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COMPLEX SYMMETRIC OPERATORS AND APPLICATIONS II

STEPHAN RAMON GARCIA AND MIHAI PUTINAR

Abstract. A bounded linear operator T on a complex Hilbert space H is
called complex symmetric if T = CT ∗C, where C is a conjugation (an iso-
metric, antilinear involution of H). We prove that T = CJ |T |, where J is an

auxiliary conjugation commuting with |T | =
√

T ∗T . We consider numerous
examples, including the Poincaré-Neumann singular integral (bounded) oper-
ator and the Jordan model operator (compressed shift). The decomposition
T = CJ |T | also extends to the class of unbounded C-selfadjoint operators,
originally introduced by Glazman. In this context, it provides a method for
estimating the norms of the resolvents of certain unbounded operators.

1. Introduction

In his consideration of the classical Carathéodory-Fejér problem in function
theory, Takagi [25] observed the relevance of the antilinear eigenvalue problem
Tx = λx, where T is an n × n symmetric complex matrix and x denotes com-
plex conjugation of a vector x in C

n. He noted that this equation implies that
T ∗Tx = |λ|2x and hence that |λ| is an eigenvalue of |T | =

√
T ∗T . This observation

has many consequences, for example a formula for ‖T ‖ which does not explicitly
involve the computation of |T |:

‖T ‖ = sup{σ ≥ 0 : (∃x ∈ C
n)((x �= 0) ∧ (Tx = σx))}.

In this note, we consider Takagi’s antilinear eigenproblem in a much more general
setting.

We now pass to a separable complex Hilbert space H which carries a conjugation
C. Specifically, C is an antilinear operator on H which is involutive (C2 = I) and
isometric, meaning that 〈x, y〉 = 〈Cy, Cx〉 holds for all x, y in H. A bounded
operator T : H −→ H is called C-symmetric if T = CT ∗C and complex symmetric
if it is C-symmetric with respect to some conjugation C.

In particular, an n×n matrix T is symmetric if and only if T = CT ∗C where C
denotes the standard conjugation C(z1, z2, . . . , zn) = (z1, z2, . . . , zn) on C

n. Thus
complex symmetric operators generalize the notion of complex symmetric matrices.
In fact, T is C-symmetric if and only if it has a symmetric matrix representation
with respect to an orthonormal basis whose elements are fixed by C.

Received by the editors November 9, 2004 and, in revised form, July 20, 2005.
2000 Mathematics Subject Classification. Primary 30D55, 47A15.
Key words and phrases. Complex symmetric operator, Takagi factorization, inner function,

Aleksandrov-Clark operator, Clark operator, Aleksandrov measure, compressed shift, Jordan op-
erator, J-selfadjoint operator, Sturm-Liouville problem.

This work was partially supported by the National Science Foundation Grant DMS-0350911.

c©2007 American Mathematical Society

3913

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3914 STEPHAN RAMON GARCIA AND MIHAI PUTINAR

The class of complex symmetric operators is surprisingly large. It includes all
normal operators, Hankel operators, compressed Toeplitz operators (including finite
Toeplitz matrices and the compressed shift), and many standard integral operators
such as the Volterra operator [8]. Somewhat confusingly, the unbounded analogues
of C-symmetric operators are sometimes referred to as J-selfadjoint, although nei-
ther concept should be confused with the notion of J-selfadjointness arising in the
theory of Krein spaces (where J is a linear involution).

The aim of the present article is to analyze the structure of complex symmetric
operators beyond Takagi’s decomposition. We prove, for example, that a bounded
C-symmetric operator T factors as T = CJ |T |, where J is an auxiliary conjugation
which commutes with |T |. This can be viewed as a generalization of a theorem of
Godič and Lucenko which states that every unitary operator U on H decomposes as
the product U = CJ of two conjugations [12]. We use the decomposition T = CJ |T |
to attack Takagi’s antilinear eigenvalue problem in a more general setting.

Glazman pioneered the study of unbounded complex symmetric operators [10, 11]
and proved that a parallel to von Neumann’s theory of selfadjoint extensions of
a symmetric operator exists. Specifically, one says that a closed-graph, densely
defined, unbounded operator T is C-symmetric if T ⊂ CT ∗C and C-selfadjoint
if T = CT ∗C. In concrete applications, C is typically of the form [Cf ](x) =
f(x) or [Cf ](x) = f(−x) on an appropriate L2 space. Since Glazman’s time,
his fundamental ideas have been applied to several classes of differential operators
(see [3, 16, 20]). Moreover, the complex scaling technique, a standard tool in the
theory of Schrödinger operators, naturally leads to the consideration of C-selfadjoint
operators [9].

We show that every unbounded C-selfadjoint operator T with zero in its resolvent
admits a decomposition of the form T = CJ |T |, where |T | is positive and selfadjoint
(in the usual sense) and J is a conjugation strongly commuting with |T |. This
establishes a direct connection between C-selfadjoint and selfadjoint operators and
leads to a new method of estimating the norm of C-selfadjoint operators with
compact resolvent.

If T is an unbounded C-selfadjoint operator which has compact resolvent at
zero, then there exists an orthonormal basis un of H consisting of solutions to
the antilinear eigenvalue problem Tf = σCf (for σ ≥ 0). Moreover, we have the
formula

‖T ‖ = sup{σ ≥ 0 : (∃f ∈ H)((f �= 0) ∧ (Tf = σCf))}.

On the other hand, the linear eigenvalue problem Tf = λf (for λ in C) for the same
operator does not in general produce an orthonormal system of eigenfunctions, nor
a complete system of them (see [13, 15]). Several applications of this approach,
dealing with Schrödinger operators with spectral gaps and the scaled Hamiltonians
appearing in the problem of resonances, can be found in [9].

The present paper consists of three distinct parts. The first section deals with the
abstract structure of complex symmetric operators and briefly explores several basic
examples. In the second section, we discuss Jordan model operators (compressed
shifts) and their rank-one unitary perturbations. The third section is devoted to
applications to unbounded operators.
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2. Structure of complex symmetric operators

We first review a beautiful, yet little-known, result of Godič and Lucenko (The-
orem 1) on the structure of unitary operators before proving a broad generalization
(Theorem 2) of their theorem to the class of all complex symmetric operators. The
remainder of this section is devoted to various examples and applications.

