Wiener’s lemma for infinite matrices
HTML articles powered by AMS MathViewer
- by Qiyu Sun PDF
- Trans. Amer. Math. Soc. 359 (2007), 3099-3123 Request permission
Abstract:
The classical Wiener lemma and its various generalizations are important and have numerous applications in numerical analysis, wavelet theory, frame theory, and sampling theory. There are many different equivalent formulations for the classical Wiener lemma, with an equivalent formulation suitable for our generalization involving commutative algebra of infinite matrices ${\mathcal W}:=\{(a(j-j’))_{j,j’\in \mathbf {Z}^d}: \ \sum _{j\in \mathbf {Z}^d} |a(j)|<\infty \}$. In the study of spline approximation, (diffusion) wavelets and affine frames, Gabor frames on non-uniform grid, and non-uniform sampling and reconstruction, the associated algebras of infinite matrices are extremely non-commutative, but we expect those non-commutative algebras to have a similar property to Wiener’s lemma for the commutative algebra ${\mathcal W}$. In this paper, we consider two non-commutative algebras of infinite matrices, the Schur class and the Sjöstrand class, and establish Wiener’s lemmas for those matrix algebras.References
- Akram Aldroubi and Karlheinz Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev. 43 (2001), no. 4, 585–620. MR 1882684, DOI 10.1137/S0036144501386986
- N. Atreas, J. J. Benedetto, and C. Karanikas, Local sampling for regular wavelet and Gabor expansions, Sampl. Theory Signal Image Process. 2 (2003), no. 1, 1–24. MR 2002854
- Radu Balan, Peter G. Casazza, Christopher Heil, and Zeph Landau, Density, overcompleteness, and localization of frames. I. Theory, J. Fourier Anal. Appl. 12 (2006), no. 2, 105–143. MR 2224392, DOI 10.1007/s00041-006-6022-0
- Bruce A. Barnes, The spectrum of integral operators on Lebesgue spaces, J. Operator Theory 18 (1987), no. 1, 115–132. MR 912815
- A. G. Baskakov, Wiener’s theorem and asymptotic estimates for elements of inverse matrices, Funktsional. Anal. i Prilozhen. 24 (1990), no. 3, 64–65 (Russian); English transl., Funct. Anal. Appl. 24 (1990), no. 3, 222–224 (1991). MR 1082033, DOI 10.1007/BF01077964
- A. G. Baskakov, Asymptotic estimates for elements of matrices of inverse operators, and harmonic analysis, Sibirsk. Mat. Zh. 38 (1997), no. 1, 14–28, i (Russian, with Russian summary); English transl., Siberian Math. J. 38 (1997), no. 1, 10–22. MR 1446668, DOI 10.1007/BF02674895
- L. H. Brandenburg, On identifying the maximal ideals in Banach algebras, J. Math. Anal. Appl. 50 (1975), 489–510. MR 377523, DOI 10.1016/0022-247X(75)90006-2
- Ole Christensen and Thomas Strohmer, The finite section method and problems in frame theory, J. Approx. Theory 133 (2005), no. 2, 221–237. MR 2129479, DOI 10.1016/j.jat.2005.01.001
- Charles K. Chui, Wenjie He, and Joachim Stöckler, Nonstationary tight wavelet frames. II. Unbounded intervals, Appl. Comput. Harmon. Anal. 18 (2005), no. 1, 25–66. MR 2110512, DOI 10.1016/j.acha.2004.09.004
- Albert Cohen, Ingrid Daubechies, and Pierre Vial, Wavelets on the interval and fast wavelet transforms, Appl. Comput. Harmon. Anal. 1 (1993), no. 1, 54–81. MR 1256527, DOI 10.1006/acha.1993.1005
- Albert Cohen and Nira Dyn, Nonstationary subdivision schemes and multiresolution analysis, SIAM J. Math. Anal. 27 (1996), no. 6, 1745–1769. MR 1416517, DOI 10.1137/S003614109427429X
- Ronald R. Coifman and Mauro Maggioni, Diffusion wavelets, Appl. Comput. Harmon. Anal. 21 (2006), no. 1, 53–94. MR 2238667, DOI 10.1016/j.acha.2006.04.004
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948, DOI 10.1007/BFb0058946
- Elena Cordero and Karlheinz Gröchenig, Localization of frames. II, Appl. Comput. Harmon. Anal. 17 (2004), no. 1, 29–47. MR 2067914, DOI 10.1016/j.acha.2004.02.002
- Carl de Boor, A bound on the $L_{\infty }$-norm of $L_{2}$-approximation by splines in terms of a global mesh ratio, Math. Comp. 30 (1976), no. 136, 765–771. MR 425432, DOI 10.1090/S0025-5718-1976-0425432-1
- Stephen Demko, Inverses of band matrices and local convergence of spline projections, SIAM J. Numer. Anal. 14 (1977), no. 4, 616–619. MR 455281, DOI 10.1137/0714041
- Gero Fendler, Karlheinz Gröchenig, and Michael Leinert, Symmetry of weighted $L^1$-algebras and the GRS-condition, Bull. London Math. Soc. 38 (2006), no. 4, 625–635. MR 2250755, DOI 10.1112/S0024609306018777
- Massimo Fornasier and Karlheinz Gröchenig, Intrinsic localization of frames, Constr. Approx. 22 (2005), no. 3, 395–415. MR 2164142, DOI 10.1007/s00365-004-0592-3
- Karlheinz Gröchenig, Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1843717, DOI 10.1007/978-1-4612-0003-1
- Karlheinz Gröchenig, Localized frames are finite unions of Riesz sequences, Adv. Comput. Math. 18 (2003), no. 2-4, 149–157. Frames. MR 1968117, DOI 10.1023/A:1021368609918
- Karlheinz Gröchenig, Localization of frames, Banach frames, and the invertibility of the frame operator, J. Fourier Anal. Appl. 10 (2004), no. 2, 105–132. MR 2054304, DOI 10.1007/s00041-004-8007-1
- K. Gröchenig, Time-frequency analysis of Sjöstrand’s class, Rev. Mat. Iberoam., 22(2006), 703–724.
