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COMPLETELY REDUCIBLE SL(2)-HOMOMORPHISMS

GEORGE J. MCNINCH AND DONNA M. TESTERMAN

Abstract. Let K be any field, and let G be a semisimple group over K.
Suppose the characteristic of K is positive and is very good for G. We describe
all group scheme homomorphisms φ : SL2 → G whose image is geometrically
G-completely reducible–or G-cr–in the sense of Serre; the description resembles
that of irreducible modules given by Steinberg’s tensor product theorem. In
case K is algebraically closed and G is simple, the result proved here was
previously obtained by Liebeck and Seitz using different methods. A recent
result shows the Lie algebra of the image of φ to be geometrically G-cr; this
plays an important role in our proof.

1. Introduction

Let K be an arbitrary field of characteristic p > 0. By a scheme we mean a
separated K-scheme of finite type. An algebraic group will mean a smooth and
affine K-group scheme; a subgroup will mean a K-subgroup scheme, and a homo-
morphism will mean a K-homomorphism. A smooth group scheme G is said to be
reductive if G/Kalg is reductive in the usual sense; i.e., it has trivial unipotent rad-
ical, where Kalg is an algebraic closure of K. The Lie algebra g = Lie(G) may be
regarded as a scheme over K; we permit ourselves to write g for the set of K-points
g(K).

For G a reductive group, a subgroup H ⊂ G is said to be geometrically G-
completely reducible–or G-cr–if whenever k is an algebraically closed field contain-
ing K and H/k is contained in a parabolic k-subgroup P of G/k, then H/k ⊂ L for
some Levi k-subgroup L of P ; see §2.3 for more details. The notion of G-cr was
introduced by J.-P. Serre; see e.g. [Ser 05] for more on this notion. It is our goal
here to describe all homomorphisms φ : SL2 → G whose image is geometrically
G-cr; this we achieve under some assumptions on G which are described in §2.4.
For the purposes of this introduction, let us suppose that G is semisimple. Then
our assumption is: the characteristic of K is very good for G (again see §2.4 for the
precise definition of a very good prime).
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Let F : SL2 → SL2 be the Frobenius endomorphism obtained by base change
from the Frobenius endomorphism of SL2/Fp

; cf. §2.8 below. We say that a collec-
tion of homomorphisms φ0, φ1, . . . , φr : SL2 → G is commuting if

im φi ⊂ CG(imφj) for all 0 ≤ i �= j ≤ r.

Let �φ = (φ0, . . . , φr) where the φi are commuting homomorphisms SL2 → G, and
let �n = (n0 < · · · < nr) where the ni are non-negative integers. Then the data
(�φ, �n) determines a homomorphism Φ�φ,�n : SL2 → G given for every commutative
K-algebra Λ and every g ∈ SL2(Λ) by the rule

g �→ φ0(Fn0(g)) · φ1(Fn1(g)) · · ·φr(Fnr(g)).

We say that Φ = Φ�φ,�n is the twisted-product homomorphism determined by (�φ, �n).
A notion of optimal homomorphisms SL2 → G was introduced in [Mc 05]; see

§2.7 for the precise definition. When G is a K-form of GL(V ) or SL(V ), a ho-
momorphism f : SL2 → G is optimal just in case the representation (f/Ksep , V )
is restricted and semisimple, where Ksep is a separable closure of K; see Remark
18. We will say that the list of commuting homomorphisms �φ = (φ0, φ1, . . . , φr) is
optimal if each φi is an optimal homomorphism.

Theorem 1. Let G be a semisimple group for which the characteristic is very
good, and let Φ : SL2 → G be a homomorphism. If the image of Φ is geometrically
G-cr, then there are commuting optimal homomorphisms �φ = (φ0, . . . , φr) and
non-negative integers �n = (n0 < n1 < · · · < nd) such that Φ is the twisted-product
homomorphism determined by (�φ, �n). Moreover, �φ and �n are uniquely determined
by Φ.

We actually prove the theorem for the strongly standard reductive groups de-
scribed below in §2.4; see Theorem 39.

In case K is algebraically closed and G is simple, this theorem was obtained
by Liebeck and Seitz [LS 03, Theorem 1]; cf. Remark 17 to see that the notion
of restricted–or good–A1-subgroup used in [LS 03] is “the same” as the notion of
optimal homomorphism used here.

Note that Liebeck and Seitz prove a version of Theorem 1 where SL2 is replaced
by any quasisimple group H. If G is a split classical group over K in good charac-
teristic, the more general form of Theorem 1 found in [LS 03] is a consequence of
Steinberg’s tensor product theorem [Jan 87, Cor. II.3.17]; cf. [LS 03, Lemma 4.1].
The proof given by Liebeck and Seitz of Theorem 1 for a quasisimple group G of
exceptional type relies instead on detailed knowledge of the subgroup structure (in
particular, of the maximal subgroups) of G; see e.g. [LS 03, Theorem 2.1, Propo-
sition 2.2, and §4.1] for the case H = SL2. In contrast, when p > 2, our proof uses
in an essential way the complete reducibility of the Lie algebra of a G-cr subgroup
of G [Mc 05a]; cf. the proofs of Lemma 24, Proposition 25, and Lemma 29 (when
p = 2, we have essentially just used the proof of Liebeck and Seitz).

We obtain also the converse to Theorem 1, though we do so only under a restric-
tion on p. Write h(G) for the maximum value of the Coxeter number of a simple
k-quotient of G/k, where k is an algebraically closed field containing K.

Theorem 2. Let G be semisimple in very good characteristic, and suppose that p >

2h(G) − 2. Let �φ = (φ0, . . . , φd) be commuting optimal homomorphisms SL2 → G,
and let �n = (n0 < n1 < · · · < nd) be non-negative integers. Then the image of the
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COMPLETELY REDUCIBLE SL(2)-HOMOMORPHISMS 4491

twisted-product homomorphism Φ : SL2 → G determined by (�φ, �n) is geometrically
G-cr.

Again, this result is proved for a more general class of reductive groups; see
Theorem 43.

The assumption on p made in the last theorem is unnecessary if G is a classical
group (or a group of type G2) in good characteristic; see Remark 44. However, it
is not clear to the authors how to eliminate the prime restriction in general.

The first named author would like to acknowledge the hospitality of the Centre
Interfacultaire Bernoulli at the École Polytechnique Fédérale de Lausanne during a
visit in June 2005; this visit permitted much of the collaboration which led to the
present manuscript.

2. Preliminaries

2.1. Reduced subgroups. Let k be a perfect field; in the application we take k
to be algebraically closed. Let B be a group scheme of finite type over k.

Lemma 3. There is a unique smooth subgroup Bred ⊂ B which has the same
underlying topological space as B. If A is any smooth group scheme over k and
f : A → B is a k-morphism, then f factors in a unique way into a k-morphism
A → Bred followed by the inclusion Bred → B.

Proof. Use [Li 02, Prop. 2.4.2] to find the reduced k-scheme Bred with the same
underlying topological space as B; the result just quoted then yields the uniqueness
of Bred. It is clear that Bred is a k-group scheme, and the assertion about A and f
follows from loc. cit. Prop 2.4.2(d). Since k is perfect, apply [KMRT, Prop. 21.9]
to see that a k-group is smooth if and only if it is geometrically reduced if and only
if it is reduced. Thus Bred is indeed smooth. �

We are going to consider later some group schemes which we do not a priori
know to be smooth, and we want to choose maximal tori in these group schemes.
The following example explains why in those cases we first extend scalars to an
algebraically closed field (see e.g. §3.2 below).

Example 4. If B is a group scheme over an imperfect field K, and if k is a perfect
field containing K, then a maximal torus of B/k,red need not arise by base-change
from a K-subgroup of B. Let us give an example.

Let A = Gm � Ga where Gm acts on Ga “with weight one”; i.e., K[A] =
K[T, T−1, U ] where the comultiplication µ∗ is given by

µ∗(T±1) = (T ⊗ T )±1 and µ∗(U) = U ⊗ T + 1 ⊗ U.

Suppose that K is not perfect, and let L = K(β) where βp = α ∈ K but β �∈ K.
Consider the subgroup scheme B ⊂ A defined by the ideal I = (αT p − Up − α) �
K[A].