2.1. A theorem of Godič and Lucenko. It is well-known that any planar ro-
tation can be obtained as the product of two reflections. The following theorem of
Godič and Lucenko [12] generalizes this simple geometric notion and provides an
interesting perspective on the structure of unitary operators:

Theorem 1 (Godič-Lucenko). If U is a unitary operator on a Hilbert space H,
then there exist conjugations C and J on H such that U = CJ .

This theorem is remarkable, for it states that all unitary operators (on a fixed
Hilbert space H) can be constructed using essentially the same antilinear operator.
Indeed, any conjugation on H can be represented as entry-by-entry complex conju-
gation with respect to a certain orthonormal basis (i.e. can be represented as the
canonical conjugation on an appropriate l2-space). In this sense, the conjugations
C and J in Theorem 1 are essentially identical objects. Thus the fine structure
of unitary operators arises entirely in how two copies of the same object are put
together. The converse of Theorem 1 is also true:

Lemma 1. If C and J are conjugations on a Hilbert space H, then U = CJ is a
unitary operator. Moreover, U is both C-symmetric and J-symmetric.

Proof. If U = CJ , then (by the isometric property of C and J) it follows that
〈f, U∗g〉 = 〈Uf, g〉 = 〈CJf, g〉 = 〈Cg, Jf〉 = 〈f, JCg〉 for all f, g in H. Thus
U∗ = JC from which CU = U∗C and JU = U∗J both follow. �
Example 1. Let U : C

n −→ C
n be a unitary operator with n (necessarily

unimodular) eigenvalues ξ1, ξ2, . . . , ξn and corresponding orthonormal eigenvectors
e1, e2, . . . , en. If C and J are defined by setting Cek = ξkek and Jek = ek for
k = 1, 2, . . . , n and extending antilinearly to all of Cn, then clearly U = CJ . By
introducing offsetting unimodular parameters in the definitions of C and J , one
sees that the Godič-Lucenko decomposition of U is not unique.

Example 2. If U denotes the unitary operator [Uf ](eiθ) = eiθf(eiθ) on L2(∂D, µ),
then U = CJ where

[Cf ](eiθ) = e
i
2 θf(eiθ), [Jf ](eiθ) = e−

i
2 θf(eiθ)

for all f in L2(∂D, µ). Clearly, the proof of Theorem 1 follows from the spectral
theorem and this simple example.

Example 3. Let H = L2(R, dx) and let

[Ff ](ξ) =
1√
2π

∫
R

e−ixξf(x)dx

denote the Fourier transform of a function f in L2(R). Complex conjugation
[Jf ](x) = f(x) satisfies JF∗ = FJ , whence F is a J-symmetric unitary operator.
Thus C = FJ is another conjugation operator on L2(R). The Fourier transform
is thus the product of two simple conjugations: C is a complex conjugation in the
frequency domain and J is a complex conjugation in the state space domain.
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Example 4. Let H = L2(R, dx) and let

[Hf ](x) = p.v.
1
πi

∫
R

f(y)
y − x

dy

denote the (self-adjoint) Hilbert transform of a function f in L2(R). One can verify
that H is C-symmetric with respect to the conjugation [Cf ](x) = f(−x) on L2(R)
and that the conjugation J is given by

[Jf ](x) = p.v.
−1
πi

∫
R

f(y)
y + x

dy.

Surprisingly, Theorem 1 has a natural generalization to the entire class of com-
plex symmetric operators. We discuss this result below.

2.2. Refined polar decomposition of complex symmetric operators. Recall
that the polar decomposition T = U |T | of an operator T expresses T uniquely as
the product of a positive operator |T | =

√
T ∗T and a partial isometry U that

satisfies kerT = kerU = ker |T | and that maps the initial space (ker |T |)⊥ onto the
final space cl(ranT ), the closure of the range of T .

If T is a C-symmetric operator, then it turns out that the partial isometry U is
also C-symmetric (for the same C). Furthermore, U can be written as the product
U = CJ of the original conjugation C and a partial conjugation J which commutes
with |T |. In the case where T is unitary, this decomposition reduces to the Godič-
Lucenko decomposition for unitary operators.

To be specific, we say that an antilinear operator J is a partial conjugation if J
restricts to a conjugation on (kerJ)⊥ (having values in the same space). In partic-
ular, the linear operator J2 is the orthogonal projection onto the closed subspace
ran J = (kerJ)⊥. Note that a partial conjugation J can always be extended to a
conjugation J̃ on the entire space H by forming the internal direct sum J̃ = J ⊕ J ′

where J ′ is any partial conjugation with support kerJ .

Theorem 2. If T = U |T | is the polar decomposition of a C-symmetric operator T ,
then T = CJ |T | where J is a partial conjugation, supported on cl(ran |T |), which
commutes with |T | =

√
T ∗T . In particular, the partial isometry U is C-symmetric

and factors as U = CJ .

Proof. Write the polar decomposition T = U |T | of T and note that

(1) T = CT ∗C = C|T |U∗C = C(U∗U)|T |U∗C = (CU∗C)(CU |T |U∗C)

since U∗U is the orthogonal projection onto cl(ran |T |). Setting W = CU∗C, it
follows that W ∗ = CUC and hence WW ∗W = W since U∗UU∗ = U∗. Thus W is
a partial isometry. Since A = CU |T |U∗C is clearly positive, if we can show that
ker A = kerW = kerT , then the uniqueness of the factors in the polar decomposi-
tion of T will allow us to conclude that W = U and A = |T |.

Since U and U∗ have cl(ran |T |) as their initial and final spaces, respectively, it
follows that ker W = ker A = kerU∗C. We claim that ker T = ker U∗C. Clearly
ker U∗C ⊆ ker T by (1). Conversely, if Tf = 0, then (1) implies that |T |U∗Cf = 0.
Since the final space of U∗ is cl(ran |T |), we must have U∗Cf = 0 and hence
ker T = ker U∗C. This proves that U = W and |T | = A.

