Geometry of phase space and solutions of semilinear elliptic equations in a ball
Authors:
Jean Dolbeault and Isabel Flores
Journal:
Trans. Amer. Math. Soc. 359 (2007), 4073-4087
MSC (2000):
Primary 35B33; Secondary 34C37, 34C20, 35J60
DOI:
https://doi.org/10.1090/S0002-9947-07-04397-8
Published electronically:
April 11, 2007
MathSciNet review:
2309176
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We consider the problem
















- 1. F. V. Atkinson, H. Brezis, and L. A. Peletier, Nodal solutions of elliptic equations with critical Sobolev exponents, J. Differential Equations 85 (1990), no. 1, 151–170. MR 1052332, https://doi.org/10.1016/0022-0396(90)90093-5
- 2. Rodrigo Bamón, Isabel Flores, and Manuel del Pino, Ground states of semilinear elliptic equations: a geometric approach, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), no. 5, 551–581 (English, with English and French summaries). MR 1791878, https://doi.org/10.1016/S0294-1449(00)00126-8
- 3. G. R. Belickiĭ, Equivalence and normal forms of germs of smooth mappings, Uspekhi Mat. Nauk 33 (1978), no. 1(199), 95–155, 263 (Russian). MR 490708
- 4. G. R. Belickiĭ, Normal′nye formy, invarianty i lokal′nye otobrazheniya, “Naukova Dumka”, Kiev, 1979 (Russian). MR 537763
- 5. Rafael D. Benguria, Jean Dolbeault, and Maria J. Esteban, Classification of the solutions of semilinear elliptic problems in a ball, J. Differential Equations 167 (2000), no. 2, 438–466. MR 1793200, https://doi.org/10.1006/jdeq.2000.3792
- 6. Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477. MR 709644, https://doi.org/10.1002/cpa.3160360405
- 7. C. Budd and J. Norbury, Semilinear elliptic equations and supercritical growth, J. Differential Equations 68 (1987), no. 2, 169–197. MR 892022, https://doi.org/10.1016/0022-0396(87)90190-2
- 8. C. B. Clemons and C. K. R. T. Jones, A geometric proof of the Kwong-McLeod uniqueness result, SIAM J. Math. Anal. 24 (1993), no. 2, 436–443. MR 1205535, https://doi.org/10.1137/0524027
- 9. G. Cerami, S. Solimini, and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986), no. 3, 289–306. MR 867663, https://doi.org/10.1016/0022-1236(86)90094-7
- 10. Manuel Del Pino, Jean Dolbeault, and Monica Musso, “Bubble-tower” radial solutions in the slightly supercritical Brezis-Nirenberg problem, J. Differential Equations 193 (2003), no. 2, 280–306. MR 1998635, https://doi.org/10.1016/S0022-0396(03)00151-7
- 11. Manuel del Pino, Jean Dolbeault, and Monica Musso, A phase plane analysis of the “multi-bubbling” phenomenon in some slightly supercritical equations, Monatsh. Math. 142 (2004), no. 1-2, 57–79. MR 2065022, https://doi.org/10.1007/s00605-004-0236-5
- 12. Manuel del Pino, Jean Dolbeault, and Monica Musso, The Brezis-Nirenberg problem near criticality in dimension 3, J. Math. Pures Appl. (9) 83 (2004), no. 12, 1405–1456 (English, with English and French summaries). MR 2103187, https://doi.org/10.1016/j.matpur.2004.02.007
- 13. Jean Dolbeault, Maria J. Esteban, and Mythily Ramaswamy, Radial singular solutions of a critical problem in a ball, Differential Integral Equations 15 (2002), no. 12, 1459–1474. MR 1920255
- 14. Lynn Erbe and Moxun Tang, Uniqueness of positive radial solutions of Δ𝑢+𝐾(|𝑥|)𝛾(𝑢)=0, Differential Integral Equations 11 (1998), no. 4, 663–678. MR 1666214
- 15. Lynn Erbe and Moxun Tang, Uniqueness theorems for positive radial solutions of quasilinear elliptic equations in a ball, J. Differential Equations 138 (1997), no. 2, 351–379. MR 1462272, https://doi.org/10.1006/jdeq.1997.3279
- 16. R. Fowler, Further studies of Emden's and similar differential equations, Quart. J. Math. 2 (1931), 259-288.