If k is a perfect field containing K, notice that the image f̄ ∈ k[B] of f =
βT − U − β ∈ k[A] satisfies f̄p = 0 but f̄ �= 0; thus B/k is not reduced. The
subgroup B/k,red ⊂ A/k is defined by J = (βT −U − β), so that B/k,red � Gm/k is
a torus. The group of k-points B/k,red(k) ⊂ A(k) may be described as:

B/k,red(k) = {(t, βt − β) ∈ Gm(k) � Ga(k) | t ∈ k×}.
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Note that B/k,red does not arise by base change from a K-subgroup of A, e.g. since
the intersection B/k,red(k) ∩A(K) consists only in the identity element (where the
intersection takes place in the group A(k)).

2.2. Cocharacters and parabolic subgroups. A cocharacter of an algebraic
group A is a homomorphism γ : Gm → A. We write X∗(A) for the set of cochar-
acters of A.

A linear representation (ρ, V ) of A yields a linear representation (ρ ◦ γ, V ) of
Gm, which in turn is determined by the morphism

(ρ ◦ γ)∗ : V → K[Gm] ⊗K V = K[t, t−1] ⊗K V.

Then V is the direct sum of the weight spaces

(2.2.1) V (γ; i) = {v ∈ V | (ρ ◦ γ)∗v = ti ⊗ v}
for i ∈ Z.

Consider now the reductive group G. If γ ∈ X∗(G), then

PG(γ) = P (γ) = {x ∈ G | lim
t→0

γ(t)xγ(t−1) exists}

is a parabolic subgroup of G whose Lie algebra is p(γ) =
∑

i≥0 g(γ; i); see e.g.
[Spr 98, §3.2] for the notion of limit used here. Moreover, each parabolic subgroup
of G has the form P (γ) for some cocharacter γ; for all this, cf. [Spr 98, 3.2.15 and
8.4.5].

We note that γ “exhibits” a Levi decomposition of P = P (γ). Indeed, P (γ) is the
semi-direct product CG(γ) · U(γ), where U(γ) = {x ∈ P | limt→0 γ(t)xγ(t−1) = 1}
is the unipotent radical of P (γ), and the reductive subgroup CG(γ) = CG(γ(Gm))
is a Levi factor in P (γ); cf. [Spr 98, 13.4.2].

2.3. Complete reducibility, Lie algebras. Let G be a reductive group, and
write g for its Lie algebra.

A smooth subgroup H ⊂ G is geometrically G-cr if whenever k is an algebraically
closed field containing K and H/k ⊂ P for a parabolic k-subgroup P ⊂ G/k, then
H/k ⊂ L for some Levi k-subgroup L ⊂ P .

Similarly, if h ⊂ g is a Lie subalgebra, we say that h is geometrically G-cr if
whenever k is an algebraically closed field containing K and P ⊂ G/k is a parabolic
k-subgroup with h/k = h ⊗K k ⊂ Lie(P ), then h/k ⊂ Lie(L) for some Levi k-
subgroup L ⊂ P .

Lemma 5. Let X and Y be schemes of finite type over K, and let f : X → Y be
a (K-) morphism. The following are equivalent:

i) f is surjective,
ii) f/k : X(k) → Y (k) is surjective for all algebraically closed fields k contain-

ing K, and
iii) f/k : X(k) → Y (k) is surjective for some algebraically closed field k con-

taining K.

Proof. This follows from [DG70, I §3.6.10]. �
Lemma 6. Fix an algebraically closed field k containing K. Let G be a reductive
group, let J ⊂ G be a smooth subgroup, and let h ⊂ g be a Lie subalgebra. Then

(1) J is geometrically G-cr if and only if J/k is G/k-cr.
(2) h is geometrically G-cr if and only if h/k is G/k-cr.
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Proof. We prove (1); the proof of (2) is essentially the same. We are going to apply
the previous lemma.

First let P be the scheme of all parabolic subgroups of G, and let Y = PJ be
the fixed point scheme for the action of J ; thus Y is the closed subscheme of those
parabolic subgroups containing J . 1

Also let PL be the scheme such that for each commutative K-algebra Λ, the
Λ-points PL(Λ) are the pairs P ⊃ L, where P is a parabolic subgroup of G/Λ and
L is a Levi subgroup of P ; cf. [SGA3, Exp. XXVI, §3.15]. Let X = (PL)J be the
scheme of those pairs P ⊃ L where L contains J .

There is an evident morphism PL → P given by (P ⊃ L) �→ P ; cf. [SGA3, Exp.
XXVI, §3.15]. By restriction one gets a morphism f : X → Y . Then f is surjective
if and only if J is G-cr, and (1) follows from the preceding lemma. �

Proposition 7. Let G be reductive, and let M ⊂ G be a Levi subgroup. Suppose
that J ⊂ M is a smooth subgroup, and that h ⊂ Lie(M) is a Lie subalgebra. Then J
is geometrically G-cr if and only if J is geometrically M -cr and h is geometrically
G-cr if and only if h is geometrically M -cr.

Proof. For the proof, it is enough to suppose that K is algebraically closed. The
proof for J is found in [BMR 05, Theorem 3.10]. The proof for h is deduced from
[Ser 05, 2.1.8]; see [Mc 05a, Lemma 2] for the argument. �

The following theorem was proved in [Mc 05a].

Theorem 8. Let H ⊂ G be a smooth subgroup which is geometrically G-cr. Then
h = Lie(H) is geometrically G-cr.

We recall a similar result of B. Martin [Ser 05, Théorème 3.6].

Theorem 9 (Martin). Let H ⊂ G be a smooth subgroup which is geometrically
G-cr, and let H ′ �H be a smooth normal subgroup. Then H ′ is geometrically G-cr
as well.

Finally, we note:

Lemma 10. Let π : G → G1 be a central isogeny where G1 is a second reductive
group, let J ⊂ G be a smooth subgroup, and let h ⊂ g = Lie(G) be a Lie subalgebra.
Then

(1) J is geometrically G-cr if and only if π(J) is geometrically G1-cr, and
(2) h is geometrically G-cr if and only if dπ(h) is geometrically G1-cr.

Proof. We may and will suppose that K is algebraically closed for the proof. It
is clear that J is contained in a parabolic subgroup P of G if and only if π(J) is
contained in the parabolic subgroup π(P ) of G1, and similarly h is contained in
Lie(P ) if and only if dπ(h) is contained in dπ(Lie(P )) = Lie(π(P )). The result
follows since P �→ π(P ) determines a bijection between the parabolic subgroups of
G and those of G1. �

1For assertion (2), one should instead regard P as the scheme of parabolic subalgebras of g,
which may be regarded as a closed subscheme of a product of Grassman schemes Grd(g) for various
d. Now the subscheme X ⊂ P of parabolic subalgebras containing h is the intersection of P with
the subscheme Z of the product of Grassman schemes consisting of those subspaces containing h.
Since Z is closed in the product, Y is closed in P. Similar remarks apply to the definition of the
subscheme Y ⊂ PL to be given in the next paragraph.
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2.4. Strongly standard reductive groups. If G is geometrically quasisimple
with absolute root system R,2 then the characteristic p of K is said to be a bad
prime for R in the following circumstances: p = 2 is bad whenever R �= Ar, p = 3
is bad if R = G2, F4, Er, and p = 5 is bad if R = E8. Otherwise, p is good. (Here
is a more intrinsic definition of a good prime: p is good just in case it divides no
coefficient of the highest root in R).

If p is good, then p is said to be very good provided that either R is not of type
Ar, or that R = Ar and r �≡ −1 (mod p).

There is a possibly inseparable central isogeny 3

(2.4.1)
r∏

i=1

Gi × T → G

for some torus T and some r ≥ 1, where for 1 ≤ i ≤ r there is an isomorphism
Gi � RLi/KHi for a finite separable field extension Li/K and a geometrically
simple, simply connected Li-group scheme Hi; here, RLi/KHi denotes the “Weil
restriction” of Hi to K.

Then p is good, respectively very good, for G if and only if that is so for Hi for
every 1 ≤ i ≤ r. Since the Hi are uniquely determined by G up to central isogeny,
the notions of good and very good primes depend only on the central isogeny class
of the derived group (G, G). Moreover, these notions are geometric in the sense that
they depend only on the group G/k for an algebraically closed field k containing K.

One says that a smooth K-group D is of multiplicative type if D/K′ is diago-
nalizable for some algebraic extension K ⊂ K ′; i.e., that D/K′ � Diag(Γ) for some
commutative group Γ. See [Jan 87, I.2.5] for the definition of Diag(Γ); it is implic-
itly defined in [Spr 98, Corollary 3.2.4] as well. A torus is of multiplicative type,
as is any finite, smooth, commutative subgroup all of whose geometric points are
semisimple.