The equality U = CU∗C shows that U is C-symmetric. Writing J = CU = U∗C,
we see that J2 = (U∗C)(CU) = U∗U , the orthogonal projection onto cl(ran |T |).
Since CU |T |U∗C = |T |, it follows that J |T |J = |T | and hence J |T | = |T |J .
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From J = CU , it follows that ker J = kerU = ker |T | = (cl(ran |T |))⊥. Since
J = U∗C, it follows that ranJ = ranU∗ = cl(ran |T |). Finally, J is clearly isometric
on cl(ran |T |) since CU is isometric there. Thus J is a partial conjugation supported
on cl(ran |T |) which commutes with |T |. This concludes the proof. �

Theorem 2 provides a simple scheme for constructing complex symmetric op-
erators. Fix a conjugation C, then select a positive bounded operator A and a
conjugation J commuting with it. Many such J exist, for they can be obtained
from the spectral representation of A as a multiplication operator on a direct sum
of Lebesgue spaces. It is easy to verify that the T = CJA is C-symmetric and
satisfies |T | = A. Finally, we remark that given two conjugations C and C ′, the
map T �→ C ′CT establishes a bijection between the class of C-symmetric and C ′-
symmetric operators.

Using Theorem 2, we can also obtain several strong statements about complex
symmetric operators. For instance, it turns out that the partial isometry in the
polar decomposition of T can always be extended to a unitary operator:

Corollary 1. If T is a C-symmetric operator, then T = W |T | where W is a
C-symmetric unitary operator.

Proof. If cl(ran |T |) = H, then J is a conjugation on all of H and U = CJ is already
a C-symmetric unitary operator. Otherwise, write T = CJ |T | and extend J to a
conjugation J̃ on all of H using the remarks preceding Theorem 2. By Lemma 1,
the operator W = CJ̃ is C-symmetric and unitary. �

Corollary 2. If T is a complex symmetric operator, then T is invertible if and
only if its modulus |T | = (T ∗T )1/2 is invertible.

Proof. This follows immediately from the preceding corollary. �

Corollary 3. If T is a complex symmetric operator, then T ∗T and TT ∗ are uni-
tarily equivalent.

Proof. If T is C-symmetric, then write T = CJ |T | where, without loss of generality,
we assume that J is a conjugation on all of H. Since J commutes with |T |, it also
commutes with |T |2 = T ∗T . Therefore CJ(T ∗T ) = CT ∗TJ = TCTJ = (TT ∗)CJ .
By Lemma 1, CJ is unitary and thus T ∗T and TT ∗ are unitarily equivalent. �

The unitary equivalence of T ∗T and TT ∗ is necessary, but not sufficient to imply
the existence of a conjugation C with respect to which T is C-symmetric. Indeed,
if T is any operator on a finite dimensional Hilbert space, then

√
T ∗T and

√
TT ∗

are unitarily equivalent. Nevertheless, there exist operators on C3 which fail to be
C-symmetric for any choice of a conjugation C (see [8]).

In the infinite-dimensional setting, it is easily seen that the preceding three corol-
laries are not true without the assumption that T is complex symmetric. Indeed,
the unilateral shift provides immediate counterexamples to all three such assertions.
Nevertheless, the unilateral shift forms the basis of the following example:

Example 5. Let S denote the unilateral shift S(a0, a1, . . .) = (0, a0, a1, . . .) on
H = l2(N). Both S and its adjoint S∗(a0, a1, . . .) = (a1, a2, . . .) commute with the
canonical conjugation C(a0, a1, . . .) = (a0, a1, . . .) on H. The operator T = S∗ ⊕ S
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3918 STEPHAN RAMON GARCIA AND MIHAI PUTINAR

on H⊕H is C-symmetric with respect to the conjugation

C =
(

0 C
C 0

)
on H⊕H, and a computation shows that(

S∗ 0
0 S

)
︸ ︷︷ ︸

T

=
(

0 C
C 0

)
︸ ︷︷ ︸

C

(
0 CS

CS∗ 0

)
︸ ︷︷ ︸

J

(
P 0
0 I

)
︸ ︷︷ ︸

|T |

,

where P denotes the orthogonal projection P (a0, a1, a2, . . .) = (0, a1, a2, . . .). In
particular, the partial isometry U = CJ in the polar decomposition of T is simply
T itself. It is easy to check that J is a partial conjugation supported on ran |T |
commuting with |T | = P ⊕ I. In fact,

J
(

a0, a1, . . .
b0, b1, . . .

)
=

(
0, b0, b1, . . .

a1, a2, a3, . . .

)
.

From here it is easy to see how to extend J to a conjugation J̃ on all of H⊕H:

J̃
(

a0, a1, . . .
b0, b1, . . .

)
=

(
a0, b0, b1, . . .
a1, a2, a3, . . .

)
.

Moreover, the operator W = CJ̃ from Corollary 1 is clearly unitary:

W
(

a0, a1, . . .
b0, b1, . . .

)
=

(
a0, b0, b1, . . .
a1, a2, a3, . . .

)
.

The authors thank M. Jury and W. Wogen for suggesting this example.

3. Compact complex symmetric operators

3.1. Singular value decomposition. Using the decomposition T = CJ |T | of
Theorem 2, one can prove many results about compact C-symmetric operators.
For instance, the following theorem shows that they have special singular-value
(or Schmidt) decompositions. Without loss of generality, we consider the case
dimH = ∞.

Theorem 3. Every compact C-symmetric operator T is of the form

(2) T =
∞∑

n=0

σn(Cen ⊗ en)

where the en are certain orthonormal eigenvectors of |T | =
√

T ∗T and the σn are
the nonzero eigenvalues of |T |, repeated according to multiplicity.

Proof. Since T is compact, the mutually orthogonal eigenspaces En of |T | corre-
sponding to the distinct nonzero eigenvalues λn are finite dimensional, say of di-
mension dn. Let 0 ≤ n < N , where N is finite if T is of finite rank, or set N = ∞
otherwise. By Theorem 2, we may write CT = J |T | where J is a partial conjuga-
tion supported on cl(ran |T |) commuting with |T |. In particular, J restricts to a
conjugation on each spectral subspace En of |T | and hence (see [8, Lemma 1] or [1,
p.94]) there exists an orthonormal basis un1, un2, . . . , undn

for En which is fixed by
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J . In other words, we have CTunk = λnunk for k = 1, 2, . . . , dn which shows that
the operator

(3) T −
N−1∑
n=0

λn

dn∑
k=1

(Cunk ⊗ unk)

vanishes on cl(ran |T |) = (ker |T |)⊥. Since kerT = ker |T |, it follows that (3)
vanishes identically. Convergence is guaranteed since the unk are orthonormal and
λn tends to 0. The desired representation (2) follows upon a suitable relabeling of
terms. �

Corollary 4. If T is a compact C-symmetric operator, then

‖T ‖ = sup{σ ≥ 0 : (∃f)((f �= 0) ∧ (Tf = σCf))}.

