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ON THE STRUCTURE
OF NON-COMMUTATIVE WHITE NOISES

CLAUS KÖSTLER AND ROLAND SPEICHER

Abstract. We consider the concepts of continuous Bernoulli systems and
non-commutative white noises. We address the question of isomorphism of
continuous Bernoulli systems and show that for large classes of quantum Levy
processes one can make quite precise statements about the time behaviour of
their moments.

1. Introduction

In recent years it has become evident that looking on non-commutative alge-
bras (in particular, operator algebras) from a stochastic point of view can be quite
fruitful. So the impressive progress on our understanding of the free group von Neu-
mann algebras relies on Voiculescu’s free probability approach [Voi, VDN] and the
work of Pisier and Xu on non-commutative martingales has opened a new direction
of research [PX1]. In particular, it seems that non-commutative versions of classi-
cal stochastic processes yield interesting examples of non-trivial operator-algebraic
structures. At the moment we are only at the beginning of an understanding of
the richness of the world of non-commutative processes; the present paper is a
contribution to a systematic theory of such non-commutative processes.

Lévy processes, i.e. processes with stationary and independent processes, or
‘white noises’ as models for their ‘derivatives’, form one of the most important
classes of classical stochastic processes, and the understanding of their structure
was instrumental for many developments in classical probability theory. It is to
be expected that the understanding of non-commutative versions of Lévy processes
will be an important step towards a deeper theory of non-commutative stochastic
processes.

An axiomatic frame for the treatment of non-commutative white noises was
started by Kümmerer [Küm1, Küm2] and is further elaborated by one of us [Kös1,
Kös2, HKK]. Here we will address some of the canonical basic questions of this
theory: namely how we can distinguish between different non-commuative white
noises; and what can be said about the time behaviour of their moments. Even
though a general answer to these problems for the class of all non-commutative Lévy
processes seems to be out of reach (and might not even exist in this generality; see
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4326 C. KÖSTLER AND R. SPEICHER

Section 4.11), we are able to provide answers to these questions for some quite large
classes of non-commutative white noises.

We also want to point out that an Itô integration theory for non-commutative
Lévy processes was established in [HKK]. However, our results here will not rely
on this integration theory.

2. Basic definitions

We want to generalize the notion of a classical process with stationary and in-
dependent increments to a non-commutative setting. In the classical setting, it is
not only the process itself which is of importance, but sometimes one is more inter-
ested in the structure of the associated filtration of σ-algebras of the increments.
In the same way, we find it advantageous in the non-commutative case to distin-
guish between the filtration generated by the process, and the process itself. In
the non-commutative setting, the filtration is given by the von Neumann algebras
generated by (or, in the case of unbounded operators, affiliated to) the increments
of the processes – we will address this data as a continuous Bernoulli system. We
will restrict here to the finite case, i.e. where the underlying state ϕ is a trace.
More general definitions are possible (and desirable for a general theory), however,
here we want to consider only the simplest non-trivial case.

Notation 2.1. By I we denote the set of all intervals I ⊂ R of the form I = [s, t)
for −∞ < s < t < ∞. For I = [s, t) ∈ I and u ∈ R we denote by I + u the interval

I + u := [s + u, t + u).

Definition 2.2. A (non-commutative) continuous Bernoulli system (A, ϕ, (AI)I∈I)
consists of

(i) a non-commutative probability space (A, ϕ), where A is a von Neumann
algebra with separable predual and ϕ is a faithful and normal trace ϕ on
A;

(ii) a filtration (AI)I∈I , where AI are von Neumann subalgebras of A such
that the following properties are satisfied:
(a) global minimality :

A =
∨

{AI | I ∈ I};

(b) isotony :
AI ⊂ AJ whenever I ⊂ J ;

(c) C-independence: for all I, J ∈ I with I ∩ J = ∅ we have that

ϕ(ab) = ϕ(a)ϕ(b)

for all a ∈ AI and all b ∈ AJ .

