## Morse decompositions of nonautonomous dynamical systems

HTML articles powered by AMS MathViewer

- by Martin Rasmussen PDF
- Trans. Amer. Math. Soc.
**359**(2007), 5091-5115 Request permission

## Abstract:

The global asymptotic behavior of dynamical systems on compact metric spaces can be described via Morse decompositions. Their components, the so-called Morse sets, are obtained as intersections of attractors and repellers of the system. In this paper, new notions of attractor and repeller for nonautonomous dynamical systems are introduced which are designed to establish nonautonomous generalizations of the Morse decomposition. The dynamical properties of these decompositions are discussed, and nonautonomous Lyapunov functions which are constant on the Morse sets are constructed explicitly. Moreover, Morse decompositions of one-dimensional and linear systems are studied.## References

- Ethan Akin,
*The general topology of dynamical systems*, Graduate Studies in Mathematics, vol. 1, American Mathematical Society, Providence, RI, 1993. MR**1219737**, DOI 10.1090/gsm/001 - Ludwig Arnold,
*Random dynamical systems*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR**1723992**, DOI 10.1007/978-3-662-12878-7 - Ludwig Arnold and Björn Schmalfuss,
*Lyapunov’s second method for random dynamical systems*, J. Differential Equations**177**(2001), no. 1, 235–265. MR**1867618**, DOI 10.1006/jdeq.2000.3991 - C. J. Braga Barros and L. A. B. San Martin,
*Chain Transitive Sets for Flows on Flag Bundles*, to appear in: Forum Mathematicum. - Fritz Colonius and Wolfgang Kliemann,
*The Morse spectrum of linear flows on vector bundles*, Trans. Amer. Math. Soc.**348**(1996), no. 11, 4355–4388. MR**1329532**, DOI 10.1090/S0002-9947-96-01524-3 - Fritz Colonius and Wolfgang Kliemann,
*The dynamics of control*, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2000. With an appendix by Lars Grüne. MR**1752730**, DOI 10.1007/978-1-4612-1350-5 - Fritz Colonius and Wolfgang Kliemann,
*Morse decompositions and spectra on flag bundles*, J. Dynam. Differential Equations**14**(2002), no. 4, 719–741. MR**1940100**, DOI 10.1023/A:1020756125179 - Charles Conley,
*Isolated invariant sets and the Morse index*, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR**511133**, DOI 10.1090/cbms/038 - Hans Crauel, Luu Hoang Duc, and Stefan Siegmund,
*Towards a Morse theory for random dynamical systems*, Stoch. Dyn.**4**(2004), no. 3, 277–296. MR**2086941**, DOI 10.1142/S0219493704001073 - Franco Flandoli and Björn Schmalfuss,
*Random attractors for the $3$D stochastic Navier-Stokes equation with multiplicative white noise*, Stochastics Stochastics Rep.**59**(1996), no. 1-2, 21–45. MR**1427258**, DOI 10.1080/17442509608834083 - John Franks,
*A variation on the Poincaré-Birkhoff theorem*, Hamiltonian dynamical systems (Boulder, CO, 1987) Contemp. Math., vol. 81, Amer. Math. Soc., Providence, RI, 1988, pp. 111–117. MR**986260**, DOI 10.1090/conm/081/986260 - P. E. Kloeden,
*Lyapunov functions for cocycle attractors in nonautonomous difference equations*, Bul. Acad. Ştiinţe Repub. Mold. Mat.**1**(1998), 32–42, 150, 153 (English, with English, Russian and Moldavian summaries). MR**1659222** - Peter E. Kloeden,
*A Lyapunov function for pullback attractors of nonautonomous differential equations*, Proceedings of the Conference on Nonlinear Differential Equations (Coral Gables, FL, 1999) Electron. J. Differ. Equ. Conf., vol. 5, Southwest Texas State Univ., San Marcos, TX, 2000, pp. 91–102. MR**1799047** - Peter E. Kloeden, Hannes Keller, and Björn Schmalfuß,
*Towards a theory of random numerical dynamics*, Stochastic dynamics (Bremen, 1997) Springer, New York, 1999, pp. 259–282. MR**1678487**, DOI 10.1007/0-387-22655-9_{1}1 - Douglas E. Norton,
*The fundamental theorem of dynamical systems*, Comment. Math. Univ. Carolin.**36**(1995), no. 3, 585–597. MR**1364499** - G. Ochs,
*Weak Random Attractors*, Report Nr. 449, Institut für Dynamische Systeme, Universität Bremen, 1999. - Clark Robinson,
*Dynamical systems*, 2nd ed., Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1999. Stability, symbolic dynamics, and chaos. MR**1792240** - Krzysztof P. Rybakowski,
*The homotopy index and partial differential equations*, Universitext, Springer-Verlag, Berlin, 1987. MR**910097**, DOI 10.1007/978-3-642-72833-4 - Dietmar Salamon and Eduard Zehnder,
*Flows on vector bundles and hyperbolic sets*, Trans. Amer. Math. Soc.**306**(1988), no. 2, 623–649. MR**933310**, DOI 10.1090/S0002-9947-1988-0933310-9 - James F. Selgrade,
*Isolated invariant sets for flows on vector bundles*, Trans. Amer. Math. Soc.**203**(1975), 359–390. MR**368080**, DOI 10.1090/S0002-9947-1975-0368080-X - George R. Sell,
*Nonautonomous differential equations and topological dynamics. I. The basic theory*, Trans. Amer. Math. Soc.**127**(1967), 241–262. MR**212313**, DOI 10.1090/S0002-9947-1967-0212313-2 - George R. Sell,
*Nonautonomous differential equations and topological dynamics. I. The basic theory*, Trans. Amer. Math. Soc.**127**(1967), 241–262. MR**212313**, DOI 10.1090/S0002-9947-1967-0212313-2 - George R. Sell,
*Topological dynamics and ordinary differential equations*, Van Nostrand Reinhold Mathematical Studies, No. 33, Van Nostrand Reinhold Co., London, 1971. MR**0442908**

## Additional Information

**Martin Rasmussen**- Affiliation: Department of Mathematics, University of Augsburg, D-86135 Augsburg, Germany
- MR Author ID: 751819
- Email: martin.rasmussen@math.uni-augsburg.de
- Received by editor(s): August 2, 2005
- Received by editor(s) in revised form: December 1, 2005
- Published electronically: April 24, 2007
- Additional Notes: This research was supported by the “Graduiertenkolleg: Nichtlineare Probleme in Analysis, Geometrie und Physik” (GK 283) financed by the DFG and the State of Bavaria
- © Copyright 2007 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**359**(2007), 5091-5115 - MSC (2000): Primary 34D05, 37B25, 37B55, 37C70; Secondary 34D08
- DOI: https://doi.org/10.1090/S0002-9947-07-04318-8
- MathSciNet review: 2320661