A famous theorem of Adamyan, Arov, and Krein (AAK) states that if T is a
compact Hankel operator, then its singular values σ0, σ1, . . ., repeated according to
multiplicity, are given by

σn = inf
rank T ′=n
T ′ Hankel

‖T − T ′ ‖.

An analogous theorem holds for the class of C-symmetric operators:

Theorem 4 (C-symmetric AAK). If T is a compact C-symmetric operator with
singular values σ0, σ1, . . ., repeated according to multiplicity, then

σn = inf
rank T ′=n

T ′ C-symmetric

‖T − T ′ ‖.

Proof. Write T = CJ |T | by Theorem 2, and using the method of proof of Theorem
3, write |T | =

∑∞
k=0 σkek ⊗ ek where Jek = ek for all k. Let A0 = 0 and An =∑n−1

k=0 σk(ek ⊗ ek) for n ≥ 1 and note that T ′ = CJAn satisfies

‖T − T ′ ‖ = ‖CJ |T | − CJAn ‖ = ‖CJ(|T | − An) ‖ = ‖ |T | − An ‖ = σn.

The operator T ′ has rank n and (since J commutes with An) is C-symmetric by
the comments following Theorem 2. �

3.2. Complex symmetric integral operators. Among the simplest examples
of compact complex symmetric operators are certain integral operators. If (X, µ)
is a σ-finite measure space (with µ real-valued), then a set function Φ is called
a measure-preserving symmetry of X if µ ◦ Φ = µ and Φ2 = I. With a slight
abuse of notation, each measure-preserving symmetry Φ provides a conjugation on
L2(X, µ) via the formula [Cf ](x) = f(Φ(x)). The proof of the following lemma is
straightforward and omitted.

Lemma 2. A bounded integral operator of the form

[Tf ](x) =
∫

X

K(x, y)f(y) dµ(y)

on L2(X, µ) is C-symmetric with respect to [Cf ](x) = f(Φ(x)) if and only if the
kernel satisfies K(Φx, Φy) = K(y, x) for all x, y ∈ X.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3920 STEPHAN RAMON GARCIA AND MIHAI PUTINAR

The Volterra operator illustrates many of the concepts developed above. More-
over, it demonstrates how the C-symmetry of an integral operator is related to
functional equations satisfied by its kernel and the measure theoretic symmetries of
the underlying measure space. It also illustrates the special singular value decom-
position (Theorem 3) of a compact complex symmetric operator and its relationship
to the double Fourier expansion of the integral kernel. A more traditional analysis
of the Volterra operator can be found in [14, Problem 188].

Example 6. Consider the Volterra integration operator

[Tf ](x) =
∫ x

0

f(t) dt

on L2[0, 1], which is C-symmetric with respect to [Cf ](x) = f(1 − x) (see [8]).
Indeed, Lemma 2 says that we can read this directly from the functional equa-
tion K(x, y) = K(1 − y, 1 − x) satisfied by the integral kernel, the characteristic
function of the triangle {(x, y) : 0 ≤ y ≤ x ≤ 1}.

Since kerT is obviously trivial, by Theorem 2 we may write T = CJ |T | where J
is a conjugation on L2[0, 1] which commutes with |T | and its spectral projections.
Since each spectral subspace of |T | has an orthonormal basis fixed by J , to diago-
nalize |T | we consider the antilinear equation |T |f = σJf , where σ ≥ 0. In light of
the decomposition T = CJ |T |, this is equivalent to Tf = σCf :

(4)
∫ x

0

f(y) dy = σf(1 − x).

The preceding equation yields the boundary condition f(1) = 0. Differentiation of
(4) yields f(x) = −σf ′(1 − x) and hence (after back-substitution)

(5)
∫ x

0

f(y) dy = −σ2f ′(x),

giving the second boundary condition f ′(0) = 0. Differentiation of (5) provides the
second order boundary value problem

f ′′ +
1
σ2

f = 0, f(1) = 0, f ′(0) = 0.

Solving the boundary value problem yields σn = [(n + 1
2 )π]−1 of |T | and the asso-

ciated normalized eigenfunctions
√

2 cos(n + 1
2 )πx (where n ≥ 0). To satisfy (4),

we multiply these eigenfunctions by suitable unimodular constants, obtaining the
unit eigenfunctions en(x) = in

√
2 cos(n + 1

2 )πx of |T |, all of which are fixed by the
J conjugation.

Applying C, we obtain [Cen](x) = (−i)n
√

2 sin(n+ 1
2 )πx and hence (by Theorem

3) the singular value decomposition

(6) T =
∞∑

n=0

2
(n + 1

2 )π
[sin(π(n + 1

2 )x) ⊗ cos(π(n + 1
2 )x)]

of the Volterra operator. From (6), we immediately read the numerical quantities
‖T ‖ = 2/π and trT ∗T = 1/2. Writing (6) explicitly, we find that

[Tf ](x) =
∫ 1

0

[ ∞∑
n=0

2
(n + 1

2 )π
sin(π(n + 1

2 )x) cos(π(n + 1
2 )y)

]
f(y) dy,

the term in brackets being a double Fourier expansion of the Volterra kernel.
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3.3. Poincaré-Neumann problem. The next example is slightly more involved,
dealing with the classical two dimensional version of the double layer potential,
written in complex coordinates.

In the potential theory of a simply connected planar domain Ω with piecewise
smooth boundary, the operator

TΩf(z) =
1
π

∫
Ω

f(w)dA(w)
(w − z)2

,

defined for f in L2(Ω, dA), plays a significant role (see for instance [24]). Here dA
stands for area measure and the integral is taken as a Cauchy principal value. If
[Cf ](z) = f(z) denotes complex conjugation of a function f of L2(Ω) (we henceforth
suppress the dA), then clearly TΩ is a C-symmetric operator.

The case Ω = C is particularly important. Some simple manipulations with
single and double layer potentials carried by ∂Ω (or any closed curve) reveal that
CTC is a conjugation on L2(C) [24]. Returning to our formalism, we infer that
T ∗

C
TC = CTCCTC = I. In other words, TC is a C-symmetric unitary operator. We

may therefore write TC = CJ , where the conjugation

[Jf ](z) =
1
π

∫
C

f(w)dA(w)
(w − z)2

on L2(C) is called by Schiffer the Hilbert transform of f .
In general, TΩ is a compression of TC to the subspace L2(Ω) of L2(C). Indeed,

if PΩ denotes the orthogonal projection from L2(C) onto L2(Ω):

PΩf(z) =

{
f(z), z ∈ Ω,

0, z ∈ C/Ω,

then TΩ = PΩTCPΩ (with a slight abuse of notation). Moreover, the commutativity
of C and PΩ implies that TΩ is a C-symmetric operator.

