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DIFFERENTIABILITY OF SPECTRAL FUNCTIONS
FOR SYMMETRIC α-STABLE PROCESSES

MASAYOSHI TAKEDA AND KANEHARU TSUCHIDA

Abstract. Let µ be a signed Radon measure in the Kato class and define a

Schrödinger type operator Hλµ = 1
2
(−∆)

α
2 + λµ on R

d. We show that its

spectral bound C(λ) = − inf σ(Hλµ) is differentiable if α < d ≤ 2α and µ is
Green-tight.

1. Introduction

Let (E(α),D(E(α))) , 0 < α ≤ 2, be the Dirichlet form generated by a symmetric
α-stable process and µ a signed Radon measure in the Kato class. Denote by Hλµ

a Schrödinger type operator 1
2 (−∆)

α
2 + λµ, λ ∈ R

1, and define its spectral function
C(λ) by

C(λ) = − inf{θ : θ ∈ σ(Hλµ)}

= − inf
{
E(α)(u, u) + λ

∫
Rd

ũ2dµ : u ∈ D(E(α)),
∫

Rd

u2dx = 1
}

,

where σ(Hλµ) is the spectrum of Hλµ and ũ is a quasi-continuous version of u.
When α = 2, the symmetric α-stable process is nothing but a Brownian motion
and (E(α),D(E(α))) is the classical Dirichlet integral. In this paper, we consider the
differentiability of the function C(λ).

When α = 2 and the potential µ is a function in a certain Kato class, Arendt
and Batty [3] proved that the spectral function is differentiable at λ = 0 and its
derivative equals zero ([3, Corollary 2.10]). Using a large deviation for additive
functionals of the Brownian motion, Wu [33] obtained a necessary and sufficient
condition for the spectral function being differentiable at λ = 0. In [30] and [31] we
extended Wu’s result to measures in the Kato class. Furthermore, we showed that
if d ≤ 4 and the measure µ belongs to K∞

d,2, the spectral function is differentiable
on R

1. Here the class K∞
d,2 is the set of Green-tight measures introduced in Zhao

[35]. The notion of Green-tightness was extended by Chen [7] for a large class of
Markov processes including the symmetric α-stable process. Denote by K∞

d,α the
set of Green-tight measures corresponding to the symmetric α-stable process (see
Definition 2.1 (III) below). Then a main objective of this paper is to extend the
results in [30] and [31] to the symmetric α-stable process. In particular, the main
theorem is the following.
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Theorem 1.1. If α < d ≤ 2α and µ = µ+ − µ− ∈ K∞
d,α − K∞

d,α, then the spectral
function C(λ) is differentiable for all λ ∈ R

1.

To prove the differentiability of the spectral function at λ = 0, one of authors
used in [30] a well-known property of the Brownian motion; if d ≤ 2, the Brownian
motion is a Harris recurrent process with infinite invariant measure, the Lebesgue
measure. However, since the symmetric α-stable process is transient for α < d, the
arguments in [30] cannot be used immediately for the proof of Theorem 1.1. Thus
to overcome this, we prepare criticality theory for the Schrödinger type operator
Hλµ. More precisely, let

λ+ = inf{λ > 0 : C(λ) > 0},
λ− = sup{λ < 0 : C(λ) > 0}.

We prove that if α < d, then the operator Hλ±µ is critical, that is, Hλ±µ does not
admit the minimal positive Green function (i.e. non-subcriticality) but admits a
positive continuous Hλ±µ-harmonic function (this function is called a ground state
and uniquely determined up to constant multiplication.). Moreover, we prove that
if d ≤ 2α, then Hλ±µ is null critical, that is, the ground state does not belong to
L2. In fact, denoting by h the ground state, we show in section 5 that there exist
positive constants c, C such that

(1.1)
c

|x|d−α
≤ h(x) ≤ C

|x|d−α
, |x| > 1.

Using these facts, we find that if α < d ≤ 2α, the h-transformed process generated
by the Markov semigroup

Pλ±µ,h
t f(x) =

1
h(x)

exp(−tHλ±µ)(hf)(x),

is a Harris recurrent Markov process with infinite invariant measure h2dx. Conse-
quently, the arguments in [30] still work for α < d ≤ 2α. This is a key idea of the
proof of Theorem 1.1.

The criticality of Schrödinger type operators has been studied by many people
(M. Murata, Y. Pinchover, R. Pinsky,...). The equation (1.1) was shown by Murata
[16] for Schrödinger operators on R

d and extended by Pinchover [18] to second order
elliptic operators in a domain of R

d. If µ = 0, criticality and null criticality are
equivalent to recurrence and null recurrence respectively.

The equation (1.1) says that if d > 2α, then Hλ±µ is positive critical, that
is, the ground state belongs to L2. Hence the transformed process has a finite
invariant measure h2dx. Using the argument in [23], we can show that C(λ) is not
differentiable at λ = λ± (6.9).

Our motivation lies in the proof of a large deviation principle for the continuous
additive functional Aµ

t in the Revuz correspondence with µ. The function C(λ) is
regarded as a logarithmic moment generating function of the additive functional Aµ

(see [26]), and the differentiability of logarithmic moment generating functions plays
a crucial role in the Gärtner-Ellis Theorem (see [11]). When α = 2 (the Brownian
case), C(λ) is indeed the logarithmic moment generating function (see [26]). Thus
using Theorem 1.1, we can prove the large deviation principle for additive functional
Aµ

t associated with µ = µ+ − µ− ∈ K∞
d,2 − K∞

d,2. However, for general α, we have
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not yet known whether C(λ) is regarded as the logarithmic moment generating
function.

The structure of this paper is the following. In Section 2, we collect necessary
preliminary material on measures in the Kato class, and give another characteri-
zation of λ± (Lemma 2.4). This shows the non-subcriticality of Hλ±µ. In Section
3, we prove that the extended Dirichlet space of the symmetric α-stable process is
compactly embedded in the L2-space with respect to a positive Green-tight measure
(Theorem 3.4).

In section 4, we prove the criticality of Hλ±µ. To do this, we construct a ground
state of Hλ±µ(Lemma 4.9, Lemma 4.10, and Proposition 4.12). If α = 2, that is,
the Shrödinger operator Hλ±µ is a local one, a “standard compactness argument”
is applicable for the proof of existence of the ground state (see the Remark below
[19, Theorem 3.2]). On the other hand, we do not know whether the “standard
compactness argument” is generalized for our non-local operators. Hence we show
it by a different method; instead of constructing the ground state of Hλ±µ, we
first prove the existence of the principal eigenfunction of a time changed process by
using the compact embeddness established in Section 3, and then identifying the
principal eigenfunction with the ground state. In the proof of the identification,
we introduce a new notion of extended Schrödinger spaces, which is regarded as a
generalization of the notion of extended Dirichlet spaces. Moreover, we prove that
Hλ±µ is null critical if and only if d ≤ 2α (see (4.19)).

In the proof of Theorem 1.1, a functional inequality due to Oshima [17] plays
an important role. Oshima’s inequality has been derived for a general Dirichlet
form generated by symmetric Harris recurrent Markov processes (this is the reason
why we need Harris’s recurrence). In Section 5, we extend Oshima’s inequality to
critical Schrödinger forms through h-transform (Theorem 5.3). In Section 6, we
prove the main theorem.