Remarks 2.3. 1) Notice that we can also phrase the C-independence in the following
form: for all s < t < u,

A[s,t) ⊂ A[s,u)

∪ ∪
C ⊂ A[t,u)

is a (not necessarily non-degenerate) commuting square [Pop]. If the von Neumann
algebra A is commutative, C-independence is equivalent to the usual notion of
stochastic independence in probability theory.
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2) In our tracial frame, C-independence is clearly equivalent to pyramidal inde-
pendence: for all I, J ∈ I with I ∩ J = ∅ we have that

ϕ(a1ba2) = ϕ(a1a2)ϕ(b) for all a1, a2 ∈ AI and all b ∈ AJ .

In a more general, non-tracial frame, one needs the existence of conditional expec-
tations to ensure pyramidal independence.

3) Time-homogenity of our processes on the level of continuous Bernoulli systems
can be encoded via the requirement of the existence of a shift which is compati-
ble with the filtration – in this case we call such a system a non-commutative
continuous Bernoulli shift. These shifts are introduced in [HKK] and provide a
non-commutative extension of Tsirelson’s noises or homogeneous continuous prod-
uct systems of probability spaces [Tsi]. Similarly, continuous Bernoulli systems are
a non-commutative extension of continuous products of probability spaces.

The definition of the notion ‘continuous Bernoulli system’ puts the whole em-
phasis on the von Neumann algebras without specifying an underlying process with
independent increments. In our setting the information about the increments of
the process will be encoded in the notion of an additive flow. As the example of
classical Brownian motion shows, the increments do not need to consist of bounded
operators, thus these flows need not be elements of the von Neumann algebras. In
general, they will be given by closed densely defined affiliated operators. In the
following we will restrict ourselves to the case where these flows are elements of
non-commutative Lp-spaces, such that all moments of the flow exist.

Notation 2.4. Let A be a von Neumann algebra and ϕ a faithful normal trace. For
1 ≤ p < ∞, the non-commutative Lp-spaces Lp(A) are defined as the completion
of A in the norm

‖x‖p :=
(
ϕ(|x|p)

)1/p (x ∈ A),

where |x| = (x∗x)1/2. L∞(A) is just A with the usual operator norm. Furthermore,
we put

L∞−(A) :=
⋂

1≤p<∞
Lp(A).

Notice that ϕ extends from A to L1(A) and that this extension will be denoted by
the same symbol ϕ. For further details on non-commutative Lp-spaces we refer to
[PX2] and the literature cited therein.

Definition 2.5. Let (A, ϕ, (AI)I∈I) be a continuous Bernoulli system. An additive
flow (more precisely, additive L∞−-flow) is a family B = (BI)I∈I ⊂ L∞−(A) such
that we have

(i) continuity : the map

(s, t) 	→ B[s,t) ∈ Lp(A)

is, for all 1 ≤ p < ∞, jointly continuous in s and t;
(ii) adaptedness : BI ∈ L∞−(AI) for all I ∈ I;
(iii) additivity : B[s,u) = B[s,t) + B[t,u) for all s < t < u.

If ϕ(BI) = 0 for all I ∈ I, then we call the flow centred. If BI ⊂ C1 for all I ∈ I,
then the flow is trivial. A normalized flow is centred and satisfies ϕ(B∗

[0,1)B[0,1)) = 1.
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4328 C. KÖSTLER AND R. SPEICHER

A flow (BI)I∈I is stationary if we have the invariance of all its moments in the
following sense: for all n ∈ N and all I1, . . . , In ∈ I we have that ϕ(BI1+t . . . BIn+t)
does not depend on t ∈ R.

For a given stationary flow (BI)I∈I we put

Bt := B[0,t) (t > 0), B0 := 0

and call (Bt)t≥0 the corresponding quantum Lévy process.

Remarks 2.6. 1) Notice that we can always turn an additive flow BI into a centred
additive flow by considering BI − ϕ(BI).

2) From stationarity and continuity it follows that we have for a stationary
centered flow that (see also Lemma 4.1)

ϕ(B2
t ) = ϕ(B2

1) · t.