Let L2
a(Ω) denote the Bergman space of Ω, the subspace of all holomorphic

functions in L2(Ω), and let P denote the orthogonal projection of L2(Ω) onto L2
a(Ω),

otherwise known as the Bergman projection. A short computation shows that P ′ =
CPC is the orthogonal projection onto the subspace CL2

a(Ω) which consists of all
anti -analytic functions in L2(Ω).

It turns out that the operator T = P ′TΩP , which one can regard as an operator
from L2

a(Ω) to CL2
a(Ω), is C-symmetric:

CT = C(P ′TΩP ) = C(CPC)TΩP = PCTΩP = PT ∗
ΩCP = (PT ∗

ΩP ′)C = T ∗C.

Using the C-symmetry of P ′TΩP , we obtain the following Hilbert variant of a series
of observations due to Bergman and Schiffer:

Theorem 5. If Ω is a bounded planar domain with C2 boundary, then there exists
an orthonormal basis (un)∞n=0 of the Bergman space L2

a(Ω) and a sequence (σn)∞n=0

of positive numbers such that:

(7)
1
π

∫
Ω

un(w)dA(w)
(w − z)2

= σnun(z)

for all z in Ω.
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Proof. The operator TΩ is compact (see [2], specifically the analysis of the L-kernel)
and hence so is T = P ′TΩP . Since T is supported on L2

a(Ω), the result follows from
Theorem 3. �

The values σn for which (7) is solvable are known as the Fredholm eigenvalues of
Ω, and the associated eigenfunctions un (canonically attached by (7) to any bounded
planar domain) are remarkable in many respects. For instance they simultaneously
diagonalize the Bergman kernel KΩ and the L-kernel LΩ of the domain:

KΩ(z, w) = − 2
π

∂2G(z, w)
∂z∂w

=
∞∑

n=0

un(z)un(w), z, w ∈ Ω,

and

LΩ(z, w) = − 2
π

∂2G(z, w)
∂z∂w

=
∞∑

n=0

σnun(z)un(w), z, w ∈ Ω,

where G(z, w) is the Green function of Ω (see [2, 24]).

4. Jordan operators and Clark perturbations

As an extended example, we briefly discuss the decompositions T = CJ |T |
(of Theorem 2) for the standard Jordan model operators and consider the Godič-
Lucenko decompositions (Theorem 1) of their rank-one unitary perturbations. Com-
plete details, including all computations, can be found in [7].

4.1. Compressed Toeplitz operators. We work here in the Hardy space H2 of
the unit disk D, and we freely identify functions in H2 with their nontangential
boundary values which exist a.e. on the unit circle ∂D. Most of the following
preliminary material can be found in the general texts [5, 17] or the more specialized
book [18].

Our interest lies in the so-called model spaces H2 � ϕH2, where ϕ denotes a
nonconstant inner function. There is a natural interplay between function theory
and operator theory on the spaces H2 � ϕH2, for they are examples of reproducing
kernel Hilbert spaces. Indeed, it is not hard to derive from the standard properties
of the Szegö kernel eλ(z) = (1 − λz)−1 and the definition of H2 � ϕH2 that the
formula f(λ) = 〈f, Kλ〉 holds for every f in H2 � ϕH2. Here Kλ denotes the
reproducing kernel

(8) Kλ(z) =
1 − ϕ(λ)ϕ(z)

1 − λz

for H2 � ϕH2.
Recall that the Toeplitz operator with symbol u in L∞(∂D) is the operator Tu :

H2 −→ H2 defined by Tuf = P (uf) where P denotes the orthogonal projection
from L2 onto H2. Also recall that the adjoint of a Toeplitz operator is given by
the simple formula T ∗

u = Tu.
A compressed Toeplitz operator is an operator of the form PϕTuPϕ where Tu is a

standard Toeplitz operator and Pϕ denotes the orthogonal projection from H2 onto
H2 � ϕH2. With a slight abuse of notation, we will regard compressed Toeplitz
operators as operators acting on the space H2 � ϕH2, rather than H2 itself. It
turns out that compressed Toeplitz operators are complex symmetric operators
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with respect to the conjugation

(9) [Cf ](z) = fzϕ

on H2 � ϕH2 [7, 8]:

Theorem. If ϕ is a nonconstant inner function and u belongs to L∞(∂D), then
the compressed Toeplitz operator PϕTuPϕ is C-symmetric with respect to the con-
jugation ( 9) on H2 � ϕH2.

Although fzϕ does not at first appear to be the boundary function of an analytic
function, let alone one in H2 � ϕH2, it is not hard to verify. Indeed, it suffices to
check that both 〈Cf, zh〉 and 〈Cf, ϕh〉 vanish whenever f belongs to H2 � ϕH2

and h belongs to H2.

4.2. Refined polar decomposition of compressed shifts. In this section we
obtain the refined polar decomposition for the compressed shift (or Jordan operator)
guaranteed by Theorem 2. In fact, we are able to consider a slight generalization
of the Jordan model operator with little additional effort.

In our computations, we will make frequent use of disk automorphisms and we
adopt the following notation. For each w in D, we let bw denote the function

(10) bw(z) =
z − w

1 − wz
.

We also require the reproducing kernels Kw (8) and their conjugates under (9):

(11) [CKw](z) =
ϕ(z) − ϕ(w)

z − w
.

Furthermore, we frequently refer to the normalized kernel functions kw =Kw/‖Kw ‖.
For each λ in D, we consider the compression

(12) Sλf = Pϕ(bλf)

of the analytic Toeplitz operator Tbλ
to Hϕ. The operators Sλ are simple general-

izations of the compressed shift S0f = Pϕ(zf). We also remark that S∗
λf = Pϕ(bλf)

and that the operators Sλ are C-symmetric with respect to (9).
Our aim in this section is to explicitly describe the factorization Sλ = CJλ|Sλ| of

these operators. We first require several computational lemmas, the first of which
generalizes [4, Lem. 2.1]. Detailed proofs can be found in [7].

Lemma 3. S∗
λf = f/bλ if and only if f is orthogonal to kλ. Sλf = bλf if and only

if f is orthogonal to Ckλ.