2. Preliminaries

Let Mα = (Ω,F ,Ft, θt, Px, Xt) be a symmetric α-stable process on R
d with

0 < α ≤ 2. Here {Ft}t≥0 is the minimal (augmented) admissible filtration and θt,
t ≥ 0, is the shift operator satisfying Xs(θt) = Xs+t identically for s, t ≥ 0. When
α = 2, Mα is a Brownian motion. We assume that α < d, that is, the process Mα

is transient. Let p(t, x, y) be the transition density function of Mα and G(x, y) be
its Green function:

G(x, y) =
∫ ∞

0

p(t, x, y)dt = C(d, α)|x − y|α−d,

where C(d, α) = 21−απ−d/2Γ(d−α
2 )Γ(α

2 )−1. For a measure µ, the 0-potential of µ
is defined by

Gµ(x) =
∫

Rd

G(x, y)µ(dy).

Let Pt be the semigroup of Mα,

Ptf(x) =
∫

Rd

p(t, x, y)f(y)dy = Ex[f(Xt)].



4034 M. TAKEDA AND K. TSUCHIDA

Let (E(α),D(E(α))) be the Dirichlet form generated by Mα. For 0 < α < 2, it is
given by

E(α)(u, v) =
1
2
A(d, α)

∫∫
Rd×Rd\d

(u(x) − u(y))(v(x) − v(y))
|x − y|d+α

dxdy,

D(E(α)) =

{
u ∈ L2(Rd) :

∫∫
Rd×Rd\d

(u(x) − u(y))2

|x − y|d+α
dxdy < ∞

}
,

where

A(d, α) =
α2d−1Γ(α+d

2 )
πd/2Γ(1 − α

2 )

([12, Example 1.4.1]). For α = 2

E(2)(u, v) =
1
2
D(u, v),

D(E(2)) = H1(Rd),

where D denotes the classical Dirichlet integral and H1(Rd) is the Sobolev space
of order 1 ([12, Example 4.4.1]). Let De(E(α)) denote the extended Dirichlet space,
that is, the family of measurable functions u on R

d such that |u| < ∞ m-a.e.
and there exists an E(α)-Cauchy sequence {un} of functions in D(E(α)) such that
limn→∞ un = u m-a.e. ([12, p.35]). Then De(E(α)) is a Hilbert space with inner
product E(α) because Mα is transient ([12, Theorem 1.5.3]).

Throughout this paper, m is the Lebesgue measure and B(R) is an open ball
with radius R centered at the origin. We use c, C, ... as positive constants which
may be different at different occurrences.

We now define classes of measures which play an important role in this paper.

Definition 2.1. (I) A positive Radon measure µ on R
d is said to be in the Kato

class (µ ∈ Kd,α in notation), if

(2.1) lim
a→0

sup
x∈Rd

∫
|x−y|≤a

G(x, y)µ(dy) = 0.

(II) A measure µ is in K∞
d,α if µ is in Kd,α and satisfies

(2.2) lim
R→∞

sup
x∈Rd

∫
|y|>R

G(x, y)µ(dy) = 0

(cf. [35, Definition 1]).

For µ = µ+ − µ− ∈ Kd,α −Kd,α, define a symmetric bilinear form Eµ by

(2.3) Eµ(u, u) = E(α)(u, u) +
∫

Rd

ũ2dµ, u ∈ D(E(α)),

where ũ is a quasi-continuous version of u ([12, Theorem 2.1.3]). In the sequel, we al-
ways assume that every function u ∈ De(E(α)) is represented by its quasi-continuous
version. Since µ ∈ Kd,α charges no set of zero capacity by [2, Theorem 3.3], the form
Eµ is well defined. We see from [2, Theorem 4.1] that (Eµ,D(E(α))) becomes a lower
semi-bounded closed symmetric form. We call (Eµ,D(E(α))) a Schrödinger form.
Denote by Hµ the self-adjoint operator generated by (Eµ,D(E(α))): Eµ(u, v) =
(Hµu, v). Let Pµ

t be the L2-semigroup generated by Hµ: Pµ
t = exp(−tHµ). We
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see from [2, Theorem 6.3(iv)] that Pµ
t admits a symmetric integral kernel pµ(t, x, y)

which is a jointly continuous function on (0,∞) × R
d × R

d.
For µ ∈ Kd,α, let Aµ

t be a positive continuous additive functional which is in the
Revuz correspondence with µ: for any f ∈ B+ and γ-excessive function h,

(2.4) 〈hµ, f〉 = lim
t→0

1
t
Ehm

(∫ t

0

f(Xs)dAµ
s

)
([12, p.188]). For µ = µ+ − µ− ∈ Kd,α − Kd,α, set Aµ

t = Aµ+

t − Aµ−

t . By the
Feynman-Kac formula, the semigroup Pµ

t is written as

(2.5) Pµ
t f(x) = Ex[exp(−Aµ

t )f(Xt)].

The spectral function C(λ) is defined by the bottom of the spectrum of Hλµ: for
µ = µ+ − µ− ∈ K∞

d,α −K∞
d,α,

(2.6) C(λ) = − inf
{
Eλµ(u, u) ; u ∈ D(E(α)),

∫
Rd

u2dx = 1
}

.

Lemma 2.2. The following statements are equivalent:

(i) inf
{
E(α)(u, u) +

∫
Rd

u2dµ+ :
∫

Rd

u2dµ− = 1
}

< 1.

(ii) inf
{
E(α)(u, u) +

∫
Rd

u2dµ :
∫

Rd

u2dx = 1
}

< 0.

Proof. Assume (i). Then there exists a ϕ0 ∈ C∞
0 (Rd) with

∫
Rd ϕ2

0dµ− = 1 such
that

E(α)(ϕ0, ϕ0) +
∫

Rd

ϕ2
0dµ+ < 1.

Hence we see that

E(α)(ϕ0, ϕ0) +
∫

Rd

ϕ2
0dµ+ <

∫
Rd

ϕ2
0dµ−.

Letting

u0 =
ϕ0√∫

Rd ϕ2
0dx

,

we have

E(α)(u0, u0) +
∫

Rd

u2
0dµ < 0.

Assume (ii). Then there exists a ψ0 ∈ C∞
0 (Rd) with

∫
Rd ψ2

0dx = 1 such that

E(α)(ψ0, ψ0) +
∫

Rd

ψ2
0dµ < 0.

Letting

u0 =
ψ0√∫

Rd ψ2
0dµ−

,

we have

E(α)(u0, u0) +
∫

Rd

u2
0dµ+ < 1.

�
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Remark 2.3. We see from [29, Lemma 3.5] that if

inf
{
E(α)(u, u) +

∫
Rd

u2dµ :
∫

Rd

u2dx = 1
}

> 0,

then

inf
{
E(α)(u, u) +

∫
Rd

u2dµ+ :
∫

Rd

u2dµ− = 1
}

> 1.

However, the converse does not hold in general. In fact, let α = 2 and µ = −σR,
the surface measure of the sphere ∂B(R). Then if R < d−2

2 , the first infimum is
equal to zero, while the second one is greater than 1 ([29]).

Define

λ+ = inf{λ > 0 : C(λ) > 0},
λ− = sup{λ < 0 : C(λ) > 0}.

Lemma 2.4. Let µ = µ+ − µ− ∈ K∞
d,α − K∞

d,α with µ− �≡ 0 (resp. µ+ �≡ 0). Then
the number λ+ (resp. λ−) is characterized as a unique positive (resp. negative)
number such that

inf
{
E(α)(u, u) + λ+

∫
Rd

u2dµ+ : λ+

∫
Rd

u2dµ− = 1
}

= 1(2.7) (
resp. inf

{
E(α)(u, u) − λ−

∫
Rd

u2dµ− : −λ−
∫

Rd

u2dµ+ = 1
}

= 1
)

.

