Equilibrium points of logarithmic potentials induced by positive charge distributions. I. Generalized de Bruijn-Springer relations
HTML articles powered by AMS MathViewer
- by Julius Borcea PDF
- Trans. Amer. Math. Soc. 359 (2007), 3209-3237 Request permission
Abstract:
A notion of weighted multivariate majorization is defined as a preorder on sequences of vectors in Euclidean space induced by the Choquet ordering for atomic probability measures. We characterize this preorder both in terms of stochastic matrices and convex functions and use it to describe the distribution of equilibrium points of logarithmic potentials generated by discrete planar charge configurations. In the case of $n$ positive charges we prove that the equilibrium points satisfy $\binom {n}{2}$ weighted majorization relations and are uniquely determined by $n-1$ such relations. It is further shown that the Hausdorff geometry of the equilibrium points and the charged particles is controlled by the weighted standard deviation of the latter. By using finite-rank perturbations of compact normal Hilbert space operators we establish similar relations for infinite charge distributions. We also discuss a hierarchy of weighted de Bruijn-Springer relations and inertia laws, the existence of zeros of Borel series with positive $l^1$-coefficients, and an operator version of the Clunie-Eremenko-Rossi conjecture.References
- Rajendra Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR 1477662, DOI 10.1007/978-1-4612-0653-8
- J. Borcea, Spectral order and isotonic differential operators of Laguerre-Pólya type, Ark. Mat., to appear. Preprint math.CA/0404336.
- J. Borcea, Maximal and linearly inextensible polynomials, Math. Scand., to appear. Preprint math.CV/0309233.
- J. Borcea, Equilibrium points of logarithmic potentials induced by positive charge distributions. II. A conjectural Hausdorff geometric symphony, submitted. Preprint (2005).
- Ola Bratteli and Derek W. Robinson, Operator algebras and quantum statistical mechanics. Vol. 1, Texts and Monographs in Physics, Springer-Verlag, New York-Heidelberg, 1979. $C^{\ast }$- and $W^{\ast }$-algebras, algebras, symmetry groups, decomposition of states. MR 545651, DOI 10.1007/978-3-662-02313-6
- N. G. de Bruijn and T. A. Springer, On the zeros of a polynomial and of its derivative. II, Nederl. Akad. Wetensch., Proc. 50 (1947), 264–270=Indagationes Math. 9, 458–464 (1947). MR 21148
- Pierre Cartier, J. M. G. Fell, and Paul-André Meyer, Comparaison des mesures portées par un ensemble convexe compact, Bull. Soc. Math. France 92 (1964), 435–445 (French). MR 206193, DOI 10.24033/bsmf.1615
- J. Clunie, A. Erëmenko, and J. Rossi, On equilibrium points of logarithmic and Newtonian potentials, J. London Math. Soc. (2) 47 (1993), no. 2, 309–320. MR 1207951, DOI 10.1112/jlms/s2-47.2.309
- Geir Dahl, Matrix majorization, Linear Algebra Appl. 288 (1999), no. 1-3, 53–73. MR 1670598, DOI 10.1016/S0024-3795(98)10175-1
- Chandler Davis, Eigenvalues of compressions, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.) 3(51) (1959), 3–5. MR 125115
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
- Harry Dym and Victor Katsnelson, Contributions of Issai Schur to analysis, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000) Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. xci–clxxxviii. MR 1985190
- J. Elton and T. P. Hill, On the basic representation theorem for convex domination of measures, J. Math. Anal. Appl. 228 (1998), no. 2, 449–466. MR 1663581, DOI 10.1006/jmaa.1998.6158
- Alexandre Eremenko, Jim Langley, and John Rossi, On the zeros of meromorphic functions of the form $f(z)=\sum ^\infty _{k=1}a_k/(z-z_k)$, J. Anal. Math. 62 (1994), 271–286. MR 1269209, DOI 10.1007/BF02835958
- Ky Fan and Gordon Pall, Imbedding conditions for Hermitian and normal matrices, Canadian J. Math. 9 (1957), 298–304. MR 85216, DOI 10.4153/CJM-1957-036-1
- P. Fischer and J. A. R. Holbrook, Balayage defined by the nonnegative convex functions, Proc. Amer. Math. Soc. 79 (1980), no. 3, 445–448. MR 567989, DOI 10.1090/S0002-9939-1980-0567989-9
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142, DOI 10.1090/mmono/018
- A. A. Gol′dberg and I. V. Ostrovskiĭ, Raspredelenie znacheniĭ meromorfnykh funktsiĭ, Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0280720
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition. MR 944909
- Harry Hochstadt, One dimensional perturbations of compact operators, Proc. Amer. Math. Soc. 37 (1973), 465–467. MR 310681, DOI 10.1090/S0002-9939-1973-0310681-2
- Tosio Kato, Variation of discrete spectra, Comm. Math. Phys. 111 (1987), no. 3, 501–504. MR 900507, DOI 10.1007/BF01238911
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Oliver Dimon Kellogg, Foundations of potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 31, Springer-Verlag, Berlin-New York, 1967. Reprint from the first edition of 1929. MR 0222317, DOI 10.1007/978-3-642-86748-4
- J. K. Langley and John Rossi, Critical points of certain discrete potentials, Complex Var. Theory Appl. 49 (2004), no. 7-9, 621–637. MR 2088052, DOI 10.1080/02781070410001732142
- S. M. Malamud, An analogue of the Poincaré alternation theorem for normal matrices, and the Gauss-Lucas theorem, Funktsional. Anal. i Prilozhen. 37 (2003), no. 3, 85–88 (Russian); English transl., Funct. Anal. Appl. 37 (2003), no. 3, 232–235. MR 2021139, DOI 10.1023/A:1026044902927
- S. M. Malamud, Inverse spectral problem for normal matrices and the Gauss-Lucas theorem, Trans. Amer. Math. Soc. 357 (2005), 4043–4064. Preprint math.CV/0304158.
- Albert W. Marshall and Ingram Olkin, Inequalities: theory of majorization and its applications, Mathematics in Science and Engineering, vol. 143, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 552278
- R. Pereira, Differentiators and the geometry of polynomials, J. Math. Anal. Appl. 285 (2003), 336–348. MR2000158 (2004g:15041)
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
- Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR 1954841
- S. Sherman, On a theorem of Hardy, Littlewood, Polya, and Blackwell, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 826–831; errata: 38, 382 (1952). MR 45787, DOI 10.1073/pnas.37.12.826
- Gyula Sz.-Nagy, Verallgemeinerung der Derivierten in der Geometrie der Polynome, Acta Univ. Szeged. Sect. Sci. Math. 13 (1950), 169–178 (German). MR 39838
- J. Wolff, Sur les séries $\sum \frac {A_k}{z-\alpha _k}$, C. R. Acad. Sci. Paris 173 (1921), 1056–1057; ibid., 1327–1328.
Additional Information
- Julius Borcea
- Affiliation: Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
- Email: julius@math.su.se
- Received by editor(s): April 29, 2005
- Published electronically: January 19, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 3209-3237
- MSC (2000): Primary 31A15; Secondary 30C15, 47A55, 60E15
- DOI: https://doi.org/10.1090/S0002-9947-07-04251-1
- MathSciNet review: 2299452