To find the modulus |Sλ| of Sλ, we need only describe the positive operator S∗
λSλ.

By Lemma 3, it follows that if f is orthogonal to Ckλ, then S∗
λSλf = S∗

λ(bλf) = f .
Hence |Sλ| restricts to the identity operator on the orthocomplement of the one-
dimensional subspace spanned by the function Ckλ. This tells us, for example, that
|Sλ| maps the function Ckλ onto a nonnegative constant multiple of itself. In fact:

Lemma 4. SλCkλ = −ϕ(λ)kλ and hence |Sλ|Ckλ = |ϕ(λ)|Ckλ.

Summing up, the modulus |Sλ| of Sλ is given by:

(13) |Sλ| = [I − (Ckλ ⊗ Ckλ)] + |ϕ(λ)|(Ckλ ⊗ Ckλ).

In light of (13) and Lemma 3, we assume that ϕ(λ) �= 0 since otherwise the polar
decomposition of Sλ is already evident. Indeed, if ϕ(λ) = 0, then kerSλ equals the
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one-dimensional subspace spanned by Ckλ and the operator Sλ acts isometrically
(multiplication by bλ) on the orthocomplement of this subspace.

By Theorem 2, we may write Sλ = CJλ|Sλ| where Jλ is a partial conjugation
supported on cl(ran |Sλ|) = H2 � ϕH2 which commutes with |Sλ|. In particular,
we see that the assumption that ϕ(λ) �= 0 implies that Jλ is a conjugation on all
of H2 � ϕH2. To find Jλ, we write

(14) Jλ|Sλ| = CSλ

and compute the action of Jλ on the spectral subspaces of |Sλ|.
If f is orthogonal to Ckλ, then |Sλ|f = f by (13) and hence Jλf = CSλf =

C(bλf) by (14) and Lemma 3. Since ϕ(λ) �= 0 we have

|ϕ(λ)|J(Ckλ) = J |Sλ|(Ckλ) = C(SλCkλ) = −ϕ(λ)Ckλ,

the two equalities following from (14) and Lemma 4, respectively. Putting these
calculations together, we have the following explicit formula for Jλ:

(15) Jλf =

{
C(bλf), f ⊥ Ckλ,

αCkλ, f = Ckλ

where α = −ϕ(λ)/|ϕ(λ)|.
We can now compute the partial isometry Uλ = CJλ in the polar decomposition

of Sλ using (15). By our assumption that ϕ(λ) �= 0, Uλ is actually unitary, since C
and Jλ are both conjugations on H2 � ϕH2. Applying C to (15) yields

Uλf =

{
bλf, f ⊥ Ckλ,

αkλ, f = Ckλ,

and hence (using Lemma 3) Uλ is given by the formula

(16) Uλ = Sλ[I − (Ckλ ⊗ Ckλ)] + α(kλ ⊗ Ckλ).

We can see directly that Uλ is C-symmetric, for a short computation shows that
Uλ is a rank-one C-symmetric unitary perturbation of Sλ:

(17) Uλ = Sλ + (α + ϕ(λ))(kλ ⊗ Ckλ).

We summarize our results in the following theorem:

Theorem 6. Let ϕ be a nonconstant inner function and let λ be a point in D

such that ϕ(λ) �= 0. The polar decomposition of the compressed Toeplitz operator
Sλf = Pϕ(bλf) is given by Sλ = Uλ|Sλ| where Uλ is the C-symmetric unitary
operator ( 17) and |Sλ| is given by ( 13). Moreover, Uλ = CJλ where the conjugation
Jλ is given by ( 15).

4.3. Generalized Aleksandrov-Clark operators. The operator Uλ defined by
(17) is not the only rank-one C-symmetric unitary perturbation of Sλ. Indeed, for
any unimodular constant α, the operator

(18) Uλ,α = Sλ + (α + ϕ(λ))(kλ ⊗ Ckλ)

is C-symmetric and unitary, regardless of whether the inner function ϕ vanishes at
λ. This can be seen by expressing Uλ,α in a form analogous to (16) and applying
the lemmas of the preceding section.

We refer to operators of the form (18) as generalized Aleksandrov-Clark operators
due to their similarity to the operators considered by Clark in [4] and later by A. B.
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Aleksandrov and others (see [19] for background). Observe that each Uλ,α has the
Godič-Lucenko decomposition

Uλ,α = CJλ,α

where the conjugation Jλ,α is given by

(19) Jλ,αf =

{
C(bλf), f ⊥ Ckλ,

αCkλ, f = Ckλ,

the parameter α now being allowed to vary over the unit circle. This decomposition
makes it easy to compute the eigenvalues and eigenvectors (if any) of each Uλ,α.

A function f is an eigenvector of Uλ,α corresponding to the (necessarily unimod-
ular) eigenvalue ξ if and only if

(20) Jλ,αf = ξCf.

In light of the explicit formula (19) for Jλ,α, we take the orthogonal decomposition
of f with respect to the one-dimensional subspace spanned by Ckλ. After possibly
multiplying by a constant, we may assume that f is of the form f = g+CKλ where
g is orthogonal to CKλ. Substituting this into (20) we deduce that

Jλ(g + CKλ) = ξ(Cg + Kλ).

By (19), this can be written

C(bλg) + αCKλ = ξCg + ξKλ.

Applying C to the equation and solving for g gives us

g =
ξCKλ − αKλ

bλ − ξ
.

Using the explicit formulas (8) and (11) for Kλ and Ckλ we find (see [7] for the
explicit computations) that f is a constant multiple of the function

(21) fξ(z) :=
1 − b−ϕ(λ)(α)ϕ(z)

1 − b−λ(ξ)z

where bw denotes the generic disk automorphism (10). Conversely, we see that if ξ
is a unimodular constant such that fξ belongs to H2, then fξ is an eigenvector of
Uλ,α corresponding to the eigenvalue ξ. Moreover, the computation above shows
that the eigenspaces of Uλ,α are one-dimensional.

A necessary condition for a function of the form (21) to belong to H2 is that
ϕ have the nontangential limiting value b−ϕ(λ)(α) at the point b−λ(ξ). In other
words, the condition

(22) ϕ

(
ξ + λ

1 + λξ

)
=

α + ϕ(λ)
1 + ϕ(λ)α

is necessary for fξ to be an eigenvector of Uλ,α corresponding to the eigenvalue ξ. In
general, this condition is not sufficient and we must examine the angular derivative
(most easily via the local Dirichlet integral [22]) of ϕ at the point b−λ(ξ). We do
not wish to pursue the function theoretic details here and simply remark that (22)
generalizes [4, Thm. 3.2].
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The following lemma shows that we may select a unit vector, fixed by C, from
each of the (necessarily one-dimensional) eigenspaces of Uλ,α:

Lemma 5. If T is a normal C-symmetric operator, then the eigenspaces of T are
fixed by C.