Remark 2.5. From now on, we suppose that µ− is non-trivial, µ− �≡ 0, and consider
the differentiability of C(λ) at λ = λ+. The proof for other cases is precisely the
same. We know from [30, Lemma 4.2] that λ+ > 0.

Proof of Lemma 2.4. Let R
d = F + F c be the Hahn decomposition: µ−(F ) =

µ−(Rd), µ+(F c) = µ+(Rd). Take R > 0 so large that µ−(F ∩ B(R)) > 0 and let
A = F ∩B(R). Take a sequence of non-negative functions fn in C∞

0 (Rd) such that∫
Rd

(IA(x) − fn(x))2|µ|(dx) −→ 0 as n → ∞.

It then holds that

lim
n→∞

∫
Rd

f2
n(x)µ−(dx) = µ−(A) > 0, lim

n→∞

∫
Rd

f2
n(x)µ+(dx) = µ+(A) = 0,

and consequently, there exists a function f ∈ C∞
0 (Rd) such that

(2.8)
∫

Rd

f2(x)µ−(dx) = 1,

∫
Rd

f2(x)µ+(dx) < 1.

Set

(2.9) F (λ) = inf
{
E(α)(u, u) + λ

∫
Rd

u2(x)µ+(dx) :
∫

Rd

u2(x)µ−(dx) = 1
}

.

First we find that F (0) > 0 (F (0) is the bottom of the spectrum of the time changed
process of Mα by the additive functional Aµ−

t ([27, Lemma 3.1])). Indeed, since the
embedding of De(E(α)) to L2(µ−) is compact by Theorem 3.4 below, there exists
the function u0 in De(E(α)) that attains the infimum of (2.9). If F (0) = 0, then
E(α)(u0, u0) = 0, and thus u0 = 0 because (De(E(α)), E(α)) is a Hilbert space. This
contradicts that

∫
Rd u2

0dµ− = 1. Moreover, F (λ), λ ≥ 0, is a concave function by the
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definition and dominated by the function G(λ) := E(α)(f, f) + λ
∫

Rd f2(x)µ+(dx),
where f is a function satisfying (2.8).

These properties of F show that there exists a unique λ0 > 0 such that F (λ0) =
λ0. We see from Lemma 2.2 that λ0 = λ+ and thus F (λ+)/λ+ = 1, which leads us
to the lemma. �

The operator Hµ is said to be subcritical, if Hµ possesses the minimal positive
Green function Gµ(x, y), that is,

Gµ(x, y) =
∫ ∞

0

pµ(t, x, y)dt < ∞, x �= y.

It was shown in [32] that the following condition is a necessary and sufficient one
for a operator Hµ being subcritical:

inf
{
E(α)(u, u) +

∫
Rd

u2dµ+ :
∫

Rd

u2dµ− = 1
}

> 1.

Lemma 2.4 proves that operators Hλ+µ and Hλ−µ are not subcritical.

�

� λ

C(λ)

O λ+λ−

Figure. Spectral function

3. Compact embedding of De(E(α)) into L2(µ)

In this section, we prove that for µ ∈ K∞
d,α the embedding of De(E(α)) into L2(µ)

is compact.

Lemma 3.1. Let ϕ ∈ C∞
0 (Rd) and u ∈ De(E(α)). Then uϕ ∈ De(E(α)), and there

exists a constant C depending only on ϕ such that

(3.1) E(α)(uϕ, uϕ) ≤ CE(α)(u, u).
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Proof. By the inequality “(a + b)2 ≤ 2(a2 + b2)”,∫∫
Rd×Rd\d

(u(x)ϕ(x)− u(y)ϕ(y))2

|x − y|d+α
dxdy

≤
∫∫

Rd×Rd\d

u(x)2(ϕ(x) − ϕ(y))2

|x − y|d+α
dxdy +

∫∫
Rd×Rd\d

ϕ(y)2(u(x) − u(y))2

|x − y|d+α
dxdy

= (I) + (II).

By Hölder’s inequality, the first term (I) is dominated by(∫∫
Rd×Rd\d

|u(x)|p (ϕ(x) − ϕ(y))2

|x − y|d+α
dxdy

) 2
p

(∫∫
Rd×Rd\d

(ϕ(x) − ϕ(y))2

|x − y|d+α
dxdy

) p−2
p

,

where 1/p = 1/2 − α/2d. We put

(III) =
∫∫

Rd×Rd\d

|u(x)|p (ϕ(x) − ϕ(y))2

|x − y|d+α
dxdy,

and divide (III) as a sum of two terms
(3.2)∫∫

|x−y|≤1

|u(x)|p (ϕ(x) − ϕ(y))2

|x − y|d+α
dxdy +

∫∫
|x−y|>1

|u(x)|p (ϕ(x) − ϕ(y))2

|x − y|d+α
dxdy.

Since |ϕ(x) − ϕ(y)|2 ≤ c|x − y|2, the first term of (3.2) is bounded by

c

∫∫
|x−y|≤1

|u(x)|p 1
|x − y|d+α−2

dxdy

= C‖u‖p
p

∫ 1

0

rd−1

rd+α−2
dr = C‖u‖p

p.

The second term of (3.2) is bounded by

4C‖ϕ‖2
∞‖u‖p

p

∫ ∞

1

rd−1

rd+α
dr ≤ C‖u‖p

p.

Hence (III)2/p is bounded by C‖u‖2
p. Using the Sobolev inequality for order α/2

([12, p.44, (1.5.20)]), the first term (I) is bounded by CE(α)(u, u). Since the second
term (II) is also bounded by C‖ϕ‖2

∞E(α)(u, u), we see from the definition of D(E(α))
that the for u ∈ D(E(α)), the product uϕ belongs to D(E(α)) and the inequality
(3.1) holds. This can be extended to u ∈ De(E(α)). �

Now we provide known facts on measures in the Kato class. Let Gβ(x, y) be the
β-resolvent kernel of Mα.

Theorem 3.2 ([25]). Let µ ∈ Kd,α. Then

(3.3)
∫

Rd

u2(x)µ(dx) ≤ ‖Gβµ‖∞E(α)
β (u, u), u ∈ D(E(α)),

where E(α)
β (u, u) = E(α)(u, u) + β

∫
Rd u2dx.

It is known from [1] (see also [34]) that µ ∈ Kd,α if and only if

(3.4) lim
β→∞

‖Gβµ‖∞ = 0.
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Therefore the equation (3.3) shows that for any ε > 0 there exists M(ε) such that

(3.5)
∫

Rd

u2(x)µ(dx) ≤ εE(α)(u, u) + M(ε)
∫

Rd

u2dx, u ∈ D(E(α)).

It is known in [7, Proposition 2.2] that µ ∈ K∞
d,α is Green bounded :

(3.6) sup
x∈Rd

Gµ(x) = sup
x∈Rd

Ex[Aµ
∞] < ∞.

Hence the equation (3.5) says that for µ ∈ K∞
d,α

(3.7)
∫

Rd

u2dµ ≤ ‖Gµ‖∞E(α)(u, u), u ∈ De(E(α)),

in particular, L2(µ) is contained in De(E(α)).
Recall that the extended Dirichlet space De(E(α)) is a Hilbert space with inner

product E(α).

Lemma 3.3. Let un ∈ De(E(α)), n = 1, 2, . . ., be a sequence such that un converges
to u weakly in De(E(α)). Then for any set A of finite Lebesgue measure, unIA

converges to uIA strongly in L2(m).

