The real cohomology of virtually nilpotent groups
HTML articles powered by AMS MathViewer
- by Karel Dekimpe and Hannes Pouseele PDF
- Trans. Amer. Math. Soc. 359 (2007), 2539-2558 Request permission
Abstract:
In this paper we present a method to compute the real cohomology of any finitely generated virtually nilpotent group. The main ingredient in our setup consists of a polynomial crystallographic action of this group. As any finitely generated virtually nilpotent group admits such an action (which can be constructed quite easily), the approach we present applies to all these groups. Our main result is an algorithmic way of computing these cohomology spaces. As a first application, we prove a kind of Poincaré duality (also in the nontorsion free case) and we derive explicit formulas in the virtually abelian case.References
- L. Auslander and L. Markus, Holonomy of flat affinely connected manifolds, Ann. of Math. (2) 62 (1955), 139–151. MR 72518, DOI 10.2307/2007104
- Babakhanian, A. Cohomological methods in group theory, volume 11 of Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1972.
- Yves Benoist, Une nilvariété non affine, J. Differential Geom. 41 (1995), no. 1, 21–52 (French, with English summary). MR 1316552
- Yves Benoist and Karel Dekimpe, The uniqueness of polynomial crystallographic actions, Math. Ann. 322 (2002), no. 3, 563–571. MR 1895707, DOI 10.1007/s002080200005
- Robert Bieri, Gruppen mit Poincaré-Dualität, Comment. Math. Helv. 47 (1972), 373–396 (German). MR 352290, DOI 10.1007/BF02566811
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956, DOI 10.1007/978-1-4684-9327-6
- Dietrich Burde, Affine structures on nilmanifolds, Internat. J. Math. 7 (1996), no. 5, 599–616. MR 1411303, DOI 10.1142/S0129167X96000323
- D. Burde and F. Grunewald, Modules for certain Lie algebras of maximal class, J. Pure Appl. Algebra 99 (1995), no. 3, 239–254. MR 1332900, DOI 10.1016/0022-4049(94)00002-Z
- Karel Dekimpe, Almost-Bieberbach groups: affine and polynomial structures, Lecture Notes in Mathematics, vol. 1639, Springer-Verlag, Berlin, 1996. MR 1482520, DOI 10.1007/BFb0094472
- Karel Dekimpe and Paul Igodt, Polycyclic-by-finite groups admit a bounded-degree polynomial structure, Invent. Math. 129 (1997), no. 1, 121–140. MR 1464868, DOI 10.1007/s002220050160
- Karel Dekimpe and Paul Igodt, Polynomial structures on polycyclic groups, Trans. Amer. Math. Soc. 349 (1997), no. 9, 3597–3610. MR 1422895, DOI 10.1090/S0002-9947-97-01924-7
- Karel Dekimpe, Paul Igodt, and Kyung Bai Lee, Polynomial structures for nilpotent groups, Trans. Amer. Math. Soc. 348 (1996), no. 1, 77–97. MR 1327254, DOI 10.1090/S0002-9947-96-01513-9
- David Fried, William Goldman, and Morris W. Hirsch, Affine manifolds with nilpotent holonomy, Comment. Math. Helv. 56 (1981), no. 4, 487–523. MR 656210, DOI 10.1007/BF02566225
- G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110–134. MR 52438, DOI 10.1090/S0002-9947-1953-0052438-8
- Ib Madsen and Jørgen Tornehave, From calculus to cohomology, Cambridge University Press, Cambridge, 1997. de Rham cohomology and characteristic classes. MR 1454127
- William S. Massey, Singular homology theory, Graduate Texts in Mathematics, vol. 70, Springer-Verlag, New York-Berlin, 1980. MR 569059, DOI 10.1007/978-1-4684-9231-6
- Katsumi Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2) 59 (1954), 531–538. MR 64057, DOI 10.2307/1969716
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234, DOI 10.1007/978-3-642-86426-1
- Daniel Segal, Polycyclic groups, Cambridge Tracts in Mathematics, vol. 82, Cambridge University Press, Cambridge, 1983. MR 713786, DOI 10.1017/CBO9780511565953
- Martin C. Tangora (ed.), Computers in geometry and topology, Lecture Notes in Pure and Applied Mathematics, vol. 114, Marcel Dekker, Inc., New York, 1989. MR 988688
Additional Information
- Karel Dekimpe
- Affiliation: Katholieke Universiteit Leuven, Campus Kortrijk, B–8500 Kortrijk, Belgium
- Hannes Pouseele
- Affiliation: Katholieke Universiteit Leuven, Campus Kortrijk, B–8500 Kortrijk, Belgium
- Address at time of publication: Gelÿkmeidstraat 12/2, B-8400 Oostende, Belgium
- Received by editor(s): February 3, 2005
- Published electronically: January 25, 2007
- Additional Notes: The second author is a Research Assistant of the Fund for Scientific Research–Flanders (F.W.O.)
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 2539-2558
- MSC (2000): Primary 20J06, 57T15
- DOI: https://doi.org/10.1090/S0002-9947-07-04274-2
- MathSciNet review: 2286044