In the same way, by also invoking the independence of increments, we get that for
any two stationary centered flows (BI)I∈I and (B̃I)I∈I we have

ϕ(B[0,t)B̃[0,t)) = ϕ(B[0,1)B̃[0,1)) · t.

In particular, for a normalized stationary flow we have

ϕ(B[0,t)B
∗
[0,t)) = t.

3) Note that we can recover our stationary flow from the quantum Lévy process
via

B[s,t) = Bt − Bs.

This gives BI only for I ⊂ R+, however, in the stationary case this contains all
essential information. Thus, stationary flows and quantum Lévy processes are just
two sides of the same object.

In most concrete cases, continuous Bernoulli systems are given as von Neumann
algebras generated by specified quantum Lévy processes. However, there exist ex-
amples of continuous Bernoulli systems without any non-trivial quantum Lévy pro-
cess (see also [HKK, Theorems 4.4.3 and 6.5.8]). In analogy with the classification
of product systems of Hilbert spaces such examples might be addressed as non-type
I. We are here mainly interested in type I, i.e. those having stationary flows which
generate the von Neumann algebras. From a probabilistic point of view it seems to
be appropriate to call such type I continuous Bernoulli systems non-commutative
white noises (see also [HKK, Subsection 6.5] for the time-homogeneous setting).
The question of continuous Bernoulli systems without non-trivial flows and the re-
lation of the present frame with the work of Arveson [Arv] and Tsirelson [Tsi] on
product systems will be discussed elsewhere [Kös3].

3. Isomorphism of continuous Bernoulli systems

A first canonical problem is to classify continuous Bernoulli systems modulo a
notion of isomorphism which respects the filtration.

Definition 3.1. We say that two continuous Bernoulli systems (A, ϕ, (A)I∈I) and
(B, ψ, (B)I∈I) are isomorphic, if there exists an isomorphism π : A → B which
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respects the filtration, i.e.

π(AI) = BI for all I ∈ I,

and such that

ϕ = ψ ◦ π.

We will call such a π filtration preserving.

Note that the latter condition on the traces is automatically fulfilled if the von
Neumann algebras A and B are factors.

This isomorphism problem asks for a classification of subfactors of von Neumann
algebras in the extreme case where we have a continuous family of subalgebras (of
necessarily infinite index).

Since a filtration preserving isomorphism extends to isometries between the cor-
responding Lp-spaces (1 ≤ p < ∞), normalized stationary flows are mapped to
normalized stationary flows. Thus it is clear that the set of all distributions of such
flows yields an invariant for filtration preserving isomorphisms. In particular, if
we have only one such distribution, then this can be used to distinguish different
continuous Bernoulli systems.

The uniqueness of such a distribution is, for example, given in the case of classical
Brownian motion. One way to see this is to invoke the chaos decomposition property
of the L2-space of classical Brownian motion. This says that every element in the
L2-space can be represented (in a unique way) as a sum of multiple Wiener integrals
with respect to Brownian motion. This means in particular that every flow can be
represented in terms of multiple integrals, and by using the stationarity and the
independence of the increments this readily implies that such a stationary flow has
to have Gaussian distributions.

We want to imitate that argument in the non-commutative case. The chaos
decomposition of the L2-space into multiple Wiener integrals equips the L2-space
with a Fock space structure

⊕
L2(Rn), and the main argument then consists of the

simple observation that non-trivial flows exist in L2(Rn) only for n = 1.
As it turns out, in general we do not have such a chaos decomposition of the

L2-space of a given continuous Bernoulli system. Even if we restrict to non-
commutative versions of Brownian motions this chaos decomposition is not present
in general. However, for a quite big class of continuous Bernoulli systems we have
a more general kind of chaos decomposition for the corresponding L2-space, resem-
bling a Fock space decomposition, but carrying some additional information.

