The distance function from the boundary in a Minkowski space
HTML articles powered by AMS MathViewer
- by Graziano Crasta and Annalisa Malusa PDF
- Trans. Amer. Math. Soc. 359 (2007), 5725-5759 Request permission
Abstract:
Let the space $\mathbb R^n$ be endowed with a Minkowski structure $M$ (that is, $M\colon \mathbb R^n \to [0,+\infty )$ is the gauge function of a compact convex set having the origin as an interior point, and with boundary of class $C^2$), and let $d^M(x,y)$ be the (asymmetric) distance associated to $M$. Given an open domain $\Omega \subset \mathbb R^n$ of class $C^2$, let $d_{\Omega }(x) := \inf \{d^M(x,y);\ y\in \partial \Omega \}$ be the Minkowski distance of a point $x\in \Omega$ from the boundary of $\Omega$. We prove that a suitable extension of $d_{\Omega }$ to $\mathbb R^n$ (which plays the rôle of a signed Minkowski distance to $\partial \Omega$) is of class $C^2$ in a tubular neighborhood of $\partial \Omega$, and that $d_{\Omega }$ is of class $C^2$ outside the cut locus of $\partial \Omega$ (that is, the closure of the set of points of nondifferentiability of $d_{\Omega }$ in $\Omega$). In addition, we prove that the cut locus of $\partial \Omega$ has Lebesgue measure zero, and that $\Omega$ can be decomposed, up to this set of vanishing measure, into geodesics starting from $\partial \Omega$ and going into $\Omega$ along the normal direction (with respect to the Minkowski distance). We compute explicitly the Jacobian determinant of the change of variables that associates to every point $x\in \Omega$ outside the cut locus the pair $(p(x), d_{\Omega }(x))$, where $p(x)$ denotes the (unique) projection of $x$ on $\partial \Omega$, and we apply these techniques to the analysis of PDEs of Monge–Kantorovich type arising from problems in optimal transportation theory and shape optimization.References
- Giovanni Alberti, On the structure of singular sets of convex functions, Calc. Var. Partial Differential Equations 2 (1994), no. 1, 17–27. MR 1384392, DOI 10.1007/BF01234313
- Ben Andrews, Volume-preserving anisotropic mean curvature flow, Indiana Univ. Math. J. 50 (2001), no. 2, 783–827. MR 1871390, DOI 10.1512/iumj.2001.50.1853
- D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Springer-Verlag, New York, 2000.
- Martino Bardi and Italo Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. With appendices by Maurizio Falcone and Pierpaolo Soravia. MR 1484411, DOI 10.1007/978-0-8176-4755-1
- Guy Bouchitté and Giuseppe Buttazzo, Characterization of optimal shapes and masses through Monge-Kantorovich equation, J. Eur. Math. Soc. (JEMS) 3 (2001), no. 2, 139–168. MR 1831873, DOI 10.1007/s100970000027
- P. Cannarsa, P. Cardaliaguet, G. Crasta, and E. Giorgieri, A boundary value problem for a PDE model in mass transfer theory: representation of solutions and applications, Calc. Var. Partial Differential Equations 24 (2005), no. 4, 431–457. MR 2180861, DOI 10.1007/s00526-005-0328-7
- Piermarco Cannarsa, Andrea Mennucci, and Carlo Sinestrari, Regularity results for solutions of a class of Hamilton-Jacobi equations, Arch. Rational Mech. Anal. 140 (1997), no. 3, 197–223. MR 1486892, DOI 10.1007/s002050050064
- Piermarco Cannarsa and Carlo Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications, vol. 58, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2041617, DOI 10.1007/b138356
- Piotr T. Chruściel, Joseph H. G. Fu, Gregory J. Galloway, and Ralph Howard, On fine differentiability properties of horizons and applications to Riemannian geometry, J. Geom. Phys. 41 (2002), no. 1-2, 1–12. MR 1872378, DOI 10.1016/S0393-0440(01)00044-4
- F. H. Clarke, R. J. Stern, and P. R. Wolenski, Proximal smoothness and the lower-$C^2$ property, J. Convex Anal. 2 (1995), no. 1-2, 117–144. MR 1363364
- Klaus Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. MR 787404, DOI 10.1007/978-3-662-00547-7
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains, Proc. London Math. Soc. (3) 54 (1987), no. 1, 141–175. MR 872254, DOI 10.1112/plms/s3-54.1.141
- Jin-ichi Itoh and Minoru Tanaka, The Lipschitz continuity of the distance function to the cut locus, Trans. Amer. Math. Soc. 353 (2001), no. 1, 21–40. MR 1695025, DOI 10.1090/S0002-9947-00-02564-2
- Yanyan Li and Louis Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations, Comm. Pure Appl. Math. 58 (2005), no. 1, 85–146. MR 2094267, DOI 10.1002/cpa.20051
- P.L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pitman, Boston, 1982.
- Carlo Mantegazza and Andrea Carlo Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds, Appl. Math. Optim. 47 (2003), no. 1, 1–25. MR 1941909, DOI 10.1007/s00245-002-0736-4
- Andrea C. G. Mennucci, Regularity and variationality of solutions to Hamilton-Jacobi equations. I. Regularity, ESAIM Control Optim. Calc. Var. 10 (2004), no. 3, 426–451. MR 2084331, DOI 10.1051/cocv:2004014
- Cristina Pignotti, Rectifiability results for singular and conjugate points of optimal exit time problems, J. Math. Anal. Appl. 270 (2002), no. 2, 681–708. MR 1916603, DOI 10.1016/S0022-247X(02)00110-5
- Giovanni Pisante, Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians, SIAM J. Math. Anal. 36 (2004), no. 1, 186–203. MR 2083857, DOI 10.1137/S0036141003426902
- R. A. Poliquin, R. T. Rockafellar, and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5231–5249. MR 1694378, DOI 10.1090/S0002-9947-00-02550-2
- Takashi Sakai, Riemannian geometry, Translations of Mathematical Monographs, vol. 149, American Mathematical Society, Providence, RI, 1996. Translated from the 1992 Japanese original by the author. MR 1390760, DOI 10.1090/mmono/149
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- Zhongmin Shen, Geometric meanings of curvatures in Finsler geometry, Proceedings of the 20th Winter School “Geometry and Physics” (Srní, 2000), 2001, pp. 165–178. MR 1826690
- John A. Thorpe, Elementary topics in differential geometry, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1979. MR 528129, DOI 10.1007/978-1-4612-6153-7
Additional Information
- Graziano Crasta
- Affiliation: Dipartimento di Matematica “G. Castelnuovo”, Univ. di Roma I, P.le A. Moro 2 – 00185 Roma, Italy
- MR Author ID: 355300
- ORCID: 0000-0003-3673-6549
- Email: crasta@mat.uniroma1.it
- Annalisa Malusa
- Affiliation: Dipartimento di Matematica “G. Castelnuovo”, Univ. di Roma I, P.le A. Moro 2 – 00185 Roma, Italy
- Email: malusa@mat.uniroma1.it
- Received by editor(s): May 31, 2005
- Published electronically: July 3, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 5725-5759
- MSC (2000): Primary 35A30; Secondary 26B05, 32F45, 35C05, 49L25, 58J60
- DOI: https://doi.org/10.1090/S0002-9947-07-04260-2
- MathSciNet review: 2336304