricting to the region s = a + ib with |b| > 1 and |a| ≤ ε|b|−α,

|I1|, |I2| ≤ C28|b|γk
7 enε|b|−α|h|∞‖v‖η‖w‖η.

By Lemma 4.4, |Ln
−su|1 ≤ C|b|αe−nδ|b|−α‖u‖θ for u ∈ Fθ(∆̄). Hence,

|I3| ≤ C|b|αe−nδ|b|−α‖esh̄k‖θ‖vs,k‖θ|e−shk |∞|ws,k|∞
≤ C|b|α+1e−nδ|b|−α

θ−4ke2k|h|∞ |v|∞|w|∞.

Choose k = k(b, n) such that (e2|h|∞θ−4)k ∼ enδ|b|−α/2. Then there exists δ′ >

0 (depending on γ7 and θ) such that I1, I2 = O(e−(δ′−ε)n|b|−α|h|∞ |b|) and I3 =
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O(e−nδ|b|−α/2|b|α+1). Choosing ε small enough, we obtain a new δ′ > 0 such that

|
∫

∆
e−sh̄n(e−sχvs) (esχws) ◦ fndµ| ≤ Ce−nδ′|b|−α

|b|α+1‖v‖η‖w‖η.

Summing over n, and using the fact that (1 − e−x)−1 ≤ 2/x for x > 0 small, we
obtain |ρ̂(s)| ≤ C ′‖v‖η‖w‖η|b|2α+1 as required.
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21. S. Gouëzel. Berry-Esseen theorem and local limit theorem for non uniformly expanding maps.
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