The class of continuous Bernoulli systems for which such a more general kind
of chaos decomposition is available are the so-called generalized Brownian motions,
which were introduced in [BSp2]. They are characterized by the requirement that
all mixed moments in such a Brownian motion can be calculated by a kind of
Wick formula in terms of a given function t on pair partitions. In [GM2], Guta
and Maassen have shown that this class of generalized Brownian motions coincides
with the class of operators arising in their construction [GM1] of symmetric Hilbert
spaces in terms of the combinatorial concept of species. In particular, they pro-
vide a concrete realization of the L2-space of the generalized Brownian motions.
Namely, they are of a Fock space like form FV (H), carrying, however, in general
some additional information, which is encoded in a sequence V = (Vn)∞n=0 of (not
necessarily finite dimensional) Hilbert spaces such that each Vn carries a unitary

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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representation Un of the symmetric group S(n). Then

FV (H) :=
∞⊕

n=0

1
n!

Vn ⊗s H⊗n,

i.e. FV (H) is spanned by linear combinations of vectors of the form

v ⊗s h1 ⊗ · · · ⊗ hn :=
1
n!

∑
π∈S(n)

Un(π)v ⊗ Ũn(π)h1 ⊗ · · · ⊗ hn,

where Ũn is the canonical action of S(n) on the n-fold tensor product of H.
The concrete structure of the space FV depends of course on the scalar product

in the spaces Vn, which is determined by the underlying function t. Of course, this
Fock space structure is compatible with the filtration I 	→ L2(I), i.e. under the
identification of L2(A) with FV (L2(R)), the subspace L2(AI) is, for each I ∈ I,
mapped onto FV (L2(I)).

It is this form of decomposition for the L2-space which gives restrictions for a
flow. Although some of the following arguments might be extended to more general
situations, we will, for sake of clarity, restrict ourselves to the (quite big!) class of
generalized Brownian motions. In the following we will denote by L2

loc the set
of locally L2-functions, i.e. those measurable functions whose restriction to any
compact interval is L2.

Theorem 3.2. Let (A, ϕ, (AI)I∈I) be a continuous Bernoulli system, generated
by a generalized Brownian motion, with generalized chaos decomposition L2(A) =
FV (L2(R)) for V = (V0, V1, . . . ). Then the set of centered flows for (A, ϕ, (AI)I∈I)
can be identified with the one-particle space V1 ⊗s L2

loc(R) ∼= L2
loc(R, V1), via

L2
loc(R, V1) � ξ 	→ (BI(ξ))I∈I,

where
BI(ξ) := ξ · χI .

Proof. It is clear that any (BI(ξ))I∈I is a centered flow. (Note that all moments
of these operators exist by the construction of generalized Brownian motions and
that they are continuous in the endpoints of the intervals I.)

For the other direction, consider a centered flow (BI)I∈I . Since, by definition,
all its moments exist, we must have that BI ∈ FV (L2(I)). We decompose BI

according to the direct sum decomposition of our L2-space as

BI =
∞⊕

n=0

B
(n)
I with B

(n)
I ∈ 1

n!
Vn ⊗s L2(I)⊗n ⊂ Vn ⊗ L2(In).

Note that each (B(n)
I )I∈I is a flow, too. Fix I ∈ I and decompose it, for each

N ∈ N, into the disjoint union of intervals IN,1, . . . , IN,N of the same length. Then,
for each n ∈ N, we have

B
(n)
I = B

(n)
IN,1

+ · · · + B
(n)
IN,N

⊂ Vn ⊗
(
L2(In

N,1) ∪ · · · ∪ L2(In
N,N )

)
.

