Recursive subhomogeneous algebras

Author:
N. Christopher Phillips

Journal:
Trans. Amer. Math. Soc. **359** (2007), 4595-4623

MSC (2000):
Primary 46L05; Secondary 19A13, 19B14, 19K14, 46L80

DOI:
https://doi.org/10.1090/S0002-9947-07-03850-0

Published electronically:
May 11, 2007

MathSciNet review:
2320643

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce and characterize a particularly tractable class of unital type 1 C*-algebras with bounded dimension of irreducible representations. Algebras in this class are called recursive subhomogeneous algebras, and they have an inductive description (through iterated pullbacks) which allows one to carry over from algebras of the form $C (X, M_n)$ many of the constructions relevant in the study of the stable rank and K-theory of simple direct limits of homogeneous C*-algebras. Our characterization implies, in particular, that if $A$ is a separable C*-algebra whose irreducible representations all have dimension at most $N < \infty ,$ and if for each $n$ the space of $n$-dimensional irreducible representations has finite covering dimension, then $A$ is a recursive subhomogeneous algebra. We demonstrate the good properties of this class by proving subprojection and cancellation theorems in it. Consequences for simple direct limits of recursive subhomogeneous algebras, with applications to the transformation group C*-algebras of minimal homeomorphisms, will be given in separate papers.