Proof. The proof of this lemma is just the argument in [14, Theorem 8.6].
First note that the semigroup Pt of Mα can be uniquely extended to a linear

operator on De(E(α)) and that

‖u − Ptu‖2 ≤
√

tE(α)(u, u)1/2, u ∈ De(E(α))

(see [12, Lemma 1.5.4]). We then have

‖(un − u)IA‖2 ≤ ‖(un − Ptun)IA‖2 + ‖(Ptun − Ptu)IA‖2 + ‖(Ptu − u)IA‖2

≤ 2
√

t sup
n

E(α)(un, un) + ‖(Ptun − Ptu)IA‖2.(3.8)

By the Sobolev inequality, un is a bounded sequence in Lp(m), 1/p = 1/2−α/2d
and thus there exists an Lp(m)-weakly convergent subsequence. Using the Banach-
Saks Theorem, as in the proof of [12, Lemma 3.2.2], we can show that the entire
sequence un converges to u weakly in Lp(m). Using the Sobolev inequality again, we
see that the integral kernel pt(x, y) of Pt is bounded. Consequently, pt(x, ·) ∈ Lq(m)
(1/q+1/p = 1), ‖Ptun‖∞ is bounded in n, and Ptun converges to Ptu m-a.e. Hence,
by the dominated convergence theorem the last term of (3.8) converges to zero as
n → ∞. This lemma follows by letting n → ∞ and t → 0 in (3.8). �

For a measure µ, let us denote

µR(·) = µ(· ∩ B(R)), µRc = µ(· ∩ B(R)c).

Theorem 3.4. If µ ∈ K∞
d,α, then the embedding of De(E(α)) into L2(µ) is compact.

Proof. First note that the embedding of De(E(α)) into L2(µ) is bounded by (3.7).
Let {un} be a sequence in De(E(α)) such that un → u weakly in De(E(α)). Then
Lemma 3.3 says that for R > 0

(3.9) unIB(R) → uIB(R) L2(m)-strongly.
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Now fix a function ϕ ∈ C∞
0 (Rd) with ϕ = 1 on B(R). Then by (3.5)∫

Rd

|un − u|2µR(dx) =
∫

Rd

|unϕ − uϕ|2µR(dx)

≤ εE(α)(unϕ − uϕ, unϕ − uϕ) + M(ε)
∫

Rd

|unϕ − uϕ|2dx.

The second term of the right hand side converges to 0 as n → ∞ by (3.9), and
Lemma 3.1 proves

sup
n

E(α)(unϕ − uϕ, unϕ − uϕ) < ∞.

Hence the sequence {un} is L2(µR)-convergent to u because ε is arbitrary.
Moreover, since by Theorem 3.2,∫

Rd

|un − u|2µ(dx) =
∫

Rd

|un − u|2µR(dx) +
∫

Rd

|un − u|2µRc(dx)

≤
∫

Rd

|un − u|2µR(dx) + ‖GµRc‖∞E(α)(un − u, un − u),

we have

lim sup
n→∞

∫
Rd

|un − u|2µ(dx) ≤ lim sup
n→∞

‖GµRc‖∞E(α)(un − u, un − u).

By the definition of K∞
d,α the right hand side converges to 0 as R → ∞, which

proves that {un} is an L2(µ)-convergent sequence to u. �

4. Construction of ground states

We define an Hµ-harmonic function probabilistically.

Definition 4.1. A bounded finely continuous function h on R
d is said to be Hµ-

harmonic, if for any relatively compact domain D ⊂ R
d,

(4.1) h(x) = Ex[exp(−Aµ
τD

)h(XτD
)], x ∈ D,

where τD is the first exit time from D.

If Hµ is subcritical, the measure µ is gaugeable, that is, supx∈Rd Ex[e−Aµ
∞ ] < ∞

([32, Theorem 3.1]). Set h(x) = Ex[e−Aµ
∞ ]. Then h is an Hµ-harmonic function.

Indeed, for any bounded domain D

h(x) = Ex[e−Aν
∞h(XτD

)] = Ex[e−Aν
τD EXτD

[e−Aν
∞ ]]

= Ex[e−Aν
τD h(XτD

)], x ∈ D.

Moreover, we see from (3.6) and Jensen’s inequality that

(4.2) inf
x∈Rd

h(x) = inf
x∈Rd

Ex[e−Aµ
∞ ] ≥ exp(− sup

x∈Rd

Ex[A|µ|
∞ ]) > 0.

Hµ is said to be critical, if Hµ is not subcritical and admits a positive Hµ-harmonic
function (cf. [19, p.145]). Recall that the operator Hλ+µ is not subcritical.

Let Pt be a positive semigroup with integral kernel p(t, x, y). A positive function
h is called Pt-excessive if h satisfies Pth(x) ↑ h(x) as t ↓ 0. For a Pt-excessive
function h, set

(4.3) ph(t, x, y) =
1

h(x)
p(t, x, y)h(y), t > 0, x, y ∈ {0 < h < ∞},
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and denote by P h
t the associated semigroup, P h

t f(x) =
∫
{0<h<∞} ph(t, x, y)f(y)dy.

Then ph(t, x, y) becomes a transition probability density because

P h
t 1(x) =

1
h(x)

Pth(x) ≤ h(x)
h(x)

= 1.

We call the process generated by ph Doob’s h-transformed process.

Lemma 4.2. A positive Hµ-harmonic function h is Pµ
t -excessive.

Proof. It follows from the definition of an Hµ-harmonic function that limt→0 Pµ
t h(x)

= h(x).
Let x ∈ B(m). By Definition 4.1, h satisfies

h(x) = Ex[exp(Aµ
τn

)h(Xτn
)]

for any n > m. Here τn is the first exit time from B(n). It follows from the Markov
property that

Ex[exp(Aµ
t )h(Xt); t < τm]

= Ex[exp(Aµ
t )EXt

[exp(Aµ
τn

)h(Xτn
)]; t < τm]

= Ex[exp(Aµ
t ) exp(Aµ

τn
◦ θt)h(Xτn

◦ θt); t < τm]
= Ex[exp(Aµ

τn
)h(Xτn

); t < τm] ≤ h(x).

Hence we have

Pµ
t h(x) = lim

m→∞
Ex[exp(Aµ

t )h(Xt); t < τm] ≤ h(x).

�

Assume that Hµ is subcritical or critical and let h be a positive Hµ-harmonic
function. Let Pµ,h

t be the h-transformed semigroup of Pµ
t . Then, Pµ,h

t is the
L2(h2m)-strongly continuous symmetric Markov semigroup, (Pµ,h

t f, g)h2m =
(f, Pµ,h

t g)h2m. Denote by (Eµ,h,D(Eµ,h)) the Dirichlet space on L2(h2m) gener-
ated by Pµ,h

t . We define a symmetric positive form (Eµ,De(Eµ)) by

Eµ(u, v) = Eµ,h(
u

h
,
v

h
),

De(Eµ) =
{
u :

u

h
∈ De(Eµ,h)

}
.

We call the form (Eµ,De(Eµ)) an extended Schrödinger form. By the definition
of De(Eµ,h) ([12, p.35]), De(Eµ) is identified with the family of an m-measurable
function u on R

d such that |u| < ∞ m-a.e. and there exists an Eµ-Cauchy sequence
{un} of functions in D(E(α)) such that limn→∞ un = u m-a.e. We call {un} as
above an approximating sequence for u ∈ De(Eµ). Then, for u ∈ De(Eµ) and its
approximating sequence {un}
(4.4) Eµ(u, u) = lim

n→∞
Eµ(un, un), u ∈ De(Eµ).