If G is reductive and if D ⊂ G is a subgroup of multiplicative type, then CG(D)
is a reductive subgroup containing a maximal torus of G. Use [SGA3, II Exp. XI,
Cor 5.3] to see that CG(D) is smooth, use [Spr 98, Theorem 3.2.3] to see that DK′

lies in a maximal torus of GK′ , and finally use [SS 70, II. §4.1] to see that CG(D)
is reductive.

Consider reductive groups of the form

(∗) H = H1 × S,

where H1 is a semisimple group for which the characteristic of K is very good, and
where S is a torus. We say that G is strongly standard if there is a group H as in
(∗), a subgroup of multiplicative type D ⊂ H, and a separable isogeny between G
and the reductive subgroup CH(D) of H.

2The absolute root system of G is the root system of G/Ksep where Ksep is a separable closure

of K.
3Indeed, the center of the reductive group G is a smooth subgroup scheme; this follows e.g.

from [SGA3, II Exp. XII Théorème 4.1] since for G reductive, the center is the same as the “centre
réductif”. The radical R(G) is the maximal torus of the center of G, so R(G) is a smooth torus,
and we take T = R(G) in (2.4.1). Now, multiplication gives a central isogeny G′ × R(G) → G
where G′ is the derived group of G. So (2.4.1) follows from the corresponding result for semisimple
groups; see e.g. [KMRT, Theorems 26.7 and 26.8] or [TW 02, Appendix (42.2.7)].
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Remark 11. This definition of strongly standard is more general than that given
e.g. in [Mc 05]. It follows from Proposition 12 below that the main result of loc.
cit. in fact applies to a strongly standard group in this more general sense.

Proposition 12. Let G be strongly standard.
(1) If D ⊂ G is a subgroup of multiplicative type, then the reductive group

CG(D) is strongly standard.
(2) The characteristic of K is good for the derived group of G, and there is a

non-degenerate, G-invariant bilinear form on Lie(G).
(3) Each conjugacy class and each adjoint orbit is separable. In particular, if

g ∈ G(K) and X ∈ g(K), then CG(g) and CG(X) are smooth. 4

Remark 13. The centralizers considered in (3) – and elsewhere in this paper – are
the scheme-theoretic centralizers. Thus e.g. CG(X) is the group scheme with Λ-
points CG(X)(Λ) = {g ∈ G(Λ) | Ad(g)X = X} for each commutative K-algebra
Λ.

Proof of Proposition 12. For the proofs of (1) and (2), we may replace G by a
separably isogenous group and suppose G to be the centralizer of a subgroup of
multiplicative type D1 ⊂ H, where H has the form (∗).

For (1), note that since D1 centralizes D, the group D2 = D · D1 ⊂ H is of
multiplicative type and (1) is immediate.

To prove (2), note first that the characteristic of K is good for the derived
group of G by [Mc 05, Lemma 1(2)]. Now, there is a non-degenerate H-invariant
bilinear form β on a group H of the form (∗) by [Mc 05, Lemma 1(1)]. Moreover,
it suffices to see that the restriction of β to Lie(G) is nondegenerate after making
a field extension; thus, we may suppose that D1 � Diag(Γ). We have Lie(H) =⊕

γ∈Γ Lie(H)γ where D1 acts on Lie(H)γ through γ; see e.g. [Jan 87, §I.2.11]. The
subspaces Lie(H)γ and Lie(H)τ are evidently orthogonal unless γ · τ = 1 in Γ.5

Since Lie(G) = Lie(H)D1 = Lie(H)1, the restriction of β to Lie(G) must remain
non-degenerate.

In view of (2), the proof of [Mc 05, Prop. 5] yields (3). �

2.5. Nilpotent elements and associated cocharacters. Let G be a reductive
group, and let X ∈ g = Lie(G) be nilpotent. A cocharacter Ψ ∈ X∗(G) is said to
be associated with X if the following conditions hold:

(A1) X ∈ g(Ψ; 2), and
(A2) there is a maximal torus S of CG(X) such that Ψ ∈ X∗(L1) where L =

CG(S) and L1 = (L, L) is its derived group.
Assume now that G is strongly standard.

Proposition 14. Let X ∈ g be nilpotent.
(1) There is a cocharacter Ψ associated with X.
(2) If Ψ is associated to X and P = P (Ψ) is the parabolic subgroup determined

by Ψ, then CG(X) ⊂ P . In particular, cg(X) ⊂ Lie(P ).
(3) If Ψ, Φ ∈ X∗(G) are associated with X, then Ψ = Int(x) ◦ Φ for some

x ∈ CG(X)(K).

4In older language, these centralizers are defined over K.
5We are writing Γ multiplicatively.
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(4) The parabolic subgroups P (Ψ) for cocharacters Ψ associated with X all
coincide.

Proof. (1) is [Mc 04, Theorem 26], (2) is [Ja 04, Prop. 5.9]. (3) follows from
[Mc 05, Prop/Defn 21(4)], and (4) is [Mc 05, Prop/Defn 21(5)]. �

Let Ψ be a cocharacter associated with X as in the previous proposition. Then
the parabolic subgroup P (X) = P (Ψ) of (4) is known as the instability parabolic
subgroup of X.

Let X ∈ g, and let [X] ∈ P(g)(K) be the K-point which “is” the line determined
by X in the corresponding projective space.

Proposition 15. Write NG(X) = StabG([X]).

(1) NG(X) is a smooth subgroup of G.
(2) For each maximal torus T of NG(X), there is a unique cocharacter λ ∈

X∗(T ) associated to X.

Proof. Recall that NG(X) is the scheme-theoretic stabilizer of the point [X] ∈
P(g)(K). (1) follows from [Mc 04, Lemma 23], and in view of Proposition/Defini-
tion 14(1), assertion (2) follows from [Mc 04, Lemma 25]. �

2.6. Notation for SL2. We fix here some convenient notation for SL2. We first
choose the “standard” basis for the Lie algebra sl2:

E =
(

0 1
0 0

)
, F =

(
0 0
1 0

)
, and [E, F ] =

(
1 0
0 −1

)
.

Now consider the homomorphisms e, f : Ga → SL2 given for each commutative
K-algebra Λ and each t ∈ Ga(Λ) = Λ by the rules

e(t) =
(

1 t
0 1

)
and f(t) =

(
1 0
t 1

)
.

Finally, write T for the “diagonal” maximal torus of SL2; we fix the cocharacter

(t �→
(

t 0
0 t−1

)
) : Gm → T

and use this cocharacter to identify T with Gm.

2.7. Optimal homomorphisms. We will use without mention the notation of
§2.6. Let G be a reductive group. We say that a homomorphism φ : SL2 → G
is optimal for X = dφ(E), or simply that φ is an optimal SL2-homomorphism, if
λ = φ|T is a cocharacter associated with X.

Theorem 16 ([Mc 05]). Suppose that G is strongly standard. Let X ∈ g satisfy
X [p] = 0, and let λ ∈ X∗(G) be associated with X. There is a unique homomorphism

φ : SL2 → G

such that dφ(E) = X and φ|T = λ. Moreover, the image of φ is geometrically G-cr.

Proof. In view of Proposition 12(3), this follows from [Mc 05, Theorem 47 and
Prop. 52]. �
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Remark 17. Seitz has introduced a notion of “good A1-subgroup” of a quasisimple
group in [Sei 00]; in [LS 03], these subgroups are called “restricted”. Refer to
[Mc 05, §8.5] to see that a subgroup of type A1 of a quasisimple group G is restricted
if and only if it is the image of an optimal homomorphism SL2 → G. It is not hard to
see that the image of an optimal homomorphism is restricted; cf. [Mc 05, Prop. 30].
The proof that a restricted A1-subgroup is the image of an optimal homomorphism
is more involved.

Remark 18. If V is a finite dimensional vector space, a homomorphism φ : SL2 →
SL(V ) is optimal if and only if V is a restricted semisimple SL2-module. Indeed,
if V is restricted and semisimple, one sees at once that φ|T is associated with
dφ(E) so that φ is indeed optimal. On the other hand, if λ = φ|T is associated
to X = dφ(E), then the character of the SL2-module V is determined by the
cocharacter λ; it follows that the composition factors of V as an SL2-module are
restricted. If 0 ≤ n < p, write L(n) for the restricted simple SL2-module of highest
weight n [Jan 87, §II.2]. The linkage principle [Jan 87, Corollary II.6.17] implies
that Ext1SL2

(L(n), L(m)) = 0 whenever 0 ≤ n, m < p. Thus, V is semisimple as
well.