- 17. B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879
- 18. M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173
- 19. Man Kam Kwong and Yi Li, Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc. 333 (1992), no. 1, 339–363. MR 1088021, https://doi.org/10.1090/S0002-9947-1992-1088021-X
- 20. Jon Jacobsen and Klaus Schmitt, The Liouville-Bratu-Gelfand problem for radial operators, J. Differential Equations 184 (2002), no. 1, 283–298. MR 1929156, https://doi.org/10.1006/jdeq.2001.4151
- 21. Russell A. Johnson, Xing Bin Pan, and Yingfei Yi, The Mel′nikov method and elliptic equations with critical exponent, Indiana Univ. Math. J. 43 (1994), no. 3, 1045–1077. MR 1305959, https://doi.org/10.1512/iumj.1994.43.43046
- 22. D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73), 241–269. MR 340701, https://doi.org/10.1007/BF00250508
- 23. F. Merle and L. A. Peletier, Positive solutions of elliptic equations involving supercritical growth, Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), no. 1-2, 49–62. MR 1113842, https://doi.org/10.1017/S0308210500028882
- 24. F. Merle, L. A. Peletier, and J. Serrin, A bifurcation problem at a singular limit, Indiana Univ. Math. J. 43 (1994), no. 2, 585–609. MR 1291530, https://doi.org/10.1512/iumj.1994.43.43024
- 25. Wei-Ming Ni, Uniqueness of solutions of nonlinear Dirichlet problems, J. Differential Equations 50 (1983), no. 2, 289–304. MR 719451, https://doi.org/10.1016/0022-0396(83)90079-7
- 26. Tiancheng Ouyang and Junping Shi, A bifurcation approach to the exact multiplicity of positive solutions of Δ𝑢+𝜆𝑓(𝑢)=0 on the unit ball, Discrete Contin. Dynam. Systems Added Volume II (1998), 162–173. Dynamical systems and differential equations, Vol. II (Springfield, MO, 1996). MR 1721186
- 27. Tiancheng Ouyang and Junping Shi, Exact multiplicity of positive solutions for a class of semilinear problem. II, J. Differential Equations 158 (1999), no. 1, 94–151. MR 1721723, https://doi.org/10.1016/S0022-0396(99)80020-5
- 28. Jacob Palis Jr. and Welington de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982. An introduction; Translated from the Portuguese by A. K. Manning. MR 669541
- 29. S. I. Pohožaev, On the eigenfunctions of the equation Δ𝑢+𝜆𝑓(𝑢)=0, Dokl. Akad. Nauk SSSR 165 (1965), 36–39 (Russian). MR 0192184
- 30. James Serrin and Moxun Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J. 49 (2000), no. 3, 897–923. MR 1803216, https://doi.org/10.1512/iumj.2000.49.1893
- 31. Junping Shi, Exact multiplicity of positive solutions to a superlinear problem, Proceedings of the Fifth Mississippi State Conference on Differential Equations and Computational Simulations (Mississippi State, MS, 2001) Electron. J. Differ. Equ. Conf., vol. 10, Southwest Texas State Univ., San Marcos, TX, 2003, pp. 257–265. MR 1976648
- 32. P. N. Srikanth, Uniqueness of solutions of nonlinear Dirichlet problems, Differential Integral Equations 6 (1993), no. 3, 663–670. MR 1202564
- 33. Li Qun Zhang, Uniqueness of positive solutions to semilinear elliptic equations, Acta Math. Sci. (Chinese) 11 (1991), no. 2, 130–142 (Chinese). MR 1129746
- 34. Li Qun Zhang, Uniqueness of positive solutions of Δ𝑢+𝑢+𝑢^{𝑝}=0 in a ball, Comm. Partial Differential Equations 17 (1992), no. 7-8, 1141–1164. MR 1179281, https://doi.org/10.1080/03605309208820880
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35B33, 34C37, 34C20, 35J60
Retrieve articles in all journals with MSC (2000): 35B33, 34C37, 34C20, 35J60
Additional Information
Jean Dolbeault
Affiliation:
Ceremade (UMR CNRS no. 7534), Université Paris IX-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cédex 16, France
Email:
dolbeaul@ceremade.dauphine.fr
Isabel Flores
Affiliation:
Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 447, Chillán, Chile
Address at time of publication:
Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170, Coreo 3, Santiago, Chile
DOI:
https://doi.org/10.1090/S0002-9947-07-04397-8
Received by editor(s):
March 24, 2004
Published electronically:
April 11, 2007
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.