- Karlheinz Gröchenig and Michael Leinert, Wiener’s lemma for twisted convolution and Gabor frames, J. Amer. Math. Soc. 17 (2004), no. 1, 1–18. MR 2015328, DOI 10.1090/S0894-0347-03-00444-2
- Karlheinz Gröchenig and Michael Leinert, Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices, Trans. Amer. Math. Soc. 358 (2006), no. 6, 2695–2711. MR 2204052, DOI 10.1090/S0002-9947-06-03841-4
- Colin C. Graham and O. Carruth McGehee, Essays in commutative harmonic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 238, Springer-Verlag, New York-Berlin, 1979. MR 550606, DOI 10.1007/978-1-4612-9976-9
- S. Jaffard, Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications, Ann. Inst. H. Poincaré C Anal. Non Linéaire 7 (1990), no. 5, 461–476 (French, with English summary). MR 1138533, DOI 10.1016/S0294-1449(16)30287-6
- Rong Qing Jia and Charles A. Micchelli, Using the refinement equations for the construction of pre-wavelets. II. Powers of two, Curves and surfaces (Chamonix-Mont-Blanc, 1990) Academic Press, Boston, MA, 1991, pp. 209–246. MR 1123739
- Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257–270. MR 546295, DOI 10.1016/0001-8708(79)90012-4
- Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257–270. MR 546295, DOI 10.1016/0001-8708(79)90012-4
- D. J. Newman, A simple proof of Wiener’s $1/f$ theorem, Proc. Amer. Math. Soc. 48 (1975), 264–265. MR 365002, DOI 10.1090/S0002-9939-1975-0365002-8
- Gerlind Plonka, Periodic spline interpolation with shifted nodes, J. Approx. Theory 76 (1994), no. 1, 1–20. MR 1257061, DOI 10.1006/jath.1994.1001
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1990. Translated from the second French edition by Leo F. Boron; Reprint of the 1955 original. MR 1068530
- J. Sjöstrand, Wiener type algebras of pseudodifferential operators, Séminaire sur les Équations aux Dérivées Partielles, 1994–1995, École Polytech., Palaiseau, 1995, pp. Exp. No. IV, 21. MR 1362552
- Thomas Strohmer, Rates of convergence for the approximation of dual shift-invariant systems in $l^2(\mathbf Z)$, J. Fourier Anal. Appl. 5 (1999), no. 6, 599–615. MR 1752593, DOI 10.1007/BF01257194
- Thomas Strohmer, Four short stories about Toeplitz matrix calculations, Linear Algebra Appl. 343/344 (2002), 321–344. Special issue on structured and infinite systems of linear equations. MR 1878948, DOI 10.1016/S0024-3795(01)00243-9
- Qiyu Sun, Wiener’s lemma for infinite matrices with polynomial off-diagonal decay, C. R. Math. Acad. Sci. Paris 340 (2005), no. 8, 567–570 (English, with English and French summaries). MR 2138705, DOI 10.1016/j.crma.2005.03.002
- Q. Sun, Frames in spaces with finite rate of innovations, Adv. Comput. Math., 27(2007), To appear.
- Q. Sun, Non-uniform sampling and reconstruction for signals with finite rate of innovations, SIAM J. Math. Anal., To appear.
- Norbert Wiener, Tauberian theorems, Ann. of Math. (2) 33 (1932), no. 1, 1–100. MR 1503035, DOI 10.2307/1968102
Additional Information
- Qiyu Sun
- Affiliation: Department of Mathematics, University of Central Florida, Orlando, Florida 32816
- Email: qsun@mail.ucf.edu
- Received by editor(s): April 15, 2005
- Published electronically: January 26, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 3099-3123
- MSC (2000): Primary 42C40, 41A65, 41A15
- DOI: https://doi.org/10.1090/S0002-9947-07-04303-6
- MathSciNet review: 2299448