Proposition 19. Let S be the image of the optimal SL2-homomorphism φ, and let
λ = φ|T ∈ X∗(G). Write X = dφ(E) and Y = dφ(F ). Then:

(1) CG(im dφ) = CG(S).
(2) The scheme-theoretic intersection CG(S) = CG(X) ∩ CG(λ) is a smooth

subgroup of G.

Proof. For (1), recall that if ε : Ga → G is given by ε = φ ◦ e, then CG(X) =
CG(im ε) by [Mc 05, Prop. 35]. Similarly, CG(Y ) = CG(im φ ◦ f). Since im dφ is
spanned by X and Y and since S is generated as a group scheme by the image of
φ ◦ e and the image of φ ◦ f , we have

CG(im dφ) = CG(X) ∩ CG(Y ) = CG(im φ ◦ e) ∩ CG(im φ ◦ f) = CG(S).

For (2), the inclusion CG(S) ⊂ CG(X)∩CG(λ) is clear. To prove the other inclu-
sion, let Λ be a commutative K-algebra, and let g ∈ G(Λ) be such that Ad(g)X = X
and Int(g) ◦ λ = λ. By (1), it is enough to show that g centralizes Y . Since
Y ∈ g(λ;−2)(K) and since Int(g) ◦ λ = λ, we have Ad(g)Y ∈ g(λ;−2)(Λ). Notice
that

[X, Ad(g)Y ] = [Ad(g−1)X, Y ] = [X, Y ].

Thus [X, Y − Ad(g)Y ] = 0 so that Y − Ad(g)Y ∈ cg(X)(λ;−2)(Λ). Since cg(X) ⊂
Lie(P (λ)) by Proposition 14, we have cg(X)(λ;−2) = 0 so that Y = Ad(g)Y as
required. Now, CG(X) is smooth by Proposition 12; hence CG(X) ∩ CG(λ) is
smooth by [SGA3, II Exp. XI, Cor 5.3].

�

Remark 20. In the notation of the previous proposition, we have im dφ = LieS
whenever p > 2, since the adjoint representation of SL2 is irreducible for p > 2.

Proposition 21. Let G be a strongly standard reductive group.
(1) Let L ⊂ G be a Levi subgroup, and assume that φ : SL2 → L is a homo-

morphism. Then φ is an optimal homomorphism in G if and only if it is
an optimal homomorphism in L.
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(2) Let π : G1 → G be a central isogeny, let f : SL2 → G be a homomorphism,
and suppose that f̃ : SL2 → G1 satisfies π ◦ f̃ = f . Then f is optimal if
and only if f̃ is optimal.

Proof. We first prove (1). In view of Theorem 16, it suffices to prove the fol-
lowing: Let X ∈ Lie(L) be nilpotent and let λ ∈ X∗(L) be a cocharacter with
X ∈ Lie(L)(λ; 2). Then λ is associated to X in L if and only if λ is associated to
X in G.

Note that λ ∈ X∗(NL(X)), so the image of λ normalizes CL(X). In particular,
we may choose a maximal torus S0 of CL(X) centralized by the image of λ, and we
may choose a maximal torus S of CG(X) with S0 ⊂ S. Notice that S0 (and hence
also S) contains the center of L. Since L is the centralizer in G of the connected
center of L, we have S ⊂ L so that S = S0. Moreover, since CG(S) ⊂ L, it
is clear that CG(S) = CL(S) = M . Moreover, it is clear that λ ∈ X∗(M), and
the proposition follows since the condition that λ be associated to X is just that
λ ∈ X∗((M, M)); this condition is the same for L and for G.

We now prove (2). Note first that it suffices to prove (2) in case K is algebraically
closed. Let X = df(E) and X̃ = df̃(E). Then π induces a surjective morphism
NG1(X̃)red → NG(X). 6 We may thus choose a maximal torus T̃ of CG1(X̃)red
centralized by im f̃|T and a maximal torus T of CG(X) centralized by im f|T such
that π(T̃ ) = T .

Now, X̃ is distinguished in the Levi subgroup L1 = CG1(T̃ ) and X is distin-
guished in the Levi subgroup L = CG(T ). Since the maximal tori in CG1(X̃) are
all conjugate, one sees that f̃|T is associated with X̃ if and only if im f̃|T lies in
the derived group of L1; since the maximal tori in CG(X) are all conjugate, f|T
is associated with X if and only if im fT lies in the derived group of L. Since π

induces a central isogeny L1 → L, it follows that f̃|T is associated with X̃ if and
only if f|T is associated with X; (2) is an immediate consequence. �

2.8. Frobenius endomorphisms. Let H be a connected, split, quasi-simple alge-
braic group; recall that H arises by base change from a corresponding group scheme
H/Fp

over the prime field Fp. There is a Frobenius endomorphism F : H → H
which arises by base change from the corresponding Frobenius endomorphism of
H/Fp

.

Proposition 22. Let G be an algebraic group, and let φ : H → G be a homomor-
phism. The following are equivalent:

(1) dφ = 0;
(2) there is a unique integer t ≥ 1 and a unique homomorphism ψ : H → G

such that dψ �= 0 and φ = ψ ◦ F t.

Proof. (1) =⇒ (2) is a consequence of [Mc 05, Cor. 20]. (2) =⇒ (1) is straight-
forward. �

Of course, the above result holds in particular when H is the group SL2.

6Note that G1 need not be strongly standard.
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3. The tangent map of a G-completely reducible SL2-homomorphism

3.1. The set-up. Now fix a homomorphism φ : SL2 → G whose image is geomet-
rically G-cr. Assume that dφ �= 0, and write

X = dφ(E), Y = dφ(F ), H = dφ([E, F ]) ∈ g,

Also put s = im dφ, and write λ = φ|T . Consider the smooth subgroups NG(X),
NG(Y ) ⊂ G which are the stabilizers of the points [X], [Y ] ∈ P(g)(K). Then λ is
evidently a cocharacter of NG(X) ∩ NG(Y ).

Consider the group schemes C(X, Y ) = (CG(X) ∩ CG(Y )) and N(X, Y ) =
(NG(X) ∩ NG(Y )). We observe the following:

Lemma 23. C(X, Y ) is a normal subgroup scheme of N(X, Y ).

In particular, the image of λ normalizes C(X, Y ).

3.2. Working geometrically. Fix an algebraically closed field k containing K
and consider G/k, s/k = s ⊗K k, etc. In this section, we are forced to consider the
reduced subgroups corresponding to various subgroup schemes; recall the results of
§2.1. Thus, for the remainder of §3.2, we replace K by k and so suppose that K is
algebraically closed.

According to §2.1, the image of λ normalizes C(X, Y ) and hence also C(X, Y )red.
Thus, we may choose a maximal torus T ⊂ C(X, Y )red centralized by the image of
λ.

Consider now the Levi subgroup M = CG(T ) of G; M is a strongly standard
reductive group by Proposition 12(1). Since X and Y are centralized by T , and
since s is generated as a Lie algebra by X and Y , we have s ⊂ Lie(M). Of course,
the image of the homomorphism φ need not lie in M .

Lemma 24. s is not contained in Lie(P ) for any proper parabolic subgroup P ⊂ M .

Proof. Any torus T1 ⊂ M centralizing s of course centralizes X and Y ; thus T lies
in a maximal torus of C(X, Y )red. Since T is central in M , T1 centralizes T . Since
T is a maximal torus of C(X, Y )red, we find that T1 ⊂ T ; hence T1 is central in M .
Since s is the Lie algebra of a G-cr subgroup of G, the Lie algebra s is itself G-cr by
Theorem 8. Hence s is also M -cr by Proposition 7. If s is contained in Lie(P ) for a
parabolic subgroup P ⊂ M , then s is contained in Lie(L) for some Levi subgroup
L of P . But then any central torus of L is central in M , so that P = M . �

Proposition 25. Let T1 be a maximal torus of NM (X) with λ ∈ X∗(T1), and
let λ0 ∈ X∗(T1) be the unique cocharacter of T1 associated to X [see Proposition
15(2)]. Let φ0 : SL2 → M be the optimal homomorphism determined by X and λ0

[Theorem 16]. Write µ = λ0 − λ for the cocharacter

t �→ λ0(t) · λ(t−1)

of T1. Then the image of µ is central in M .

