## Eigenvalue estimates for minimal surfaces in hyperbolic space

HTML articles powered by AMS MathViewer

- by Alberto Candel PDF
- Trans. Amer. Math. Soc.
**359**(2007), 3567-3575 Request permission

## Abstract:

This paper gives an upper bound for the first eigenvalue of the universal cover of a complete, stable minimal surface in hyperbolic space, and a sharper one for least area disks.## References

- Michael T. Anderson,
*Complete minimal varieties in hyperbolic space*, Invent. Math.**69**(1982), no. 3, 477–494. MR**679768**, DOI 10.1007/BF01389365 - Michael T. Anderson,
*Complete minimal hypersurfaces in hyperbolic $n$-manifolds*, Comment. Math. Helv.**58**(1983), no. 2, 264–290. MR**705537**, DOI 10.1007/BF02564636 - João Lucas Barbosa and Manfredo do Carmo,
*Stability of minimal surfaces and eigenvalues of the Laplacian*, Math. Z.**173**(1980), no. 1, 13–28. MR**584346**, DOI 10.1007/BF01215521 - Robert Brooks,
*A relation between growth and the spectrum of the Laplacian*, Math. Z.**178**(1981), no. 4, 501–508. MR**638814**, DOI 10.1007/BF01174771 - M. do Carmo and M. Dajczer,
*Rotation hypersurfaces in spaces of constant curvature*, Trans. Amer. Math. Soc.**277**(1983), no. 2, 685–709. MR**694383**, DOI 10.1090/S0002-9947-1983-0694383-X - M. do Carmo and C. K. Peng,
*Stable complete minimal surfaces in $\textbf {R}^{3}$ are planes*, Bull. Amer. Math. Soc. (N.S.)**1**(1979), no. 6, 903–906. MR**546314**, DOI 10.1090/S0273-0979-1979-14689-5 - Isaac Chavel,
*Isoperimetric inequalities*, Cambridge Tracts in Mathematics, vol. 145, Cambridge University Press, Cambridge, 2001. Differential geometric and analytic perspectives. MR**1849187** - Shiu Yuen Cheng, Peter Li, and Shing-Tung Yau,
*Heat equations on minimal submanifolds and their applications*, Amer. J. Math.**106**(1984), no. 5, 1033–1065. MR**761578**, DOI 10.2307/2374272 - Jaigyoung Choe and Robert Gulliver,
*Isoperimetric inequalities on minimal submanifolds of space forms*, Manuscripta Math.**77**(1992), no. 2-3, 169–189. MR**1188579**, DOI 10.1007/BF02567052 - Doris Fischer-Colbrie and Richard Schoen,
*The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature*, Comm. Pure Appl. Math.**33**(1980), no. 2, 199–211. MR**562550**, DOI 10.1002/cpa.3160330206 - Robert Hermann,
*Focal points of closed submanifolds of Riemannian spaces*, Nederl. Akad. Wetensch. Proc. Ser. A 66=Indag. Math.**25**(1963), 613–628. MR**0158333** - Shigeo Kawai,
*Operator $\Delta -aK$ on surfaces*, Hokkaido Math. J.**17**(1988), no. 2, 147–150. MR**945852**, DOI 10.14492/hokmj/1381517802 - Masatoshi Kokubu,
*Weierstrass representation for minimal surfaces in hyperbolic space*, Tohoku Math. J. (2)**49**(1997), no. 3, 367–377. MR**1464184**, DOI 10.2748/tmj/1178225110 - Hiroshi Mori,
*Remarks on the paper of Barbosa and do Carmo*, Arch. Math. (Basel)**37**(1981), no. 2, 173–178. MR**640804**, DOI 10.1007/BF01234342 - Geraldo de Oliveira and Marc Soret,
*Complete minimal surfaces in hyperbolic space*, Math. Ann.**311**(1998), no. 3, 397–419. MR**1637915**, DOI 10.1007/s002080050192 - A. V. Pogorelov,
*On the stability of minimal surfaces*, Dokl. Akad. Nauk SSSR**260**(1981), no. 2, 293–295 (Russian). MR**630142** - Konrad Polthier,
*Geometric a priori estimates for hyperbolic minimal surfaces*, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 263, Universität Bonn, Mathematisches Institut, Bonn, 1994. Dissertation, Universität Bonn, Bonn, 1993. MR**1293964** - Richard Schoen,
*Estimates for stable minimal surfaces in three-dimensional manifolds*, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 111–126. MR**795231** - Karen K. Uhlenbeck,
*Closed minimal surfaces in hyperbolic $3$-manifolds*, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 147–168. MR**795233**

## Additional Information

**Alberto Candel**- Affiliation: Department of Mathematics, California State University, Northridge, Northridge, California 91330
- Email: alberto.candel@csun.edu
- Received by editor(s): February 14, 2005
- Published electronically: March 7, 2007
- Additional Notes: This research was supported by N.S.F. Grant 0205825
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**359**(2007), 3567-3575 - MSC (2000): Primary 53A10, 53C21
- DOI: https://doi.org/10.1090/S0002-9947-07-04104-9
- MathSciNet review: 2302506