## Alternating forms and the Brauer group of a geometric field

HTML articles powered by AMS MathViewer

- by Eric S. Brussel PDF
- Trans. Amer. Math. Soc.
**359**(2007), 3025-3069 Request permission

## Abstract:

We compute the theory of $H^{2}(G,\mathbb {Q}/\mathbb {Z})$ for any proabelian group $G$, using a natural isomorphism with the group $\operatorname {Alt}(G,\mathbb {Q}/\mathbb {Z})$ of continuous alternating forms. We use this to establish a sort of generic behavioral ideal, or role model, for the Brauer group $\text {Br}(F)$ of a geometric field $F$ of characteristic zero. We show this ideal is attained in several interesting cases.## References

- J.-P. Tignol and S. A. Amitsur,
*Kummer subfields of Mal′cev-Neumann division algebras*, Israel J. Math.**50**(1985), no. 1-2, 114–144. MR**788071**, DOI 10.1007/BF02761120 - E. S. Brussel,
*The division algebras and Brauer group of a strictly Henselian field*, J. Algebra**239**(2001), no. 1, 391–411. MR**1827890**, DOI 10.1006/jabr.2000.8639 - P. K. Draxl,
*Skew fields*, London Mathematical Society Lecture Note Series, vol. 81, Cambridge University Press, Cambridge, 1983. MR**696937**, DOI 10.1017/CBO9780511661907 - László Fuchs,
*Infinite abelian groups. Vol. I*, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR**0255673** - Irving Kaplansky,
*Infinite abelian groups*, Revised edition, University of Michigan Press, Ann Arbor, Mich., 1969. MR**0233887** - Serge Lang,
*Algebra*, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR**0197234** - Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg,
*Cohomology of number fields*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR**1737196** - I. Reiner,
*Maximal orders*, London Mathematical Society Monographs, No. 5, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1975. MR**0393100** - Luis Ribes and Pavel Zalesskii,
*Profinite groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 40, Springer-Verlag, Berlin, 2000. MR**1775104**, DOI 10.1007/978-3-662-04097-3 - Joseph J. Rotman,
*Advanced modern algebra*, Prentice Hall, Inc., Upper Saddle River, NJ, 2002. MR**2043445** - Jean-Pierre Serre,
*Local fields*, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR**554237**, DOI 10.1007/978-1-4757-5673-9 - J.-P. Tignol and A. R. Wadsworth,
*Totally ramified valuations on finite-dimensional division algebras*, Trans. Amer. Math. Soc.**302**(1987), no. 1, 223–250. MR**887507**, DOI 10.1090/S0002-9947-1987-0887507-6

## Additional Information

**Eric S. Brussel**- Affiliation: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
- Email: brussel@mathcs.emory.edu
- Received by editor(s): September 16, 2003
- Received by editor(s) in revised form: March 7, 2005
- Published electronically: January 29, 2007
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**359**(2007), 3025-3069 - MSC (2000): Primary 16K50; Secondary 20J06
- DOI: https://doi.org/10.1090/S0002-9947-07-03988-8
- MathSciNet review: 2299445