Extensions of $p$-local finite groups
HTML articles powered by AMS MathViewer
- by C. Broto, N. Castellana, J. Grodal, R. Levi and B. Oliver PDF
- Trans. Amer. Math. Soc. 359 (2007), 3791-3858 Request permission
Abstract:
A $p$-local finite group consists of a finite $p$-group $S$, together with a pair of categories which encode “conjugacy” relations among subgroups of $S$, and which are modelled on the fusion in a Sylow $p$-subgroup of a finite group. It contains enough information to define a classifying space which has many of the same properties as $p$-completed classifying spaces of finite groups. In this paper, we study and classify extensions of $p$-local finite groups, and also compute the fundamental group of the classifying space of a $p$-local finite group.References
- Alejandro Adem and R. James Milgram, Cohomology of finite groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, Springer-Verlag, Berlin, 1994. MR 1317096, DOI 10.1007/978-3-662-06282-1
- J. L. Alperin, Sylow intersections and fusion, J. Algebra 6 (1967), 222–241. MR 215913, DOI 10.1016/0021-8693(67)90005-1
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- Carles Broto, Natàlia Castellana, Jesper Grodal, Ran Levi, and Bob Oliver, Subgroup families controlling $p$-local finite groups, Proc. London Math. Soc. (3) 91 (2005), no. 2, 325–354. MR 2167090, DOI 10.1112/S0024611505015327
- Carles Broto, Ran Levi, and Bob Oliver, Homotopy equivalences of $p$-completed classifying spaces of finite groups, Invent. Math. 151 (2003), no. 3, 611–664. MR 1961340, DOI 10.1007/s00222-002-0264-5
- Carles Broto, Ran Levi, and Bob Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), no. 4, 779–856. MR 1992826, DOI 10.1090/S0894-0347-03-00434-X
- W. G. Dwyer, D. M. Kan, and J. H. Smith, Towers of fibrations and homotopical wreath products, J. Pure Appl. Algebra 56 (1989), no. 1, 9–28. MR 974710, DOI 10.1016/0022-4049(89)90119-9
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125
- George Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403–420. MR 202822, DOI 10.1016/0021-8693(66)90030-5
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR 1711612, DOI 10.1007/978-3-0348-8707-6
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- Georges Hoff, Cohomologies et extensions de categories, Math. Scand. 74 (1994), no. 2, 191–207 (French). MR 1298361, DOI 10.7146/math.scand.a-12489
- S. Jackowski, J. McClure, & B. Oliver, Homotopy classification of self-maps of $BG$ via $G$-actions, Annals of Math. 135 (1992), 184–270
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- Bob Oliver, Equivalences of classifying spaces completed at odd primes, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 2, 321–347. MR 2092063, DOI 10.1017/S0305004104007728
- Bob Oliver, Equivalences of classifying spaces completed at the prime two, Mem. Amer. Math. Soc. 180 (2006), no. 848, vi+102. MR 2203209, DOI 10.1090/memo/0848
- Ll. Puig, Unpublished notes (ca. 1990)
- Lluis Puig, The hyperfocal subalgebra of a block, Invent. Math. 141 (2000), no. 2, 365–397. MR 1775217, DOI 10.1007/s002220000072
- L. Puig, Full Frobenius systems and their localizing categories, preprint (2001)
- R. Stancu, Equivalent definitions of fusion systems, preprint
- Michio Suzuki, Group theory. II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 248, Springer-Verlag, New York, 1986. Translated from the Japanese. MR 815926, DOI 10.1007/978-3-642-86885-6
Additional Information
- C. Broto
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, E–08193 Bellaterra, Spain
- MR Author ID: 42005
- Email: broto@mat.uab.es
- N. Castellana
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, E–08193 Bellaterra, Spain
- Email: natalia@mat.uab.es
- J. Grodal
- Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- Address at time of publication: Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
- Email: jg@math.uchicago.edu, jg@math.ku.dk
- R. Levi
- Affiliation: Department of Mathematical Sciences, University of Aberdeen, Meston Building 339, Aberdeen AB24 3UE, United Kingdom
- Email: ran@maths.abdn.ac.uk
- B. Oliver
- Affiliation: LAGA, Institut Galilée, Av. J-B Clément, 93430 Villetaneuse, France
- MR Author ID: 191965
- Email: bob@math.univ-paris13.fr
- Received by editor(s): July 11, 2005
- Published electronically: March 20, 2007
- Additional Notes: The first author was partially supported by MCYT grant BFM2001–2035
The second author was partially supported by MCYT grant BFM2001–2035
The third author was partially supported by NSF grants DMS-0104318 and DMS-0354633
The fourth author was partially supported by EPSRC grant GR/M7831.
The fifth author was partially supported by UMR 7539 of the CNRS - © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 3791-3858
- MSC (2000): Primary 55R35; Secondary 55R40, 20D20
- DOI: https://doi.org/10.1090/S0002-9947-07-04225-0
- MathSciNet review: 2302515