If we send N → ∞, then B
(n)
I must live on the one-dimensional diagonal in Vn ⊗

L2(Rn), which is only possible for n = 0 and n = 1. Centeredness of our flow
excludes n = 0, and thus we remain only with the possibility that BI ∈ L2(I, V1).
Additivity of the increments then yields that BI = ξ·χI for some locally L2-function
ξ. �
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In many interesting cases, the space V1 is one-dimensional. In such a situation
a corresponding centered flow must be of the form

BI = v ⊗ f · χI ,

where v is a fixed unit vector in V1 and f ∈ L2
loc(I). If we now restrict ourselves to

selfadjoint stationary normalized flows, then we must have ϕ(B[0,t)B[0,t)) = t and
thus (note that, because of selfadjointness, f is real-valued)

t = ϕ(B[0,t)B[0,t)) = 〈v ⊗ f · χ[0,t), v ⊗ f · χ[0,t)〉 =
∫ t

0

|f(t)|2dt,

i.e. f must be a function with (almost surely) constant modulus 1.

Theorem 3.3. If the space V1 in Theorem 3.2 is one-dimensional, then every
selfadjoint stationary normalized flow (BI)I∈I has the same distribution for B[0,1).
Thus, within the class of generalized Brownian motions with one-dimensional space
V1, the distribution for I = [0, 1) of the generating flow (v⊗χI)I∈I is an invariant of
the corresponding continuous Bernoulli systems with respect to filtration preserving
isomorphisms.

Note that the distribution of v ⊗ χI for arbitrary I is just a dilation of the
distribution for I = [0, 1), thus does not contain any additional information.

Proof. A filtration preserving isomorphism between two continuous Bernoulli sys-
tems maps a selfadjoint stationary normalized flow to an object of the same kind.
For a generalized Brownian motion, the generating flow (v ⊗ χI)I∈I is always self-
adjoint, stationary and normalized. On the other side, as we have seen above, every
selfadjoint stationary normalized flow must be of the form v ⊗ fχI , where f is a
function of constant modulus 1. However, in the calculation of moments for such
operators, only the inner product between the involved functions will play a role,
which means that the moments of (v⊗χI)I∈I are the same as those of (v⊗fχI)I∈I .
Thus the moments of the generating flows of two generalized Brownian motions
must be mapped onto each other by a filtration preserving isomorphism. �

Corollary 3.4. 1) The q-Brownian motions (with −1 ≤ q ≤ 1) of [BSp1, BKS]
lead for different q to non-isomorphic continuous Bernoulli systems.

2) The generalized Brownian motions with weight function tq of [BSp2] lead for
different q to non-isomorphic continuous Bernoulli systems.

Proof. Both cases fit into the frame of generalized Brownian motions, and it is
easy to see that their space V1 is one-dimensional. Thus the distribution of the
underlying Brownian motions distinguishes these objects with respect to filtration
preserving isomorphisms. It is easy to see that all distributions are different. �

4. Moments of quantum Lévy processes

Important information about stationary flows (BI)I∈I is contained in moments
of the corresponding quantum Lévy processes.

Lemma 4.1. Let B = (BI)I∈I be a stationary flow and (Bt)t≥0 the corresponding
quantum Lévy process. Then there exist constants α, β, and γ such that we have
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for all t > 0

ϕ(Bt) = αt,

ϕ(B2
t ) = α2t2 + βt,

ϕ(B3
t ) = α3t3 + 3αβt2 + γt.

Proof. For all s, t ≥ 0, we have

Bs+t = B[0,s) + B[s,s+t),

and thus
ϕ(Bs+t) = ϕ(Bs) + ϕ(Bt),

which gives, by continuity, the equation for the first moment, with α = ϕ(B1).
For the second moment we get

B2
s+t = B2

[0,s) + B[0,s) · B[s,s+t) + B[s,s+t) · B[0,s) + B2
[s,s+t).

Pyramidal independence gives

ϕ(B2
s+t) = ϕ(B2

s) + ϕ(B2
t ) + 2ϕ(Bs)ϕ(Bt),

which implies the equation for the second moment.
Similarly, one shows the result for the third moment. �

Note that pyramidal independence does not allow us to calculate all mixed mo-
ments of fourth and higher order: e.g., we cannot make a general statement about
ϕ(B[0,s)B[s,s+t)B[0,s)B[s,s+t)). Thus, in this generality, similar statements as in
Lemma 4.1 are not accessible for higher moments. Nevertheless, explicit polyno-
mial bounds for the growth of higher moments are established in [Kös1, Kös4, Kös2],
as an application of Burkholder-Gundy resp. Burkholder/Rosenthal inequalities for
non-commutative Lp-martingales [PX1, JX].