Proof. By normality, Tf = λf implies that T ∗f = λf . Applying C to the preceding
gives T (Cf) = λ(Cf) and thus the eigenspaces of T are invariant under C. �

In summary, if λ and α are values (in D and on ∂D, respectively) such that the
operator Uλ,α has a pure point spectrum, then we can construct an orthonormal
basis of H2 � ϕH2 consisting of self-conjugate vectors. In particular, the matrix
representation of any C-symmetric operator with respect to such a basis will be
symmetric. Conditions which ensure that Uλ,α has a pure point spectrum can be
obtained by suitably generalizing several theorems in [4].

5. Unbounded complex symmetric operators

Let T : D(T ) −→ H be a closed graph, densely defined linear operator acting on
a complex Hilbert space H and let C be a conjugation on H. Such an operator is
called C-symmetric if T ⊂ CT ∗C or, equivalently, if

(23) 〈CTf, g〉 = 〈CTg, f〉
for all f, g in D(T ). We say that an operator T is C-selfadjoint if T = CT ∗C
(in particular, a bounded C-symmetric operator is C-selfadjoint). Unbounded C-
selfadjoint operators are sometimes called J-selfadjoint, although this should not
be confused with the notion of J-selfadjointness in the theory of Krein spaces.

In contrast to the classical extension theory of von Neumann, it turns out that
a C-symmetric operator always has a C-selfadjoint extension [10, 11] (see also
[6, 20]). Indeed, the maximal antilinear symmetric operators S (in the sense that
〈Sf, g〉 = 〈Sg, f〉 for all f, g in D(S)) produce C-selfadjoint operators CS. Because
of this, we use the term complex symmetric operator freely in both the bounded and
unbounded situations when we are not explicit about the conjugation C. Much of
this theory was developed by Glazman, whose early book [11] remains unsurpassed
for its depth and elegance.

In concrete applications, C is typically derived from complex conjugation on an
appropriate L2 space over a domain in Rn and T is a particular non-selfadjoint
differential operator. For instance, the articles [16, 20] contain a careful analysis
and parametrization of boundary conditions for Sturm-Liouville type operators
with complex potentials which define C-selfadjoint operators. Such operators also
arise in studies related to Dirac-type operators [3]. The complex scaling technique, a
standard tool in the theory of Schrödinger operators, also leads to the consideration
of C-selfadjoint operators [9] and the related class of C-unitary operators [23].

A useful criterion for C-selfadjointness can be deduced from the equality

D(CT ∗C) = D(T ) ⊕ {f ∈ D(T ∗CT ∗C) : T ∗CT ∗Cf + f = 0}
(see [20]). A different criterion goes back to Zhikhar [26]: if the C-symmetric
operator T satisfies H = (T − zI)D(T ) for some complex number z, then T is
C-selfadjoint. The resolvent set of T consists of exactly the points z fulfilling the
latter condition. We denote the inverse to the right by (T − zI)−1 and note that it
is a bounded linear operator defined on all of H.
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5.1. Antilinear eigenfunction expansions. Unlike their selfadjoint counter-
parts, unbounded C-selfadjoint operators do not, in general, possess a spectral reso-
lution and fine functional calculus. Nevertheless, when an unbounded C-selfadjoint
operator has a compact resolvent, a canonically associated antilinear eigenvalue
problem always has a complete set of mutually orthogonal eigenfunctions.

Theorem 7. If T : D −→ H is an unbounded C-selfadjoint operator with compact
resolvent (T − zI)−1 for some complex number z, then there exists an orthonormal
basis u0, u1, . . . of H consisting of solutions of the antilinear eigenvalue problem:

(24) (T − zI)un = σnCun

where σ0, σ1, . . . is an increasing sequence of positive numbers tending to ∞.

Proof. For f, g in D(T ) we have 〈C(T−zI)f, g〉 = 〈C(T−zI)g, f〉. Let S denote the
compact operator (T−zI)−1 and let f = Sx and g = Sy. Since 〈Cx, Sy〉 = 〈Cy, Sx〉
for all x, y, S is a compact C-symmetric operator. By Theorem 3 there exists an
orthonormal basis un of H such that SCun = σ−1

n un for all n, where σ−1
n is a

decreasing sequence of positive numbers tending to zero. Since each un belongs to
ran A = D(T ), we apply T − zI to both sides of the preceding equation and the
desired result follows. �

We note several useful corollaries of the preceding theorem:

Corollary 5. If T : D −→ H is an unbounded C-selfadjoint operator with compact
resolvent at z = 0, then a vector f =

∑∞
n=0 anun in H belongs to D(T ) if and only

if
∑∞

n=0 σ2
n|an|2 < ∞.

Corollary 6. Under the conditions of Theorem 7,

(25) ‖ (T − zI)−1 ‖ =
1
σ0

.

In the spirit of Theorem 7, we have the following C-selfadjointness criterion:

Theorem 8. Let T : D(T ) −→ H be a closed, densely defined, C-symmetric op-
erator. If there exists a complete system of vectors un in D(T ) and an increasing
positive sequence σn tending to infinity satisfying Tun = σnCun for all n, then T
is C-selfadjoint.

Proof. Since T is C-symmetric, σj〈uj , uk〉 = 〈CTuj , uk〉 = 〈CTuk, uj〉 = σk〈uk, uj〉
and hence uj ⊥ uk whenever σj �= σk. In the case of higher multiplicities, say
σn = σn+1 = · · · = σn+p, we may assume that the vectors un, . . . , un+p are mutually
orthogonal. Indeed, if these vectors were not orthogonal, we could simply replace
them with an orthonormal basis for the real vector space generated by un, . . . , un+p.
We can therefore assume that un, and hence Cun, form orthonormal bases of H.