Moreover, in the second definition of De(Eµ), the condition for {un} being an Eµ-
Cauchy sequence can be replaced by

sup
n

Eµ(un, un) < ∞

([23, Definition 1.6]).
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If (Eµ,D(E(α))) is a subcritical Schrödinger form, that is, the associated operator
Hµ is subcritical, then (Eµ,De(Eµ)) becomes a Hilbert space by [12, Lemma 1.5.5].
If (Eµ,D(E(α))) is a critical Schrödinger form, that is, the associated operator Hµ

is critical, its ground state h belongs to De(Eµ) on account of [12, Theorem 1.6.3].
Noting that for µ = µ+ − µ− ∈ K∞

d,α −K∞
d,α

Eµ(u, u) ≤ (1 + ‖G|µ|‖∞)E(α)(u, u)

by Theorem 3.2, we see that De(Eµ) includes De(E(α)).
For a non-negative bounded Borel function w �≡ 0 with compact support, define

ν = λ+µ + wdx. We then see from Lemma 2.4 and [32, Theorem 3.1] that Hν is
subcritical and its Green function Gν(x, y) is equivalent to G: there exist positive
constants c, C such that

(4.5) cG(x, y) ≤ Gν(x, y) ≤ CG(x, y) for x �= y.

Let Gν be the Green operator, Gνf(x) =
∫

Rd Gν(x, y)f(y)dy.

Lemma 4.3. For a non-negative function ϕ ∈ C0(Rd), Gνϕ belongs to De(Eν).

Proof. Let Gν
β be β-resolvent of Hν . Then Gν

βϕ belongs to D(E(α)) and Gν
βϕ ↑ Gνϕ

as β → 0. Moreover, by (4.5)

Eν(Gν
βϕ, Gν

βϕ) ≤ Eν
β (Gν

βϕ, Gν
βϕ) = (ϕ, Gν

βϕ)

≤ (ϕ, Gνϕ) ≤ C(ϕ, Gϕ) < ∞,

which proves the lemma. �

Noting that ν is gaugeable, we set h0(x) = Ex[e−Aν
∞ ]. Then h0 is an Hν-harmonic

function as mentioned above. Let (Eν,h0 ,D(Eν,h0)) be the Dirichlet form generated
by h-transformed semigroup P ν,h0

t and Gν,h0 its Green operator :

Gν,h0f =
1
h0

Gν(h0 · f).

Then, for a non-negative function ϕ ∈ C0(Rd)∫
Rd

Gν,h0(
ϕ

h0
) · ϕ

h0
h2

0dx =
∫

Rd

Gνϕ · ϕdx ≤ C

∫
Rd

Gϕ · ϕdx.

Thus Theorem 1.5.4 in [12] says that ϕ/h0 belongs to De(Eν,h0), and for any f ∈
De(Eν)

Eν,h0(Gν,h0(
ϕ

h0
),

f

h0
) =

∫
Rd

ϕfdx.

Noting that the left hand side above equals Eν(Gνϕ, f), we have

Lemma 4.4. For any non-negative function ϕ ∈ C0(Rd)

Eν(Gνϕ, f) =
∫

Rd

ϕfdx, f ∈ De(Eν).

We now construct an Hλ+µ-harmonic function. Since the embedding of De(E(α))
to L2(µ−) is compact, there exists a function u0 ∈ De(E(α)) such that u0 attains
the infimum:

(4.6) inf
{
E(α)(u, u) + λ+

∫
Rd

u2dµ+ : u ∈ De(E(α)), λ+

∫
Rd

u2dµ− = 1
}

= 1.
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Let Mλ+µ+
be the subprocess of Mα by the multiplicative functional exp(−λ+Aµ+

t ).
Then the function u0 is the first eigenfunction corresponding to the generator of the
time changed process of Mλ+µ+

by Aλ+µ−

t . The time changed process is irreducible
because

∫
Rd Gλ+µ+

(x, y)µ−(dy) > 0. Hence u0 > 0 µ−-a.e by [9, Theorem 7.3].

Lemma 4.5. Let u0 be the function in ( 4.6). Then the measure u0µ
− is of finite

energy integral with respect to Eλ+µ+
.

Proof. Let f ∈ De(E(α)). Then∫
Rd

f(x)u0(x)µ−(dx) ≤
(∫

Rd

u2
0(x)µ−(dx)

)1/2 (∫
Rd

f2(x)µ−(dx)
)1/2

,

and the right hand side is dominated by

CE(α)(f, f)1/2 ≤ CEλ+µ+
(f, f)1/2

by Theorem 3.2. �
The function u0 is also characterized by the equation:

(4.7) E(α)(u0, f) + λ+

∫
Rd

u0fdµ+ = λ+

∫
Rd

u0fdµ−, for all f ∈ De(E(α)).

Hence we see from Lemma 4.5 that

Eλ+µ+
(u0, f) = λ+

∫
Rd

u0fdµ− = Eλ+µ+
(λ+Gλ+µ+

(u0µ
−), f),

and so

u0(x) = λ+

∫
Rd

Gλ+µ+
(x, y)u0(y)dµ−(dy)

= Ex

[∫ ∞

0

exp(−λ+Aµ+

t )u0(Xt)dAλ+µ−

t

]
> 0, m-a.e.

Now we set

(4.8) h(x) = Ex

[∫ ∞

0

exp(−λ+Aµ+

t )u0(Xt)dAλ+µ−

t

]
and prove that the function h is a bound continuous Hλ+µ-harmonic function. We
remark that h is equal to u0 q.e. and is strictly positive because Gλ+µ+

(x, y) > 0.

Lemma 4.6. The function h is finely continuous.

Proof. By the Markov property,

h(Xs) = EXs

[∫ ∞

0

exp(−λ+Aµ+

t )u0(Xt)dAλ+µ−

t

]
= Ex

[∫ ∞

0

exp(−λ+Aµ+

t (θs))u0(Xt+s)dAλ+µ−

t (θs)
∣∣∣Fs

]
= exp(λ+Aµ+

s )Ex

[∫ ∞

0

exp(−λ+Aµ+

t )u0(Xt)dAλ+µ−

t

∣∣∣Fs

]
− exp(λ+Aµ+

s )
∫ s

0

exp(−λ+Aµ+

t )u0(Xt)dAλ+µ−

t .

Since the first term of right hand side is right continuous because of the right
continuity of Fs, we see that h is finely continuous by [12, Theorem A.2.7]. �
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Note that if h(x) = u0(x) m-a.e., then h(x) = u0(x) q.e. by [12, Lemma 4.1.5].
Hence [12, Theorem 4.1.2] proves the next lemma.

Lemma 4.7. The function h is strictly positive and satisfies

(4.9) h(x) = Ex

[∫ ∞

0

exp(−λ+Aµ+

t )h(Xt)dAλ+µ−

t

]
for all x ∈ R

d.

The next theorem was first obtained by Murata [16, Theorem 2.2] when α =
2. Using a probabilistic argument, we extend the theorem to symmetric α-stable
processes.

Theorem 4.8. For w ∈ C0(Rd) with w ≥ 0, w �≡ 0, let ν = λ+µ + wdx. The
function h defined in ( 4.8) satisfies

(4.10) h(x) =
∫

Rd

Gν(x, y)h(y)w(y)dy.

Proof. Note that h satisfies (4.7) and for any non-negative ϕ ∈ C0(Rd)

Eν(h, Gν
βϕ) =

∫
Rd

h · Gν
βϕ · wdx, β > 0.