However, if we require some more special structure, then we can say much more
about the behaviour of higher moments. In this section we want to consider the
case where we have an order invariance of the moments of the increments, in the
sense that such moments do not change if we shift the increments against each
other, as long as we do not change the relative position of the intervals. Let us first
consider a discrete version of this before we treat the continuous case.

4.2. Limit theorem for order invariant distributions. Consider random vari-
ables b

(N)
i (i, N ∈ N, i ≤ N) living in some non-commutative probability space

(A, ϕ).
For an n-tuple

i : {1, . . . , n} → {1, . . . , N}
we put

b
(N)
i = b

(N)
i(1) · · · b

(N)
i(n).

For an i as above, we denote by |i| the number of elements in the range of i.

Definition 4.3. 1) Let i, j : {1, . . . , n} → N be two n-tuples of indices. We say
that they are order equivalent, denoted by i ∼ j, if

i(k) ≤ i(l) ⇐⇒ j(k) ≤ j(l) for all k, l = 1, . . . , n.
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We denote by O(n) the set of equivalence classes for maps i : {1, . . . , n} → N under
this order equivalence. Note that for each n this is a finite set.

2) We say that the distribution of the variables b
(N)
i is order invariant if we have

for all n, N ∈ N and all i, j : {1, . . . , n} → {1, . . . , N} with i ∼ j that

ϕ(b(N)
i ) = ϕ(b(N)

j ).

In this case we denote, for σ ∈ O(n), by ϕ(b(N)
σ ) the common value of ϕ(b(N)

i ) for
i ∈ σ.

Given such order invariant random variables, one can make quite precise state-
ments about the moments of the sums b

(N)
1 + · · · + b

(N)
N in the limit N → ∞. The

proof of this limit theorem follows the usual arguments, see, e.g., [SpW], and we
will omit the proof.

Theorem 4.4. Consider random variables b
(N)
i ∈ (A, ϕ) (i, N ∈ N, i ≤ N), whose

distribution is order invariant. Assume that for all n ∈ N and all σ ∈ O(n) the
following limit exists:

c(σ) := lim
N→∞

N |σ|ϕ(b(N)
σ ).

Define

SN := b
(N)
1 + · · · + b

(N)
N .

Then we have for all n ∈ N

lim
N→∞

ϕ(Sn
N ) =

∑
σ∈O(n)

ασc(σ),

where the ασ are the constants,

ασ = lim
N→∞

#{i : {1, . . . , n} → {1, . . . , N} | i ∈ σ}
N |σ| =

1
|σ|! .

4.5. Moments of order invariant quantum Lévy processes. In the following,
we will use, for two intervals I, J ∈ I, the notation I < J to indicate that we have
s < t for all s ∈ I and t ∈ J .

Definition 4.6. Let (BI)I∈I be a flow. We say that the flow (or its corresponding
quantum Lévy process) is order invariant if we have for all I1, . . . , In ∈ I with
Ik ∩ Il = ∅ (k, l = 1, . . . , n) that

ϕ(BI1 · · ·BIn
) = ϕ(BI1+t1 · · ·BIn+tn

)

for all t1, . . . , tn with the property that, for all k, l = 1, . . . , n, Ik < Il implies
Ik + tk < Il + tl.

Remark 4.7. Note that an order invariant flow is in particular stationary.

Now consider such an order invariant flow (BI)I∈I . Put

b
(N)
i := B[ i−1

N , i
N ).

Then we have
SN = b

(N)
1 + · · · + b

(N)
N = B1
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for all N ∈ N and, since the distribution of the b
(N)
i is order invariant, our limit

theorem, Theorem 4.4, yields that

ϕ(Bn
1 ) =

∑
σ∈O(n)

ασc(σ),

if all
c(σ) := lim

N→∞
N |σ|ϕ(b(N)

σ )

exist.