Proof. We have H ∈ m(λ0; 0) ∩ m(λ; 0) by the choice of T1; thus H ∈ m(µ; 0). We
have also X ∈ m(λ0; 2) ∩ m(λ; 2) so that X ∈ m(µ; 0) as well.

Write Y =
∑

j∈Z Y j with Y j ∈ m(λ0; j). Since [X, Y ] = H ∈ m(λ0; 0), we have
Y − Y −2 ∈ cm(X), so that

Y = Y −2 +
∑
j≥0

Y j .
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Since the images of λ and λ0 commute, and since Y ∈ m(λ;−2), we have Y j ∈
m(λ;−2) for all j. Thus, Y j ∈ m(λ0 − λ; j + 2) = m(µ; j + 2) for all j; hence
Y ∈

∑
�≥0 m(µ; �) = LiePM (µ).

Since X, Y, H ∈ LiePM (µ), we have proved that s = im dφ lies in LiePM (µ).
Thus by Lemma 24, we have PM (µ) = M ; we conclude that the image of µ is
central in M . �

Proposition 26. Let T1 be a maximal torus of NM (X), and write φ0 : SL2 → M
for the optimal homomorphism determined by the cocharacter λ0 ∈ X∗(T1) associ-
ated with X as in Proposition 25. Then dφ = dφ0.

Proof. Recall that T is a fixed maximal torus of C(X, Y )red, and M = CG(T ).
Using (2.4.1), one finds a (possibly inseparable) central isogeny

π : Gsc → G,

where the derived group of Gsc is simply connected. There is a torus T̃ ⊂ Gsc with
π(T̃ ) = T ; then the Levi subgroup Msc = CGsc(T̃ ) has a simply connected derived
group, and π restricts to a central isogeny π : Msc → M .

Since SL2 is simply connected, there are homomorphisms

φ̃ : SL2 → Gsc and φ̃0 : SL2 → Msc

such that φ = π◦φ̃ and φ0 = π◦φ̃0. We write λ̃ and λ̃0 for the cocharacters obtained
by restricting these homomorphisms to the maximal torus T of SL2. Moreover,
write

µ = λ0 − λ1 and µ̃ = λ̃0 − λ̃1.

Since λ, λ0 ∈ X∗(T1), we know that λ̃, λ̃0 are cocharacters of Msc. Since π ◦ µ̃ = µ,
it follows from proposition 25 that the image of µ̃ is central in Msc.

Since T centralizes im φ0 and im dφ, it is clear that the images of dφ̃0 and dφ̃
lie in Lie(Msc). Write H0 = dφ0([E, F ]). We claim that the proposition will follow
if we show that H = H0. Indeed, by Proposition 25, the image of µ = λ0 − λ
centralizes Y ; thus, we have Y ∈ m(λ0;−2) and Y − Y0 ∈ m(λ0;−2). If H = H0,
then [X, Y − Y0] = H − H0 = 0 so that Y − Y0 ∈ cm(X). Since λ0 is associated to
X, we have cm(X) ⊂ LieP (λ0) =

∑
i≥0 m(λ0; i) by Proposition/Definition 14. We

may thus conclude that Y = Y0 so that dφ and dφ0 are indeed equal.
It remains now to show that H = H0. Let H̃ = dφ̃([E, F ]) and H̃0 = dφ̃0([E, F ]).

It is clearly enough to show that H̃ = H̃0.
Now, since the derived group M ′

sc of Msc is simply connected, one knows that
Msc is a direct product

Msc = Zo(Msc) × M ′
sc,

where Zo(Msc) is the connected component of the center of Msc (it is a torus).
Thus also

Lie(Msc) = Lie(Zo(Msc)) ⊕ Lie(M ′
sc).

The derived subalgebra [Lie(Msc), Lie(Msc)] is contained in Lie(M ′
sc); since sl2 =

[sl2, sl2], we have

im dφ̃ ⊂ Lie(M ′
sc) and im dφ̃0 ⊂ Lie(M ′

sc).

In particular,

(3.2.1) H̃0 − H̃ ∈ Lie(M ′
sc).
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On the other hand, im µ̃ lies in Zo(Msc), and so

(3.2.2) H̃0 − H̃ ∈ im dµ̃ ⊂ Lie(Zo(Msc)).

Since Lie(Zo(Msc)) ∩ Lie(M ′
sc) = 0, we deduce that H̃0 = H̃ by applying (3.2.1)

and (3.2.2). This completes the proof. �

3.3. The tangent map over any field. We now suppose that K is an arbitrary
field of characteristic p > 0. As in the previous section, we fix a homomorphism
φ : SL2 → G whose image is geometrically G-cr, and we assume that dφ �= 0.

We also fix an algebraically closed field k containing K.

Corollary 27. The K-subgroup C(X, Y ) = CG(X) ∩ CG(Y ) is smooth.

Proof. Working over the algebraically closed field k ⊃ K, let φ0 : SL2/k → G/k be
any optimal k-homomorphism as in Proposition 26. Write S0 ⊂ G/k for the image
of φ0, and recall that s/k = im dφ/k = im dφ0. Then we know that

CG/k
(S0) = CG/k

(s/k) = CG/k
(X) ∩ CG/k

(Y )

by Proposition 19; hence CG/k
(X) ∩ CG/k

(Y ) = (CG(X) ∩ CG(Y ))/k is smooth.
But then CG(X) ∩ CG(Y ) is smooth, since that is so after extension of the ground
field. �

Corollary 28. There is a cocharacter λ0 of G associated to X such that if φ0 :
SL2 → G is the optimal homomorphism determined by X and λ0, then dφ = dφ0.
Moreover, φ0 is uniquely determined by φ.

Proof. Since CG(X) ∩ CG(Y ) is smooth by the previous corollary, we can find a
maximal torus T of CG(X) ∩ CG(Y ) centralized by the image of the torus λ =
φ|T . Then the Levi subgroup M = CG(T ) is a strongly standard reductive K-
subgroup. As in Proposition 26(1), we may find maximal tori (now over K) of
CM (X) centralized by the image of λ; Proposition 26 then gives the first assertion
of the corollary. According to Theorem 16, an optimal homomorphism is uniquely
determined by its tangent mapping; the uniqueness assertion follows at once. �

4. Proof of the main theorem

4.1. A general setting. Let H be a connected and simple algebraic group. For
each strongly standard reductive group G, suppose that one is given a set CG of
homomorphisms H → G with the properties to be enumerated below.

Let G be strongly standard and let f0 ∈ CG be arbitrary; write S0 for the image
of f0. We assume that the following hold for each f0:

(C1) S0 is geometrically G-cr.
(C2) CG(S0) is a smooth subgroup of G, and CG(S0) = CG(Lie(S0)).
(C3) Lie(S0) = im df0.

We also suppose:
(C4) Given any homomorphism f : H → G for which df �= 0 and for which im f

is geometrically G-cr, there is a unique f0 ∈ CG such that df = df0.
(C5) If f : H → G is a homomorphism and if L ⊂ G is a Levi subgroup with

im f ⊂ L, then f ∈ CG if and only if f ∈ CL.
The following lemma gives a useful application of (C1) and (C2).
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Lemma 29. Let G be a reductive group and let S ⊂ G be a subgroup with the
property CG(S) = CG(Lie(S)). Suppose that S is geometrically G-cr. If K ⊂ k is
any field extension and P ⊂ G/k is a k-parabolic subgroup, then S/k ⊂ P if and
only if Lie(S)/k ⊂ Lie(P ).

Proof. Since the lemma follows once it is proved for algebraically closed extensions
k, it suffices to suppose that K itself is algebraically closed and to prove the conclu-
sion of the lemma for a (K-)parabolic subgroup P ⊂ G. First notice that if S ⊂ P ,
then clearly Lie(S) ⊂ Lie(P ).

Now suppose that s = Lie(S) ⊂ Lie(P ). Since S is G-cr, Theorem 8 shows that
s is also G-cr. Thus, we may find a Levi subgroup L ⊂ P with s ⊂ Lie(L). Then
L = CG(T ) where T = Z(L), and we see that

T ⊂ CG(s) = CG(S);

thus T centralizes S, so that S ⊂ CG(T ) = L ⊂ P , as required. �

We now observe:

Proposition 30. Let p > 2, let H = SL2, and for each strongly standard reductive
group G, let CG be the set of optimal homomorphisms SL2 → G. Then conditions
(C1)–(C5) of §4.1 hold for the sets CG.

