On the structure of non-commutative white noises
HTML articles powered by AMS MathViewer
- by Claus Köstler and Roland Speicher PDF
- Trans. Amer. Math. Soc. 359 (2007), 4325-4338 Request permission
Abstract:
We consider the concepts of continuous Bernoulli systems and non-commutative white noises. We address the question of isomorphism of continuous Bernoulli systems and show that for large classes of quantum Levy processes one can make quite precise statements about the time behaviour of their moments.References
- William Arveson, Noncommutative dynamics and $E$-semigroups, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. MR 1978577, DOI 10.1007/978-0-387-21524-2
- Marek Bożejko, Burkhard Kümmerer, and Roland Speicher, $q$-Gaussian processes: non-commutative and classical aspects, Comm. Math. Phys. 185 (1997), no. 1, 129–154. MR 1463036, DOI 10.1007/s002200050084
- Marek Bożejko and Roland Speicher, An example of a generalized Brownian motion, Comm. Math. Phys. 137 (1991), no. 3, 519–531. MR 1105428
- Marek Bożejko and Roland Speicher, Interpolations between bosonic and fermionic relations given by generalized Brownian motions, Math. Z. 222 (1996), no. 1, 135–159. MR 1388006, DOI 10.1007/PL00004258
- Marek Bożejko and Roland Speicher, Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces, Math. Ann. 300 (1994), no. 1, 97–120. MR 1289833, DOI 10.1007/BF01450478
- Mădălin Guţă and Hans Maassen, Symmetric Hilbert spaces arising from species of structures, Math. Z. 239 (2002), no. 3, 477–513. MR 1893849, DOI 10.1007/s002090100316
- Mădălin Guţă and Hans Maassen, Generalised Brownian motion and second quantisation, J. Funct. Anal. 191 (2002), no. 2, 241–275. MR 1911186, DOI 10.1006/jfan.2001.3855
- J. Hellmich, C. Köstler, and B. Kümmerer: Non-commutative continuous Bernoulli shifts. arXiv:math.OA/0411565 v1, 2004.
- Marius Junge and Quanhua Xu, Noncommutative Burkholder/Rosenthal inequalities, Ann. Probab. 31 (2003), no. 2, 948–995. MR 1964955, DOI 10.1214/aop/1048516542
- C. Köstler, Quanten-Markoff-Prozesse und Quanten-Brownsche Bewegungen. Ein operatoralgebraischer Zugang. Ph.D. Thesis, Stuttgart (2000).
- Claus Köstler, Survey on a quantum stochastic extension of Stone’s theorem, Advances in quantum dynamics (South Hadley, MA, 2002) Contemp. Math., vol. 335, Amer. Math. Soc., Providence, RI, 2003, pp. 209–222. MR 2029625, DOI 10.1090/conm/335/06010
- C. Köstler, On the relationship of continuous Bernoulli systems, Tsirelson’s continuous products of probability spaces and Arveson’s product systems. In preparation.
- C. Köstler, An operator algebraic approach to quantum Lévy processes and quantum Brownian motions. Preprint.
- Ilona Królak, Contractivity properties of Ornstein-Uhlenbeck semigroup for general commutation relations, Math. Z. 250 (2005), no. 4, 915–937. MR 2180382, DOI 10.1007/s00209-005-0801-1
- Burkhard Kümmerer, Markov dilations on $W^\ast$-algebras, J. Funct. Anal. 63 (1985), no. 2, 139–177. MR 803091, DOI 10.1016/0022-1236(85)90084-9
- Burkhard Kümmerer, Quantum white noise, Infinite-dimensional harmonic analysis (Tübingen, 1995) Gräbner, Tübingen, 1996, pp. 156–168. MR 1406579
- Sorin Popa, Orthogonal pairs of $\ast$-subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983), no. 2, 253–268. MR 703810
- Gilles Pisier and Quanhua Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), no. 3, 667–698. MR 1482934, DOI 10.1007/s002200050224
- Gilles Pisier and Quanhua Xu, Non-commutative $L^p$-spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459–1517. MR 1999201, DOI 10.1016/S1874-5849(03)80041-4
- R. Speicher, and W. von Waldenfels, A general central limit theorem and invariance principle. In Quantum Probability and Related Topics IX (1994), 371–387.
- Boris Tsirelson, Nonclassical stochastic flows and continuous products, Probab. Surv. 1 (2004), 173–298. MR 2068474, DOI 10.1214/154957804100000042
- Dan Voiculescu, Free entropy, Bull. London Math. Soc. 34 (2002), no. 3, 257–278. MR 1887698, DOI 10.1112/S0024609301008992
- D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. MR 1217253, DOI 10.1090/crmm/001
Additional Information
- Claus Köstler
- Affiliation: School of Mathematics and Statistics, Herzberg Building, Carleton University, Ottawa, Ontario, K1S 5B6 Canada
- MR Author ID: 639717
- Email: koestler@math.carleton.ca
- Roland Speicher
- Affiliation: Department of Mathematics and Statistics, Jeffery Hall, Queen’s University, Kings- ton, Ontario, K7L 3N6 Canada
- Email: speicher@mast.queensu.ca
- Received by editor(s): November 17, 2004
- Received by editor(s) in revised form: August 12, 2005
- Published electronically: April 16, 2007
- Additional Notes: Research of the second author was supported by a Discovery Grant and a Leadership Support Initiative Award from the Natural Sciences and Engineering Research Council of Canada and by a Premier’s Research Excellence Award from the Province of Ontario
- © Copyright 2007 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 359 (2007), 4325-4338
- MSC (2000): Primary 46L53; Secondary 46L55
- DOI: https://doi.org/10.1090/S0002-9947-07-04165-7
- MathSciNet review: 2309187