Proposition 4.8. Let (BI)I∈I be an order invariant flow. Then, for all n ∈ N

and σ ∈ O(n), the limit
c(σ) := lim

N→∞
N |σ|ϕ(b(N)

σ )

exists.

Proof. We will prove this, for fixed n, by induction over the length of σ, starting
with maximal length of σ.

Namely, fix n and consider first a σ with |σ| = n. This means that i =
(i(1), . . . , i(n)) ∈ σ is a tuple of n different numbers. By using the stochastic
independence we get

N |σ|ϕ(b(N)
σ ) = Nnϕ(b(N)

i(1) · · · b
(N)
i(n))

= Nnϕ(b(N)
i(1)) · · ·ϕ(b(N)

i(n))

= Nnϕ(b(N)
1 )n

=
(
Nϕ(B[0, 1

N ))
)n

= ϕ(B1)n,

and hence the limit

c(σ) := lim
N→∞

N |σ|ϕ(b(N)
σ ) = ϕ(B1)n

exists.
Now consider an arbitrary σ ∈ O(n) and assume that we have proved the ex-

istence of the limits c(σ′) for all σ′ ∈ O(n) with |σ′| > |σ|. Choose an n-tuple
i = (i(1), . . . , i(n)) ∈ σ and consider

ϕ(B[i(1),i(1)+1) · · ·B[i(n),i(n)+1)).

Again, we decompose the intervals of length 1 into N subintervals of length 1/N ,
so that we can write this also as

ϕ
(
(

N∑
k(1)=1

B
[i(1)+ k(1)−1

N ,i(1)+ k(1)
N )

) · · · (
N∑

k(n)=1

B
[i(n)+ k(n)−1

N ,i(n)+ k(n)
N )

)
)
.

If we multiply this out and collect terms together with the same relative position of
the subintervals, then we get a sum of terms, one of which is exactly N |σ|ϕ(b(N)

σ ),
and the others are of the form γσ′ϕ(b(N)

σ′ ), for σ′ with |σ′| > |σ|. Since also γσ′ ∼
N |σ′| for N → ∞, we know by our induction hypothesis that all these other terms
have a finite limit for N → ∞. Since the left hand side of our equation does not
depend on N , the term N |σ|ϕ(b(N)

σ ) must also have a finite limit for N → ∞. �
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Of course, the same argument works if we replace the time 1 by an arbitrary
time t. In this case, we get the existence of the limits

ct(σ) := lim
N→∞

N |σ|ϕ
(
B[i(1),i(1)+t/N) · · ·B[i(n),i(n)+t/N)

)
,

for (i(1), . . . , i(n)) ∈ σ. The remaining question is how these ct(σ) depend on the
time t.

Lemma 4.9. We have that

cs(σ) = c(σ) · s|σ| for all s ∈ Q.

Proof. For (i(1), . . . , i(n)) ∈ σ and t ∈ R, we have

c2t(σ) = lim
N→∞

N |σ|ϕ
(
B[i(1),i(1)+2t/N) · · ·B[i(n),i(n)+2t/N)

)

= lim
N→∞

N |σ|ϕ
(
(B[i(1),i(1)+t/N) + B[i(1)+t/N,i(1)+2t/N))

· · · (B[i(n),i(n)+t/N) + B[i(n)+t/N,i(n)+2t/N))
)

= 2|σ|ct(σ).

Note that for each block of σ we can choose either the increments from i to i+ t/N
or the increments from i + t/n to i + 2t/N to match up, i.e. each block of σ
contributes a factor 2. On the other hand, terms which match for some block an
increment from i to i + t/N with an increment from i + t/N to i + 2t/N vanish in
the limit, because they correspond to a σ′ with |σ′| > |σ|, and so they have to be
multiplied with a higher power of N to give a non-trivial limit.