By Lemma 4.3 and Lemma 4.4, we obtain, by letting β to 0∫
Rd

h(x)ϕ(x)dx =
∫

Rd

h(x)w(x)Gνϕ(x)dx =
∫

Rd

Gν(hw)(x)ϕ(x)dx

and thus

h(x) =
∫

Rd

Gν(x, y)h(y)w(y)dy, m-a.e.

by the same argument as in Lemma 4.6, in the above equation “m-a.e. x” can be
replaced by “any x”. �

Lemma 4.9. The function h is bounded.

Proof. Since h is finely continuous, we can find a compact set K such that h ≤ c
on K. Let ν = µ+ IK(x)dx. Note that ν belongs to K∞

d,α −K∞
d,α. Theorem 4.8 says

that h satisfies

h(x) =
∫

Rd

Gν(x, y)h(y)IK(y)dy.

Since Gν(x, y) is equivalent to G(x, y) by [32, Theorem 3.1], it holds that

h(x) ≤ c

∫
Rd

Gν(x, y)IK(y)dy ≤ C ′
∫

Rd

G(x, y)IK(y)dy.

The right hand side of the above inequality is bounded because h(y)IK(y)dy ∈
K∞

d,α. �

Lemma 4.10. The function h is Pλ+µ
t -excessive.
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Proof. Set Mt = Ex[
∫ ∞
0

exp(−λ+Aµ+

s )h(Xs)dAλ+µ−

s |Ft]. Then we showed in the
proof of Lemma 4.4 that

exp(−λ+Aµ+

t )h(Xt) = Mt −
∫ t

0

exp(−λ+Aµ+

s )u0(Xs)dAλ+µ−

s .

Hence by Ito’s formula

exp(−λ+Aµ
t )h(Xt) = exp(λ+Aµ−

t )(exp(−λ+Aµ+

t )h(Xt))

= h(X0) +
∫ t

0

exp(λ+Aµ−

s )dMs −
∫ t

0

exp(−λ+Aµ
s )h(Xs)dAλ+µ−

s

+
∫ t

0

exp(−λ+Aµ+

s )h(Xs) exp(λ+Aµ−

s )dAλ+µ−

s

= h(X0) +
∫ t

0

exp(λ+Aµ−

s )dMs,

which implies that

Ex[exp(−λ+Aµ
t )h(Xt)] ≤ h(x).

�

We see from Lemma 4.10 that the h-transformed semigroup Pλ+µ,h
t generates

an h2m-symmetric Markov process. Let us denote by Mλ+µ,h the Markov process
generated by Pλ+µ,h

t . Then Mλ+µ,h is recurrent because of non-subcriticality of
Hλ+µ, in particular, conservative, Pλ+µ,h

t 1 = 1. As a result, the function h is
Pλ+µ

t -invariant:

(4.11) Pλ+µ
t h = h.

Lemma 4.11. A finely continuous Pλ+µ
t -excessive function is unique up to constant

multiplication.

Proof. We follow the argument in [19, Theorem 3.4]. Let h, h′ be finely continuous
Pλ+µ

t -excessive functions. Since

Ex

[
exp(−λ+Aµ

t )h(Xt)
(

h′

h

)
(Xt)

]
≤ h · h′

h
(x),

we have

Eλ+µ,h
x

[
h′

h
(Xt)

]
≤ h′

h
(x).

For y ∈ R
d and εn → 0 as n → ∞, σB(y,εn) < ∞, Pλ+µ,h

x -a.s by [12, Problem 4.6.3],
where B(y, εn) = {z : |z − y| < εn}. Denote σn = σB(y,εn). Replacing t by σn, we
have

(4.12) Eλ+µ,h
x

[
h′

h
(Xσn

)
]
≤ h′

h
(x).
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Noting that the left hand side of (4.12) converges to h′

h (y) as n → ∞, we obtain by
Fatou’s lemma that

h′

h
(y) = Eλ+µ,h

x

[
lim inf
n→∞

h′

h
(Xσn

)
]

≤ lim inf
n→∞

Eλ+µ,h
x

[
h′

h
(Xσn

)
]

≤ h′

h
(x).

Since x and y are arbitrary, h′/h must be a constant function. �

Proposition 4.12. The function h is an Hλ+µ-harmonic function: for any bounded
domain D

(4.13) Ex[exp(−λ+Aµ
τD

)h(XτD
)] = h(x), x ∈ D.

Proof. We first note that if the equation (4.13) holds for D, then it holds for any
D′ ⊂ D by the strong Markov property. Thus it suffices to prove this proposition
for a large D such that µ−(D) > 0.

In Lemma 4.6 and Lemma 4.9, we proved that h is finely continuous and bounded.
Set

Mt = exp(−λ+Aµ
t )h(Xt).

Then Mt is a martingale. In fact, by the Markov property and the equation (4.11)

Ex[Mt|Fs] = exp(−λ+Aµ
s )EXs

[exp(−λ+Aµ
t−s)h(Xt−s)]

= exp(−λ+Aµ
s )h(Xs), t > s.

On account of the optional stopping theorem, we have

(4.14) Ex[exp(−λ+At∧τD
)h(Xt∧τD

)] = h(x),

where D is a bounded domain of R
d.

We claim that

(4.15) inf
{
Eλ+µ(u, u) : u ∈ D(E(α)

D ),
∫

D

u2dx = 1
}

> 0,

where E(α)
D is the part Dirichlet form of E(α) on D (see [12, Section 4.4]). Indeed,

if the left hand side equals zero, there exists a function u∗ ∈ D(E(α)
D ) such that

E(α)(u∗, u∗) + λ+

∫
Rd

u2
∗dµ+ = λ+

∫
Rd

u2
∗dµ−.

Note that
∫

Rd u2
∗dµ− > 0 because u∗(x) > 0 q.e. on D and m−(D) > 0. Then

the function u∗/
√∫

Rd u2
∗dµ− attains the infimum of (4.6), and thus u∗ > 0 q.e. on

R
d as proved for the function u0. This is contradictory, because u∗ = 0 m-a.e. on

R
d \ D.
The equation (4.15) implies that λ+µ is gaugeable on D, that is,

sup
x∈D

Ex

[
exp(−λ+AτD

)
]

< ∞
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(cf. [7], [32]). We then see from [7, Corollary 2.9] that

(4.16) sup
x∈D

Ex

[
sup

0≤t≤τD

exp(−λ+Aµ
t )

]
< ∞.

Noting that

(4.17)
∣∣exp(−λ+At∧τD

)h(Xt∧τD
)
∣∣ ≤ ‖h‖∞

(
sup

0≤t≤τD

exp(−λ+Aµ
t )

)
,

we have

lim
t→∞

Ex[exp(−λ+Aµ
t∧τD

)h(Xt∧τD
)] = Ex[exp(−λ+Aµ

τD
)h(XτD

)]

on account of the quasi-left continuity of Mα. �

Lemma 4.13. The function h satisfies

(4.18) h(x) = Ex [h(XτD
)] − λ+Ex

[∫ τD

0

h(Xs)dAµ
s

]
.

Proof. Since h is Hλ+µ-harmonic, for a bounded domain D,

λ+Ex

[∫ τD

0

h(Xt)dAµ
t

]
= λ+Ex

[∫ τD

0

EXt

(
exp(−λ+Aµ

τD
)h(XτD

)
)
dAµ

t

]
.