Proof. (C1) follows from Theorem 16, (C2) is Proposition 19, (C4) is Corollary 28,
and (C5) is Proposition 21(1).

Since p > 2, the adjoint representation of SL2 is irreducible; since any optimal
homomorphism f : SL2 → G has df(E) �= 0, the map df must be injective and so
(C3) is immediate. �

4.2. Some results about twisted-product homomorphisms. Let H be a re-
ductive group and let CG be a collection of homomorphisms H → G for each strongly
standard group G which satisfies (C1)–(C5) of §4.1.

We are going to prove several technical results about twisted product homomor-
phisms; to avoid repetition in the statements, we fix the following notation:

Let �h = (h0, h1, . . . , hr) be commuting homomorphisms with hi ∈ CG (as in the
introduction), and let �n = (n0 < n1 < · · · < nr) be non-negative integers; the data
(�h, �n) determines a twisted-product homomorphism Φ = Φ�h,�n : H → G given for
each commutative K-algebra Λ and each g ∈ H(Λ) by the rule

(4.2.1) g �→ h0(Fn0g) · h1(Fn1g) · · ·hr(Fnrg).

Several of the results proved in this section hold only assuming a subset of the
conditions (C1)–(C5); for simplicity of exposition, we assume all five conditions
hold—we don’t bother to identify the subset.

Lemma 31. Let G be strongly standard, let �h, �n, and Φ = Φ�h,�n be as in the
beginning of §4.2. Then dΦ = 0 if and only if n0 > 0. If dΦ = 0, let Ψ be the
twisted-product homomorphism determined by (�h, (0, n1 − n0, . . . , nr − n0)). Then
Φ = Ψ ◦ Fn0 and dΨ �= 0. Moreover, im Φ = im Ψ.

Proof. Straightforward and left to the reader. �

Proposition 32. Let G be strongly standard, let (f1, f2) be commuting homomor-
phisms H → G with f1 ∈ CG. Let (n1 < n2) be non-negative integers, and let f be
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the twisted-product homomorphism determined by (f1, f2) and (n1, n2). Write Si

for the image of fi, i = 1, 2, and write S for the image of f . Then:
(1) for each field extension K ⊂ k and each parabolic subgroup P ⊂ G/k, we

have S/k ⊂ P if and only if S1/k ⊂ P and S2/k ⊂ P ;
(2) S1 · S2 is geometrically G-cr if and only if S is geometrically G-cr.

Proof. Note that (1) will follow once it is proved for algebraically closed extension
fields k of K. Thus, we suppose that k = K is algebraically closed and prove the
conclusion of (1) for parabolic subgroups P ⊂ G.

If the parabolic subgroup P ⊂ G contains S1 and S2, it is clear by the definition of
a twisted-product homomorphism that P contains S. Suppose now that P contains
S; we show it contains also S1 and S2.

Applying Lemma 31, one knows that if g : H → G is the twisted-product
homomorphism determined by (f1, f2) and (0, n2 − n1), then im g = S as well. We
may thus suppose that n1 = 0, so that df �= 0.

It is clear that df = df1. Since im df1 = Lie(S1), it follows that Lie(S) = Lie(S1).
Since S ⊂ P , we have Lie(S1) = Lie(S) ⊂ Lie(P ); since (C1) and (C2) hold, we
may apply Lemma 29 and conclude that S1 ⊂ P . Since f2 is given by the rule

g �→ f1(g)−1f(g),

it is then clear that S2 ⊂ P as well. This proves (1).
Since (2) is a geometric statement, we may again suppose that K is an alge-

braically closed field. Write X for the building of G; cf. [Ser 05, §2 and §3.1].
Then X is a simplicial complex whose simplices are in bijection with the parabolic
subgroups of G. We have shown the equality of fixed-point sets: XS = (XS2)S1 =
XS1·S2 .

According to [Ser 05, Théorème 2.1], the group S is G-cr if and only if XS =
XS1S2 is contractible if and only if S1 · S2 is G-cr. This proves (2). �

Corollary 33. Let G be strongly standard, and let �h, �n, Φ = Φ�h,�n be as in the
beginning of §4.2. Write S for the image of h and Si for the image of hi. If P ⊂ G/k

is a k-parabolic subgroup for an extension field K ⊂ k, then S/k ⊂ P if and only if
Si/k ⊂ P for i = 1, . . . , r.

Proof. It is enough to give the proof assuming that K = k is algebraically closed.
If Si ⊂ P for each i, it is clear by construction that S ⊂ P .

Now suppose that S ⊂ P . To prove that each Si ⊂ P , we proceed by induction on
r. If r = 1, the result is immediate. Suppose that r > 1, and let Ψ : H → G be the
twisted-product homomorphism determined by (h2, . . . , hr) and (n2−1, . . . , nr−1).
Then f may be regarded as the twisted-product homomorphism determined by
(h1, Ψ) and (0, 1). Thus we may apply Proposition 32(1) to see that S1 ⊂ P and
im Ψ ⊂ P . Now apply the induction hypothesis to Ψ to learn that Si ⊂ P for
2 ≤ i ≤ r. This completes the proof. �

Proposition 34. Let G be strongly standard, and let �h, �n, Φ = Φ�h,�n be as in
the beginning of §4.2. If S denotes the image of Φ and Si the image of hi, then
CG(S) ⊂ CG(Si) for 1 ≤ i ≤ r.

Proof. If r = 1, the result is immediate. Suppose r > 1, write Ψ for the homomor-
phism determined by (h2, . . . , hr) and (n2, . . . , nr) and write T = im Ψ. It suffices
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by induction on r to show that CG(S) ⊂ CG(S1) and CG(S) ⊂ CG(T ), since then
for 2 ≤ i ≤ r we have

CG(S) ⊂ CG(T ) ⊂ CG(Si)

by the induction hypothesis.
Applying Lemma 31, we may assume that n1 = 0 and dh �= 0 without changing

S. Thus Lie(S) = Lie(S1). By (C2), we have

CG(S) ⊂ CG(Lie(S)) = CG(Lie(S1)) = CG(S1).

Finally, it remains to check that CG(S) ⊂ CG(T ). Write Ψ∗, h∗
1, Φ∗ : K[G] →

K[H] for the comorphisms of Ψ, h1, and Φ. Then by construction, Ψ∗ is given by
the composition

K[G]
µ−→ K[G] ⊗K K[G] ι⊗id−−−→ K[G] ⊗K K[G]

h∗
1⊗Φ∗

−−−−→ K[H] ⊗K K[H] ∆−→ K[H],

where the map µ defines the multiplication in G, the map ι defines the inversion in
G, and ∆ is given by multiplication in K[H].

Let g ∈ CG(S)(Λ) for some commutative K-algebra Λ. To show that g ∈
CG(T )(Λ), it is enough to argue that the inner automorphism Int(g) of G in-
duces the identity on the subgroup scheme T/Λ. Since T is defined by the ideal
ker Ψ∗�K[G], it is enough to require that Ψ∗(Int(g)∗f) = Ψ∗(f) for each f ∈ Λ[G].
[Note: we write Ψ∗ rather than Ψ∗

/Λ for simplicity.]
Since g ∈ CG(S)(Λ) and g ∈ CG(S1)(Λ), we know for each f ∈ Λ[G] that

h∗
1(Int(g)∗f) = h∗

1(f) and Φ∗(Int(g)∗f) = Φ∗(f).

If f1 ⊗ f2 ∈ Λ[G] ⊗Λ Λ[G], then

(h∗
1 ⊗ Φ∗)((Int(g)∗ ⊗ Int(g)∗)(f1 ⊗ f2)) = h∗

1(Int(g)∗f1) ⊗ Φ∗(Int(g)∗f2)

= h∗
1(f1) ⊗ Φ∗(f2)

= (h∗
1 ⊗ Φ∗)(f1 ⊗ f2).

It follows for any f1 ∈ Λ[G] ⊗Λ Λ[G] that

(4.2.2) (h∗
1 ⊗ Φ∗)((Int(g)∗ ⊗ Int(g)∗)f1) = (h∗

1 ⊗ Φ∗)f1.

Since Int(g) is an automorphism of G, we have for f ∈ Λ[G] that

(4.2.3) ((ι ⊗ id) ◦ µ)(Int(g)∗f) = (Int(g)∗ ⊗ Int(g)∗)((ι ⊗ id) ◦ µ)(f).