In the same way as above one can also see that for any k ∈ N and any t ∈ R we
have

ckt(σ) = k|σ|ct(σ).
This finally yields the assertion. �

By invoking different t for each block of σ one could also derive functional equa-
tions for these quantities which, together with the fact that they are measurable,
would extend the statement of the above lemma to all t ∈ R. However, we do not
need this because the continuity of the moments ϕ(Bn

t ) allows us to extend the
statement in the next theorem directly from rational to all real times t.

Let us summarize in the following theorem our results.

Theorem 4.10. Let (Bt)t≥0 be an order invariant quantum Lévy process. Then
there exist constants c(σ) for all σ ∈ O such that we have for all n ∈ N and all
t ≥ 0

ϕ(Bn
t ) =

∑
σ∈O(n)

1
|σ|!c(σ)t|σ|.

In the next section we will see that quantum Lévy processes which are not order
invariant do not necessarily have such a polynomial behaviour of their moments.

4.11. An example of a non-order invariant generalized Brownian motion.
Finally, we want to present an example of a quantum Lévy process which is not
order invariant. This example is a generalization of the qij-relations

aia
∗
j − qija

∗
jai = δij · 1
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4336 C. KÖSTLER AND R. SPEICHER

to the continuous case, and it is formally given by

ata
∗
s − q(s − t)a∗

sat = δ(s − t) · 1.

This situation can be realized rigorously as follows: Put H := L2(R), and con-
sider on H⊗H = L2(R2) the operator T , given by

(Tf)(s, t) = q(s, t) · f(t, s),

where q = q(·, ·) is a fixed function of two variables. This T fulfills the braid re-
lations. If we assume in addition that q has the properties q̄(s, t) = q(t, s) and
|q(s, t)| ≤ 1 for all s, t, then T is also selfadjoint and contractive. Thus the assump-
tions of [BSp3] are fulfilled and the corresponding Fock space construction yields
a positive inner product and, for each f ∈ H, creation and annihilation operators
d∗(f) and d(f), respectively. Put now, for I ∈ I,

BI := d(χI) + d∗(χI)

and define

A : = vN(BI | I ∈ I),

AI : = vN(BJ | J ∈ I, J ⊂ I) (I ∈ I),

ϕ(a) : = 〈aΩ, Ω〉 (a ∈ A).

If q is real (and thus symmetric, i.e. q(s, t) = q(t, s)), then ϕ is a faithful trace on
A. Furthermore, if q is stationary, i.e. q(s, t) = q(s− t), then one has a well-defined
second quantization Γ(St) (see [Kro]) of the usual shift (u ∈ R)

Su : L2(R) → L2(R), (Suf)(t) = f(t − u),

which is compatible with the filtration of the von Neumann algebras. Let us sum-
marize this in the following proposition.

Proposition 4.12. Let q : R → R be a measurable function with the property

−1 ≤ q(t) = q(−t) ≤ 1 for all t ∈ R.

Then (A, ϕ, (AI)I∈I) corresponding to the operator T on L2(R2) given by

(Tf)(s, t) = q(s − t) · f(t, s)

forms a continuous Bernoulli system with corresponding stationary flow

BI := d(χI) + d∗(χI) (I ∈ I).

If q is constant, then one recovers the example of the q-Brownian motion [BSp1,
BKS], which is of course order invariant. If, however, q is not constant, then this
flow is not order invariant. For example, by using the definition of the operators
d(f) and d∗(f), one readily finds for I, J ∈ I with I ∩ J = ∅ that

ϕ(BIBJBIBJ ) =
∫

I

∫
J

q(s − t)dsdt,

which gives for the fourth moment of our quantum Lévy process

ϕ(B4
t ) = t2 +

∫ t

0

q(t1 − t2)dt1dt2.
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(Note that formally these results can be obtained by using the Ito formula

dBsdBtdBsdBt = q(s − t)dsdt.)

By making different choices of the function q, this shows that there is quite
a variation of the behaviour of the fourth (and higher) moments for non-order
invariant quantum Lévy processes.
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