By the Markov property the right hand side equals

λ+Ex

[∫ τD

0

exp(λ+Aµ
t − λ+Aµ

τD
)h(XτD

)dAµ
t

]
= Ex

[
exp(−λ+Aµ

τD
)h(XτD

)
(
exp(λ+Aµ

τD

)
− 1)

]
= Ex[h(XτD

)] − Ex

[
exp(−λ+Aµ

τD
)h(XτD

)
]
,

which implies (4.18). �

By the same argument as in [4, Proposition 6.1], we see that the right hand side
of (4.18) is continuous on D. Hence we have

Proposition 4.14. The function h is continuous.

Now we consider asymptotic of h as |x| → ∞. Let w be a positive continuous
function with compact support. Suppose that 0 ∈ supp[w] ⊂ B(R). By Theorem
4.8 and the continuity of h

c

∫
B(R)

Gν(x, y)w(y)dy ≤ h(x) ≤ C

∫
B(R)

Gν(x, y)w(y)dy,

and so by the inequality (4.5),

c

∫
B(R)

G(x, y)w(y)dy ≤ h(x) ≤ C

∫
B(R)

G(x, y)w(y)dy.

The Harnack inequality to {G(x, ·)}{x∈B(R)c} says that for any x ∈ B(R)c and
y ∈ supp[w]

cG(x, y) ≤ G(x, 0) ≤ CG(x, y).
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Therefore we see that

cG(x, 0) ≤ h(x) ≤ CG(x, 0) for x ∈ B(R)c,

namely,

(4.19)
c

|x|d−α
≤ h(x) ≤ C

|x|d−α
for x ∈ B(R)c.

We call Hλ+µ positive (resp. null) critical if the ground state h is in (resp. not
in) L2(m). These notions are corresponding to the positive (resp. null) recurrence.

The equation (4.19) leads us to

Theorem 4.15. The operator Hλ+µ is null critical if and only if α < d ≤ 2α.

5. An extension of Oshima’s inequality

In this section, we prove a functional inequality for critical Schrödinger forms.
This inequality is regarded as a version of Oshima’s inequality and plays a crucial
role for the proof of the differentiability of C(λ).

Lemma 5.1. Let h be the Hλ+µ-harmonic function constructed in the previous
section. Then the h-transformed semigroup Pλ+µ,h

t of Pλ+µ
t has the strong Feller

property.

Proof. We follow the argument in [10, Corollary 5.2.7]. Let f be a bounded Borel
function and {xn} a sequence so that xn → x as n → ∞. Recall that pλ+µ(t, x, y) is
jointly continuous ([2, Theorem 3.10]). Then by Fatou’s lemma and the continuity
of h,

lim inf
n→∞

∫
Rd

1
h(xn)

pλ+µ(t, xn, y)h(y)(‖f‖∞ ± f(y))dy

≥
∫

Rd

1
h(x)

pλ+µ(t, x, y)h(y)(‖f‖∞ ± f(y))dy,

and thus the function,

x �→
∫

Rd

1
h(x)

pλ+µ(t, x, y)h(y)(‖f‖∞ ± f(y))dy,

is lower semi-continuous. Note that Pλ+µ,h
t is recurrent, in particular, conservative.

Then ∫
Rd

1
h(x)

pλ+µ(t, x, y)h(y)f(y)dy

=
∫

Rd

1
h(x)

pλ+µ(t, x, y)h(y)(‖f‖∞ + f(y))dy − ‖f‖∞

= −
∫

Rd

1
h(x)

pλ+µ(t, x, y)h(y)(‖f‖∞ − f(y))dy + ‖f‖∞,

and thus the function

x �→
∫

Rd

1
h(x)

pλ+µ(t, x, y)h(y)f(y)dy,

is lower and upper semi-continuous. �
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Proposition 5.2. The h-transformed process Mλ+µ,h = (Pλ+µ,h
x , Xt) is Harris

recurrent, that is, for a non-negative function f ,

(5.1)
∫ ∞

0

f(Xt)dt = ∞ Pλ+µ,h
x -a.s.

whenever m({x : f(x) > 0}) > 0.

Proof. Set A = {x : f(x) > 0}. Since Pλ+µ,h
t generates an h2m-symmetric recur-

rent Markov process,

(5.2) Px[σA ◦ θn < ∞, ∀n ≥ 0] = 1 for q.e. x ∈ R
d

by [12, Theorem 4.6]. Moreover, since the Markov process Mλ+µ,h has the transition
density function

pλ+µ(t, x, y)
h(x)h(y)

with respect to h2m, (5.2) holds for all x ∈ R
d by [12, Problem 4.6.3]. Using Lemma

5.1, (5.2), and the proof of [22, Chapter X, Proposition (3.11)], we see that Mλ+µ,h

is Harris recurrent. �

Theorem 5.3. There exist a positive function g ∈ L1(h2m) and a function ψ ∈
C0(Rd) with

∫
Rd ψh2dx = 1 such that

(5.3)
∫

Rd

|u(x) − h(x)L(
u

h
)|g(x)h(x)dx ≤ CEλ+µ(u, u)1/2, u ∈ D(Eλ+µ),

where

L(u) =
∫

Rd

uψh2dx.

Proof. By Proposition 5.2, we can apply Oshima’s inequality in [17] to the Dirichlet
form (Eλ+µ,h,D(Eλ+µ,h)) satisfying the Harris recurrence condition; there exist a
positive function g ∈ L1(h2m) and a function ψ ∈ C0(Rd) with

∫
Rd ψh2dx = 1 such

that

(5.4)
∫

Rd

|u(x) − L(u)|g(x)h2(x)dx ≤ CEλ+µ,h(u, u)1/2, u ∈ D(Eλ+µ,h)

where

L(u) =
∫

Rd

uψh2dx.

Substituting v/h for u in (5.4) together with the equality

Eλ+µ,h(v, v) = Eλ+µ(hv, hv),

we obtain the equality (5.3). �
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6. Differentiability of spectral function

Before proving the differentiability of spectral function, we prepare a lemma
relevant to general regular Dirichlet forms.

Lemma 6.1. Let X be a locally compact separable metric space, m a positive
Radon measure on X, and (E ,D(E)) a regular Dirichlet form on L2(X; m). Let
{un} ⊂ D(E) be a sequence with limn→∞ E(un, un) = 0 and limn→∞ un = 0 m-a.e.
Then there is a subsequence {unk

} such that limk→∞ unk
= 0 q.e.

Proof. Let g be a non-negative continuous function with compact support and
define

(6.1) Eg(u, u) = E(u, u) +
∫

X

u2gdm.

Then (Eg,D(Eg)(= D(E))) becomes a transient Dirichlet form. Let u
(l)
n = ((−l) ∨

un) ∧ l, l = 1, 2, · · · . Then by the assumption limn→∞ Eg(u(l)
n , u

(l)
n ) = 0 for any l.

Hence the 0-order version of [12, Theorem 2.1.4] says that there exists a subsequence
{u(l)

nk} of {u(l)
n } such that limk→∞ u

(l)
nk = 0 Capg,(0)-q.e. Here CapE,(r) denotes the

r-order capacity with respect to (Eg,D(Eg)). Note that by [12, Theorem 2.1.6],
Capg,(0)-q.e. is equivalent to Capg,(1)-q.e. and Capg,(1)-q.e. is equivalent to Cap(1)-
q.e. because E1(u, u) ≤ Eg

1 (u, u) ≤ (1 + ‖g‖∞)E1(u, u).
Therefore we see that limk→∞ u

(l)
nk = 0 q.e. This proves the lemma because l is

arbitrary. �

Theorem 6.2. Let µ = µ+ − µ− ∈ K∞
d,α − K∞

d,α. If α < d ≤ 2α, that is, Hλ+µ is
null critical, then the spectral function C(λ) is differentiable.