- Charles A. Akemann, Gert K. Pedersen, and Jun Tomiyama,
*Multipliers of $C^ *$-algebras*, J. Functional Analysis**13**(1973), 277–301. MR**0470685**, DOI https://doi.org/10.1016/0022-1236%2873%2990036-0 - Bruce Blackadar,
*$K$-theory for operator algebras*, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR**859867** - Bruce Blackadar,
*Matricial and ultramatricial topology*, Operator algebras, mathematical physics, and low-dimensional topology (Istanbul, 1991) Res. Notes Math., vol. 5, A K Peters, Wellesley, MA, 1993, pp. 11–38. MR**1259056** - B. Blackadar,
*Operator algebras*, Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, 2006. Theory of $C^*$-algebras and von Neumann algebras; Operator Algebras and Non-commutative Geometry, III. MR**2188261** - Bruce Blackadar, Marius Dădărlat, and Mikael Rørdam,
*The real rank of inductive limit $C^*$-algebras*, Math. Scand.**69**(1991), no. 2, 211–216 (1992). MR**1156427**, DOI https://doi.org/10.7146/math.scand.a-12379 - Ola Bratteli, George A. Elliott, David E. Evans, and Akitaka Kishimoto,
*Finite group actions on AF algebras obtained by folding the interval*, $K$-Theory**8**(1994), no. 5, 443–464. MR**1310287**, DOI https://doi.org/10.1007/BF00961400 - M. Dadarlat and G. Gong,
*A classification result for approximately homogeneous $C^*$-algebras of real rank zero*, Geom. Funct. Anal.**7**(1997), no. 4, 646–711. MR**1465599**, DOI https://doi.org/10.1007/s000390050023 - Marius Dădărlat, Gabriel Nagy, András Némethi, and Cornel Pasnicu,
*Reduction of topological stable rank in inductive limits of $C^*$-algebras*, Pacific J. Math.**153**(1992), no. 2, 267–276. MR**1151561** - Jacques Dixmier,
*$C^ *$-algebras*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett; North-Holland Mathematical Library, Vol. 15. MR**0458185** - P. Donovan and M. Karoubi,
*Graded Brauer groups and $K$-theory with local coefficients*, Inst. Hautes Études Sci. Publ. Math.**38**(1970), 5–25. MR**282363** - Samuel Eilenberg and Norman Steenrod,
*Foundations of algebraic topology*, Princeton University Press, Princeton, New Jersey, 1952. MR**0050886** - George A. Elliott,
*On the classification of $C^*$-algebras of real rank zero*, J. Reine Angew. Math.**443**(1993), 179–219. MR**1241132**, DOI https://doi.org/10.1515/crll.1993.443.179 - Ryszard Engelking,
*Teoria wymiaru*, Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51]. MR**0482696** - J. M. G. Fell,
*The structure of algebras of operator fields*, Acta Math.**106**(1961), 233–280. MR**164248**, DOI https://doi.org/10.1007/BF02545788 - K. R. Goodearl,
*Riesz decomposition in inductive limit $C^*$-algebras*, Rocky Mountain J. Math.**24**(1994), no. 4, 1405–1430. MR**1322235**, DOI https://doi.org/10.1216/rmjm/1181072345 - Dale Husemoller,
*Fibre bundles*, 3rd ed., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994. MR**1249482** - Xinhui Jiang and Hongbing Su,
*A classification of simple limits of splitting interval algebras*, J. Funct. Anal.**151**(1997), no. 1, 50–76. MR**1487770**, DOI https://doi.org/10.1006/jfan.1997.3120 - Xinhui Jiang and Hongbing Su,
*On a simple unital projectionless $C^*$-algebra*, Amer. J. Math.**121**(1999), no. 2, 359–413. MR**1680321** - John L. Kelley,
*General topology*, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. MR**0070144** - H. Lin and N. C. Phillips,
*Crossed products by minimal homeomorphisms*, in preparation. - Q. Lin,
*Analytic structure of the transformation group $C^*$-algebra associated with minimal dynamical systems*, preprint. - Q. Lin and N. Christopher Phillips,
*Ordered $K$-theory for $C^\ast $-algebras of minimal homeomorphisms*, Operator algebras and operator theory (Shanghai, 1997) Contemp. Math., vol. 228, Amer. Math. Soc., Providence, RI, 1998, pp. 289–314. MR**1667666**, DOI https://doi.org/10.1090/conm/228/03293 - Qing Lin and N. Christopher Phillips,
*Direct limit decomposition for $C^*$-algebras of minimal diffeomorphisms*, Operator algebras and applications, Adv. Stud. Pure Math., vol. 38, Math. Soc. Japan, Tokyo, 2004, pp. 107–133. MR**2059804**, DOI https://doi.org/10.2969/aspm/03810107 - Q. Lin and N. C. Phillips,
*The structure of C*-algebras of minimal diffeomorphisms*, in preparation. - Terry A. Loring,
*Lifting solutions to perturbing problems in $C^*$-algebras*, Fields Institute Monographs, vol. 8, American Mathematical Society, Providence, RI, 1997. MR**1420863** - Mircea Martin and Cornel Pasnicu,
*Some comparability results in inductive limit $C^*$-algebras*, J. Operator Theory**30**(1993), no. 1, 137–147. MR**1302612** - J. Milnor,
*Differential Topology*, mimeographed notes, Princeton University, 1958. - James R. Munkres,
*Topology: a first course*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975. MR**0464128** - J. Mygind,
*Classification of simple inductive limits of interval algebras with dimension drops*, preprint 1998. - Jesper Mygind,
*Classification of certain simple $C^*$-algebras with torsion in $K_1$*, Canad. J. Math.**53**(2001), no. 6, 1223–1308. MR**1863849**, DOI https://doi.org/10.4153/CJM-2001-046-2 - A. R. Pears,
*Dimension theory of general spaces*, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. MR**0394604** - Gert K. Pedersen,
*Pullback and pushout constructions in $C^*$-algebra theory*, J. Funct. Anal.**167**(1999), no. 2, 243–344. MR**1716199**, DOI https://doi.org/10.1006/jfan.1999.3456 - N. Christopher Phillips,
*Representable $K$-theory for $\sigma $-$C^*$-algebras*, $K$-Theory**3**(1989), no. 5, 441–478. MR**1050490**, DOI https://doi.org/10.1007/BF00534137 - N. Christopher Phillips,
*The $C^*$ projective length of $n$-homogeneous $C^*$-algebras*, J. Operator Theory**31**(1994), no. 2, 253–276. MR**1331776** - N. C. Phillips,
*Cancellation and stable rank for direct limits of recursive subhomogeneous algebras*, Trans. Amer. Math. Soc., this issue. - N. C. Phillips,
*Real rank and property (SP) for direct limits of recursive subhomogeneous algebras*, Trans. Amer. Math. Soc., to appear. - Marc A. Rieffel,
*$C^{\ast } $-algebras associated with irrational rotations*, Pacific J. Math.**93**(1981), no. 2, 415–429. MR**623572** - Marc A. Rieffel,
*Dimension and stable rank in the $K$-theory of $C^{\ast }$-algebras*, Proc. London Math. Soc. (3)**46**(1983), no. 2, 301–333. MR**693043**, DOI https://doi.org/10.1112/plms/s3-46.2.301 - Marc A. Rieffel,
*The homotopy groups of the unitary groups of noncommutative tori*, J. Operator Theory**17**(1987), no. 2, 237–254. MR**887221** - Edwin H. Spanier,
*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112** - Richard G. Swan,
*Vector bundles and projective modules*, Trans. Amer. Math. Soc.**105**(1962), 264–277. MR**143225**, DOI https://doi.org/10.1090/S0002-9947-1962-0143225-6 - Klaus Thomsen,
*Limits of certain subhomogeneous $C^*$-algebras*, Mém. Soc. Math. Fr. (N.S.)**71**(1997), vi+125 pp. (1998) (English, with English and French summaries). MR**1649315**, DOI https://doi.org/10.24033/msmf.385 - Jun Tomiyama and Masamichi Takesaki,
*Applications of fibre bundles to the certain class of $C^{\ast } $-algebras*, Tohoku Math. J. (2)**13**(1961), 498–522. MR**139025**, DOI https://doi.org/10.2748/tmj/1178244253 - N. B. Vasil′ev,
*$C^{\ast } $-algebras with finite-dimensional irreducible representations*, Uspehi Mat. Nauk**21**(1966), no. 1 (127), 135–154 (Russian). MR**0201994**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
46L05,
19A13,
19B14,
19K14,
46L80

Retrieve articles in all journals with MSC (2000): 46L05, 19A13, 19B14, 19K14, 46L80

Additional Information

**N. Christopher Phillips**

Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222

Received by editor(s):
January 22, 2001

Received by editor(s) in revised form:
August 2, 2004

Published electronically:
May 11, 2007

Additional Notes:
This research was partially supported by NSF grants DMS 9400904 and DMS 9706850

Article copyright:
© Copyright 2007
American Mathematical Society