Combining (4.2.2) and (4.2.3), we see that Ψ∗(Int(g)∗f) = Ψ∗(f) for each f ∈
Λ[G], as required. This completes the proof. �

Remark 35. With notation as before, one can even show that

CG(S) =
r⋂

i=1

CG(Si).

The inclusion CG(S) ⊂
⋂

i CG(Si) follows from the previous proposition, and the
reverse inclusion may be proved by showing for each commutative K-algebra Λ that
if g ∈ CG(Si)(Λ) for each i, then Φ∗(Int(g)∗f) = Φ∗(f) for each f ∈ Λ[G]; the proof
is like that used for the proposition.
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4.3. Finding the twisted factors of a homomorphism with G-cr image. Let
H be a reductive group and let CG be a collection of homomorphisms H → G for
each strongly standard group G which satisfies (C1)–(C5) of §4.1. In this section,
we are going to give the proof of Theorem 1.

We first have the following:

Proposition 36. Fix a strongly standard reductive group G, and let the homomor-
phism f : H → G have geometrically G-cr image S. Assume that df �= 0 and let
f0 ∈ CG be the unique map as in (C4) such that df = df0. Then:

(1) the map f1 : H → G given by the rule g �→ f0(g−1) · f(g) is a group
homomorphism.

(2) S1 = im f1 ⊂ CG(im f0).
(3) df1 = 0.
(4) S1 is geometrically G-cr.

Proof. Write S0 = im f0, and write f1 : H → G for the morphism defined by the
rule in (1). Let Λ be an arbitrary commutative K-algebra, let g ∈ H(Λ), and let
X ∈ Lie(H)(Λ). Since df = df0, we know that

Ad(f(g))df0(X) = Ad(f(g))df(X) = df(Ad(g)X)

= df0(Ad(g)X) = Ad(f0(g))df0(X).

It follows that Ad(f1(g)) = Ad(f0(g−1)f(g)) centralizes df0(X) for each X ∈
Lie(H)(Λ). Since im df0 = Lie(S0) by (C3), it follows that the image of f1 lies
in CG(Lie(S0)). If now g, h ∈ H(Λ), then we see that

f1(gh) = f0(h−1)f0(g−1)f(g)f(h) = f0(h−1)f1(g)f(h)

= f1(g)f0(h−1)f(h) = f1(g)f1(h).

Thus f1 is a homomorphism, so that (1) and (2) are proved. By construction, the
tangent map of f1 is df − df0 = 0; this proves (3).

Note that (2) implies that S0 ·S1 is a subgroup. Since S is geometrically G-cr, we
may apply Proposition 32 to see that S0 ·S1 is geometrically G-cr. Since S1�S0 ·S1

is a normal subgroup, it follows from the result of B. Martin (Theorem 9) that S1

is G-cr; this proves (4). �
Corollary 37. Let H be quasisimple and suppose that the homomorphism f : H →
G has geometrically G-cr image. Then there are uniquely determined commuting
CG-homomorphisms h0, h1, . . . , hr and uniquely determined non-negative integers
n0 < n1 · · · < nr such that f is the twisted-product homomorphism determined by
(�h, �n).

Proof. We may use Proposition 22 to find a homomorphism h : H → G and an
integer t ≥ 0 such that f = h ◦ F t where F is the Frobenius endomorphism of
H. Moreover, dh �= 0. If the conclusion of the theorem holds for h, we claim
that it holds for f as well. Indeed, if h is the twisted-product homomorphism
determined by the commuting CG-homomorphisms �h = (h0, h1, . . . , hr) and the
non-negative integers �n = (0 = n0 < · · · < nr), then f is the commuting-product
homomorphism determined by �h and the non-negative integers �m = (t < n1 +
t < · · · < nr + t). If f had a second representation as a commuting-product
homomorphism determined by �h′ = (h′

0, . . . , h
′
t) and �m′ = (m′

0 < · · · < m′
t), then

using Lemma 31 one could deduce that m′
0 = t and find a representation of h as
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the twisted product homomorphism determined by �h′ and (0 < m′
1− t < · · · < m′

t).
Thus �h = �h′ and �m = �m′; this proves the claim. So we may and will suppose that
df �= 0.

Let us first prove the uniqueness assertion; namely, suppose that �h = (h0, h1, . . . ,

ht) and �h′ = (h′
0, h

′
1, . . . , hs) are commuting homomorphisms with hi, h

′
j ∈ CG, and

suppose that �n = (n0 < · · · < nt) and �n′ = (n′
0 < · · · < n′

s) are non-negative
integers with 0 = n0 = n′

0, and suppose that f = Φ�h,�n = Φ�h′,�n′ . We must argue

that s = t, �h = �h′ and �n = �n′. We know that df = dh0 = dh′
0. Since h0 ∈ CG is the

unique mapping with df = dh0 by (C4), we have h0 = h′
0. It then follows that

Φ(h1,...,ht),(n1<···<nt) = Φ(h′
1,...,h′

t),(n
′
1<···<n′

t)
,

so by induction on min(s, t), we find that s = t, hi = h′
i and ni = n′

i for 1 ≤ i ≤ t;
this completes the proof of uniqueness.

For the existence, we choose by (C4) the unique map f0 ∈ CG such that df = df0.
We now write f1 : H → G for the homomorphism of Proposition 36(1). Thus f is
given by the rule

(4.3.1) g �→ f0(g) · f1(g).

Write S for the image of f , and write S0 and S1 for the respective images of f0 and
f1.

We proceed by induction on the semisimple rank r of G. If r is smaller than the
rank of the simple group H, there are no homomorphisms H → G. If the semisimple
rank of G is the same as the rank of H, then apply Lemma 38 to S0 ⊂ G′, where
G′ is the derived group of G. One deduces that CG′(S0) has no non-trivial torus,
hence that any torus in CG(S0) is central in G. Since SL2 is its own derived group,
im f1 lies in G′; thus im f1 is contained in CG′(S0) by Proposition 36(2), and it
follows that the map f1 is trivial. We conclude in this case that f = f0 ∈ CG.

We now suppose that the semisimple rank of G is strictly greater than the rank of
H. Since S1 ⊂ CG(S0), a maximal torus of S0 centralizes S1. Thus, the image of the
G-cr homomorphism f1 lies in some proper Levi subgroup L. Since the semisimple
rank of L is smaller than that of G, we may apply induction; we find commuting
homomorphisms h1, . . . , hr ∈ CL and non-negative integers n1 < n2 < · · · < nr

such that f1 is the twisted-product map determined by (�h, �n). Since df1 = 0, we
have 0 < n1. It follows from (C5) that h1, . . . , hr ∈ CG.

Since im f0 = S0 ⊂ CG(S1), it follows from Proposition 34 applied to f1 that
S0 ⊂ CG(im hi) for 1 ≤ i ≤ r. Thus the homomorphisms (f0, h1, . . . , hr) are
commuting. In view of (4.3.1), f is the twisted-product homomorphism determined
by (f0, h1, . . . , hr) and (0 < n1 < · · · < nr). �

Lemma 38. Let X and Y be semisimple groups of the same rank, and suppose
that X ⊂ Y . Then CY (X) contains no non-trivial torus.

Proof. Let S ⊂ Y be any torus centralizing X, and let T be a maximal torus of
X. Since T is centralized by S and is also maximal in Y , we have S ⊂ T so that
S ⊂ X. Thus S is a central torus in X. Since X is semisimple, S is trivial as
required. �

We can now prove the following; note that Theorem 1 is a special case.
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Theorem 39. Let G be a strongly standard reductive group, and let Φ : SL2 →
G be a homomorphism. If the image of Φ is geometrically G-cr, then there are
commuting optimal homomorphisms �φ = (φ0, . . . , φr) and non-negative integers
�n = (n0 < n1 < · · · < nd) such that Φ is the twisted-product homomorphism
determined by (�φ, �n). Moreover, �φ and �n are uniquely determined by Φ.

Proof. For a strongly standard reductive group G, write CG for the set of opti-
mal homomorphisms SL2 → G. Suppose first that p > 2. Then Theorem 1 is a
consequence of Proposition 30 together with Corollary 37.

Now suppose that p = 2. Use (2.4.1) to find a central isogeny π : Gsc → G where
the derived group of Gsc is simply connected. Since SL2 is simply connected, there
is a homomorphism Φ̃ : SL2 → Gsc with Φ = π ◦ Φ̃. It follows from Lemma 10 that
Φ̃ has geometrically G-cr image. Proposition 21(2) shows that a homomorphism
f : SL2 → Gsc is optimal if and only if π ◦ f : SL2 → G is optimal.