Proof. We deal with the case of λ ≥ 0. First note that for λ > λ+, −C(λ) is the
principal eigenvalue of the operator Hλµ = 1

2 (−∆)α/2 − λµ ([30, Lemma 4.3]) and
thus C(λ) is differentiable by the analytic perturbation theory [13, Chapter VII].
Hence it is enough to prove the differentiability of C(λ) at λ = λ+. Furthermore,
since C(λ) is convex by the definition, we have only to prove the existence of a
sequence {λn} such that dC(λn)/dλ ↓ 0 as λn ↓ λ+.

By [13, p.405, Chapter VII (4.44)], we see

(6.2)
dC(λ)

dλ
= −

∫
Rd

u2
λdµ > 0, λ > λ+,

where uλ is the L2-normalized eigenfunction corresponding to the eigenvalue −C(λ),
that is,

(6.3) −C(λ) = Eλµ(uλ, uλ) = λ

∫
Rd

u2
λdµ + E(α)(uλ, uλ).

Neglecting the positive part µ+ of µ in the (6.3), we have

E(α)(uλ, uλ) ≤ −C(λ) + λ

∫
Rd

u2
λdµ−.

Furthermore, it follows from (3.5) that the right hand side above is dominated by

−C(λ) + λεE(α)(uλ, uλ) + λM(ε).
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Let {λn} be a sequence with limn→∞ λn ↓ λ+. Substituting λn for λ in the equation
above and taking ε > 0 so small that λnε < 1, we have

E(α)(uλn
, uλn

) ≤ −C(λn) + λnM(ε)
1 − λnε

,

and thus

(6.4) lim sup
n→∞

E(α)(uλn
, uλn

) =
λ+M(ε)
1 − λ+ε

< ∞

because C(λn) → 0 as n → ∞. Since by (6.4)

|Eλ+µ(uλn
, uλn

) + C(λn)| = |Eλ+µ(uλn
, uλn

) − Eλnµ(uλn
, uλn

)|

≤ (λn − λ+)
∫

Rd

u2
λn

dµ

≤ (λn − λ+)(‖G|µ|‖∞E(α)(uλn
, uλn

)) −→ 0

as n → ∞,

(6.5) lim
n→∞

Eλ+µ(uλn
, uλn

) = 0.

Let h be the Hλ+µ-harmonic function constructed in Section 4 and denote by
(Eλ+µ,h,D(Eλ+µ,h)) the Dirichlet form of the h-transformed process. Then the
equation (6.5) proves

(6.6) lim
n→∞

Eλ+µ,h
(uλn

h
,
uλn

h

)
= 0.

Let ψ and L(u) be the things in Theorem 5.3. Then since∣∣∣∣L(
uλn

h
)
∣∣∣∣ =

∫
Rd

uλn
(x)ψ(x)h(x)dx

≤
√∫

Rd

u2
λn

dx

√∫
Rd

ψ2(x)h2(x)dx < ∞,

we may assume that L(uλn
/h) converges to a certain constant C by taking a sub-

sequence of {λn} if necessary. In addition, since (5.3) says∫
Rd

|uλn
− Ch|ghdx ≤

∫
Rd

|uλn
− hL(

uλn

h
)|ghdx +

∫
Rd

|hL(
uλn

h
) − Ch|ghdx

≤ CEλ+µ(uλn
, uλn

)1/2 +
∫

Rd

|L(
uλn

h
) − C|gh2dx → 0,

we may assume that uλn
→ Ch m-a.e. Now recall that Hλ+µ is null critical if and

only if d ≤ 2α. Then the constant C must be equal to 0 because

(6.7) 1 = lim inf
n→∞

∫
Rd

u2
λn

dx ≥
∫

Rd

lim inf
n→∞

u2
λn

dx = C2

∫
Rd

h2dx,

and consequently

(6.8) lim
n→∞

uλn
= 0, m-a.e.

Notice that Eλ+µ,h-q.e. is equivalent to E(α)-q.e. Then combing (6.6) and (6.8)
with Lemma 6.1, we may assume that uλn

converges to 0 q.e.
Since uλn

is the eigenfunction corresponding to C(λn),

uλn
= e−C(λn)tPλnµ

t uλn
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and

‖uλn
‖∞ ≤ e−C(λn)t‖P−λnµ−

t ‖2,∞ ≤ ‖P−λ1µ−

t ‖2,∞ < ∞
by [2, Theorem 6.1 (iii)]. Hence we have

lim sup
n→∞

∣∣∣∣∫
Rd

u2
λn

dµ

∣∣∣∣ ≤ lim sup
n→∞

∫
Rd

u2
λn

d|µ|

= lim sup
n→∞

(∫
Rd

u2
λn

d|µ|R +
∫

Rd

u2
λn

d|µ|Rc

)

≤ lim sup
n→∞

∫
Rd

u2
λn

d|µ|R + lim sup
n→∞

‖G|µ|Rc‖∞E(α)(uλn
, uλn

)

≤ ‖G|µ|Rc‖∞
λ+M(ε)
1 − λ+ε

.

By letting R to ∞, we complete the proof. �
Remark 6.3. When α = 2 and the potential µ is absolutely continuous with re-
spect to the Lebesgue measure, non-differentiability of the spectral function was
considered in [24]. The argument in [24, Theorem 2.1] can be adapted to prove
that if d > 2α, then C(λ) is not differentiable. Indeed, the ground state h belongs
to L2(m), that is, zero is an eigenvalue of Hλ+µ. We normalize the function h as
‖h‖2 = 1. Let {uλn

} be the sequence defined in the proof of Theorem 6.2, that is,
uλn

is the L2(m)-normalized eigenfunction corresponding with the eigenvalue λn

(λn > λ+). Since {uλn
} is bounded in E(α) and in L2(m), we may suppose that

uλn
→ u0, weakly in E(α) and in L2(m).

Moreover we know in the proof of Theorem 6.2 that

uλn
→ Ch, m-a.e.

Hence u0 = Ch, m-a.e., and thus the constant C is less than or equal to 1. Since
for λ > λ+,

−C(λ) ≤ E(α)(h, h) + λ

∫
h2dµ

and
E(α)(h, h) = −λ+

∫
Rd

h2dµ,

we have

(6.9)
C(λ)

λ − λ+
≥ −

∫
h2dµ.

Noting that there exists a constant θ ∈ (0, 1) such that

C(λ)
λ − λ+

= C ′(λ+ + θ(λ − λ+)),

by the mean value theorem, we can find a sequence {an} such that an → λ+ as
n → ∞ and

lim sup
λ→λ+

C(λ)
λ − λ+

= lim
n→∞

C ′(an).

By Theorem 3.4,

lim
n→∞

C ′(an) = − lim
n→∞

∫
u2

an
dµ = −C2

∫
Rd

h2dµ.
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Since h > 0 ∈ De(E(α)) and (E(α),De(E(α))) is a Hilbert space, we know that

−
∫

Rd

h2dµ =
1

λ+
E(α)(h, h) > 0.

Hence

lim sup
λ→λ+

C(λ)
λ − λ+

≤ −C2

∫
Rd

h2dµ ≤ −
∫

Rd

h2dµ.

On the other hand, by (6.9), we find that

lim inf
λ→λ+

C(λ)
λ − λ+

≥ −
∫

Rd

h2dµ.

Therefore

lim
λ→λ+

C(λ)
λ − λ+

= −
∫

Rd

h2dµ > 0.
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