Let f =
∑∞

j=1 ajCuj represent an arbitrary vector in H. For each finite n, the
vector fn =

∑n
j=1 ajσ

−1
j uj belongs to D(T ) by Corollary 5 and satisfies Tfn =∑n

j=1 ajCuj . Since the graph of T is closed, it is not hard to see that T : D(T ) −→
H is surjective. According to the criterion of [26], T is C-selfadjoint. �

5.2. Refined polar decomposition of C-selfadjoint operators. We can gen-
eralize the refined polar decomposition T = CJ |T | of Theorem 2 to the case of
unbounded C-selfadjoint operators, modulo several minor modifications.
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Theorem 9. If T is a C-selfadjoint operator with zero in its resolvent, then
T = CJ |T | where |T | is a positive operator (in the von Neumann sense) satis-
fying D(|T |) = D(T ) and J is a conjugation on H which strongly commutes with
|T |. Conversely, any operator of the form described above is C-selfadjoint.

Proof. If T is a C-selfadjoint operator with zero in its resolvent, then T : D(T ) −→
H is surjective and we let R : H −→ H denote the bounded right inverse (the
resolvent at 0) of T . Since RH = D(T ), we use the fact that TR = I and (23) to
conclude that 〈Cf, Rg〉 = 〈CTRf, Rg〉 = 〈CTRg, Rf〉 = 〈Cg, Rf〉 for all f, g in H.
This implies that 〈R∗Cf, g〉 = 〈CRf, g〉 for all f, g in H and hence R is a bounded
C-symmetric operator. In particular, R∗ is a bounded C-symmetric operator that
is injective and has dense range.

Let R∗ = CJ |R∗| be the decomposition of R∗ guaranteed by Theorem 2, where
without loss of generality we assume J is a conjugation on all of H which commutes
with |R∗|. Taking the adjoint of this equation and substituting it into the equation
TR = I, we see that T |R∗|JC = I and hence T |R∗| = CJ . We read from here that
|R∗|H = D(T ) and hence the unbounded positive operator |R∗|−1 has the same
domain as T . This implies that JCT |R∗| = I, or equivalently, JCT = |R∗|−1 as
unbounded operators. This yields the decomposition T = CJ |T | where the positive
self-adjoint operator |T | is defined to be |R∗|−1. �

Regarding the terminology of Theorem 9, we say that J strongly commutes with
|T | if J commutes with the spectral measure of |T |. Equivalently, we could say
that J commutes with the bounded selfadjoint operator |T |−1. Also observe that
the operator U = CJ in Theorem 9 is a unitary C-symmetric operator.

Although we do not pursue this direction further in the present article, we remark
that Theorem 9 can be used to characterize the C-selfadjoint extensions of an
arbitrary C-symmetric operator.

Example 7. Using the techniques above, we briefly discuss a simple example of a
first order differential operator with a nonselfadjoint two point boundary condition.
More sophisticated examples and applications to quantum systems are explored in
[9]. We thank E. Prodan for suggesting the example below.

Let q(x) be a real valued, continuous, even function on [−1, 1] and let α be a
nonzero complex number satisfying |α| < 1. For a small parameter ε > 0, we define
the operator

(26) [Tαf ](x) = −if ′(x) + εq(x)f(x),

with domain

D(Tα) = {f ∈ L2[−1, 1] : f ′ ∈ L2[−1, 1], f(1) = αf(−1)}.

Clearly Tα is a closed operator and D(Tα) is dense in L2[−1, 1].
If C denotes the conjugation [Cu](x) = u(−x) on L2[−1, 1], then it follows that

that nonselfadjoint operator Tα satisfies Tα = CT1/αC. A short computation shows
that T ∗

α = T1/α and hence Tα is a C-selfadjoint operator.
In the case ε = 0, we have Tαf = −if ′ and we can explicitly compute the

resolvent Rα of Tα at z = 0:

[R−1
α f ](x) = i

∫ x

−1

f(t) dt +
i

α − 1

∫ 1

−1

f(t) dt,
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for f in L2[−1, 1]. In particular, D(Tα) = R−1
α L2[−1, 1] and TαRα = I. According

to Theorem 7, the antilinear problem

(27) −if ′(x) = σf(−x), f ∈ D(Tα),

admits nontrivial solutions for certain positive σn tending to ∞. Moreover, the solu-
tions u0, u1, . . . can be chosen to form a complete orthonormal system in L2[−1, 1].

Taking another derivative in (27) and using back-substitution (see also Example
6), we find that the un are solutions to f ′′ + σ2

nf = 0, and thus

un(x) = aneiσnx + bne−iσnx

for certain constants an and bn. The boundary condition un(1) = αun(−1) shows
that anbn �= 0 for all n.

Returning to the original first order antilinear equation (27), we see that

σnaneiσnx − σnbne−iσnx = σnaneiσnx + σnbne−iσnx,

whence an = an and bn = −bn. Multiplying un by a suitable real constant, we
obtain the (nonnormalized) eigenfunctions

Un(x) = eiσnx + iγne−iσnx,

where γn belongs to R \ {0}. Moreover, the boundary condition Un(1) = αUn(−1)
yields the equation

eiσn + iγne−iσn = α[e−iσn + iγneiσn ],

which implies that

e2iσn =
α − iγn

1 − iγnα
.

The image of the real line under the linear fractional transformation

G(z) =
α − iz

1 − izα

is either a circle or a line which intersects the unit circle at exactly two points since
|G(0)| = |α| < 1 and |G(∞)| = |1/α| > 1. In fact, the solutions γ0 and γ1 to
|G(z)| = 1 can be given in closed form:

2 Imα ±
√

1 − 2 Reα2 + |α|2
1 − |α|2 .

We may assume, after a possible relabeling, that the principal arguments σ0 and
σ1 satisfying e2iσ0 = G(γ0) and e2iσ1 = G(γ1) satisfy 0 < σ0 < σ1 < π.

Retracing our steps, we have:

σ2n = σ0 + nπ,

σ2n+1 = σ1 + nπ

for n ≥ 0. The associated (nonnormalized) eigenfunctions are:

U2n(x) = ei(σ0+nπ)x + iγ0e
−i(σ0+nπ)x,

U2n+1(x) = ei(σ1+nπ)x + iγ1e
−i(σ1+nπ)x.

Using Corollary 6, we obtain the norm of the resolvent at z = 0:

‖Rα ‖ =
1
σ0

.
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A familiar argument in perturbation theory shows that for ε‖ q ‖∞ < ‖Rα ‖ the
original operator (26) still has z = 0 in its resolvent, and that a similar antilinear
spectral picture holds. For instance, an estimate of ‖T−1

α ‖ is easily within reach.
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