If Φ̃ is the twisted product homomorphism determined by the optimal homomor-
phisms �φ = (φ0, . . . , φr) and the non-negative integers �n = (n0 < n1 < · · · < nr), it
is then clear that Φ is the twisted product homomorphism determined by the opti-
mal homomorphisms �φ′ = (π ◦ φ0, . . . , π ◦ φr) and �n. Moreover, the uniqueness of
�φ implies the uniqueness of �φ′; thus it suffices to prove the theorem after replacing
G by Gsc. So we now assume that the derived group of G is simply connected.

Assume first that K is separably closed. Recall that since p = 2 is good for the
derived group of G, each of its simple factors has type Am for some m. Since G
is split and simply connected, we find that G � T ×

∏t
i=1 Gi where T is a central

torus, and Gi � SL(Vi) for a vector space Vi. Write πi : G → Gi for the i-th
projection, and Φi = πi ◦ Φ. Steinberg’s tensor product theorem [Jan 87, Cor.
II.3.17] shows that Φi may be written as a twisted-product homomorphism for a
unique collection of commuting optimal homomorphisms and a unique increasing
list of non-negative integers; see [LS 03, Lemma 4.1]. The same then clearly holds
for Φ, so the Theorem is proved in this case.

For general K, the above argument represents the base-changed morphism Φ/Ksep

as the twisted product homomorphism Φ�φ,�n for unique commuting optimal Ksep-

homomorphisms �φ = (φ0, . . . , φt) and unique �n = (n0 < n1 < · · · < nt). Since �φ
and �n are unique, we may apply Galois descent to see that each φi arises by base
change from an optimal K-homomorphism, and the proof is complete. �

5. Proof of a partial converse to the main theorem

In this section, we will prove Theorem 2, which is a geometric statement—it
depends only on G and H over an algebraically closed field. Thus we will suppose
in this section that K is algebraically closed, and we will write “G-cr” rather than
“geometrically G-cr”.

We begin with a result on G-cr subgroups.

Proposition 40. Let G be reductive, let h(G) be the maximum Coxeter number of
a simple quotient of G, and suppose that p > 2h(G) − 2. Let A, B ⊂ G be smooth,
connected, and G-cr, and suppose that B ⊂ CG(A). Then A · B is G-cr.

Proof. Under our assumptions on p, it follows from [Ser 05, Corollaire 5.5] that
a subgroup Γ ⊂ G is G-cr if and only if the representation of Γ on Lie(G) is
semisimple.
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Since a smooth, connected G-cr subgroup is reductive [Ser 05, Prop. 4.1], the
proposition is now a consequence of the lemma which follows. �

Lemma 41. Let G1, G2 ⊂ GL(V ) be connected and reductive, and suppose G2 ⊂
CGL(V )(G1). Then V is semisimple for G1 · G2.

Proof. Write H = G1 · G2. Since H is a quotient of the reductive group G1 × G2

by a central subgroup, H is reductive.
Since G1 and G2 commute, G2 leaves stable the G1-isotypic components of V .

Thus we may write V as a direct sum of H-submodules which are isotypic for both
G1 and G2. Thus we may as well assume that V itself is isotypic for G1 and for
G2.

Let Bi ⊂ Gi be Borel subgroups and let Ti ⊂ Bi be maximal tori for i = 1, 2.
Note that the choice of a Borel subgroup determines a system of positive roots in
each X∗(Ti); the weights of Ti on Ui = Ru(Bi) are positive. Our hypothesis means
that there are dominant weights λi ∈ X∗(Ti) such that each simple Gi-submodule
of V is isomorphic to LGi

(λi), the simple Gi-module with highest weight λi.
Now, B = B1 ·B2 is a Borel subgroup of H, and T = T1 ·T2 is a maximal torus of

B. Since T1 ∩T2 lies in the center of H, one knows that there is a unique character
λ ∈ X∗(T ) such that λ|Ti

= λi for i = 1, 2. Moreover, it is clear that λ is dominant.
Put U = U1 · U2 = Ru(B).

It follows from [Jan 87, II.2.12(1)] that there are no non-trivial self-extensions
of simple H-modules; thus the lemma will follow if we show that all simple H-
submodules of V are isomorphic to LH(λ).

Let L ⊂ V be a simple H-submodule; we claim that L � LH(λ). Since L is
simple, the fixed point space of U on L satisfies dimK LU = 1 and our claim will
follow once we show that LU ⊂ LT ;λ since then LU = LT ;λ and L � LH(λ); for
all this, see [Jan 87, Prop. II.2.4] (we are writing LT ;λ for the λ weight space of
the torus T on L). Since L is semisimple and G1-isotypic, LU1 = LT1;λ1 . Since
G2 ⊂ CGL(V )(G1), LU1 is a G2-submodule. Since LU1 is semisimple and isotypic as
a G2-module, we know that LU = (LU1)U2 = (LU1)T2;λ2 . Thus LU ⊂ LT1;λ1∩LT2;λ2 ,
so indeed LU = LT ;λ as required. �

Suppose that H is a simple group, and that for each strongly standard group G,
one has a set CG of homomorphisms H → G satisfying (C1)–(C5) of §4.1.

Theorem 42. Let G be strongly standard and assume that p > 2h(G) − 2. Let
h0, . . . , hr be commuting CG-homomorphisms, and let n0 < n1 < · · · < nr be non-
negative integers. Then the image of the twisted-product homomorphism h deter-
mined by (�h, �n) is geometrically G-cr.

Proof. Write Si for the image of hi, 0 ≤ i ≤ r. By (C1), Si is G-cr for 0 ≤ i ≤ r.
In view of our assumption on p, it follows from Proposition 40 that the subgroup
A = S0 · S1 · · ·Sr is G-cr.

Write X for the building of G. If S = im h, Corollary 33 shows that XS = XA.
Since A is G-cr, XA = XS is not contractible, so that S is G-cr [Ser 05, Théorème
2.1]. �

Theorem 43. Let G be a strongly standard reductive group, suppose that p >

2h(G) − 2, let �φ = (φ0, . . . , φd) be commuting optimal homomorphisms SL2 → G,
and let �n = (n0 < n1 < · · · < nd) be non-negative integers. Then the image of the
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twisted-product homomorphism Φ : SL2 → G determined by (�φ, �n) is geometrically
G-cr.

Proof. As in the proof of Theorem 1, write CG for the set of optimal homomorphisms
SL2 → G for a strongly standard group G. Note that the condition p > 2h(G) − 2
implies that p > 2. Then Theorem 2 is a consequence of Proposition 30 and
Theorem 42. �

Of course, Theorem 2 is a special case of the previous result.

Remark 44. Let G be one of the following groups: (i) GL(V ), (ii) the symplectic
group Sp(V ), (iii) the orthogonal group SO(V ), or (iv) a group of type G2. In cases
(ii), (iii) assume p > 2 while in case (iv) assume that p > 3; then p is very good
for G. In case (iv), write V for the 7-dimensional irreducible module for G; thus
in each case V is the “natural” module for G. Then a closed subgroup H ⊂ G is
G-cr if and only if V is semisimple as an H-module; see [Ser 05, 3.2.2]. Thus, the
conclusion of Theorem 2 holds for G (with no further prime restrictions). Indeed,
in view of Lemma 41, one finds that the conclusion of Proposition 40 is valid with
no further assumption on p by using V rather than the adjoint representation of
G. Now argue as in the proof of Theorem 42 when p > 2, or just use Steinberg’s
tensor product theorem when p = 2 (since we are supposing G = GL(V ) in that
case).
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Géometrie Algébrique du Bois Marie, 1965.

[Jan 87] Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Sur-
veys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003.
MR2015057 (2004h:20061)

[Ja 04] Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie Theory: Lie Alge-
bras and Representations, 2004, pp. 1–211. MR2042688 (2004j:22001)

[Hu 95] James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Math. Surveys
and Monographs, vol. 43, Amer. Math. Soc., 1995. MR1343976 (97i:20057)

[KMRT] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The
book of involutions, Amer. Math. Soc. Colloq. Publ., vol. 44, Amer. Math. Soc., 1998.

[LS 03] Martin W. Liebeck and Gary M. Seitz, Variations on a theme of Steinberg, J. Algebra

260 (2003), 261–297. Special issue celebrating the 80th birthday of Robert Steinberg.
MR1973585 (2004g:20064)

[Li 02] Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Math-
ematics, Oxford University Press, 2002. Translated from the French by Reinie Erné.
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