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ENTROPY POINTS AND APPLICATIONS

XIANGDONG YE AND GUOHUA ZHANG

Abstract. First notions of entropy point and uniform entropy point are intro-
duced using Bowen’s definition of topological entropy. Some basic properties of
the notions are discussed. As an application it is shown that for any topologi-
cal dynamical system there is a countable closed subset whose Bowen entropy
is equal to the entropy of the original system.

Then notions of C-entropy point are introduced along the line of entropy
tuple both in topological and measure-theoretical settings. It is shown that
each C-entropy point is an entropy point, and the set of C-entropy points is
the union of sets of C-entropy points for all invariant measures.

1. Introduction

Entropy is defined in both ergodic theory and topological dynamical systems
(TDS for short). Starting with the study of the topological analogue of Kolmogorov
systems, in recent years much attention has been paid to the so called local prop-
erties of entropy and its many interesting results. First Blanchard [2] introduced
the notion of an entropy pair in topological dynamics from which the existence of
the maximal zero entropy factor of a given topological system was proved ([3]),
and Blanchard et al. [5] defined the notion of an entropy pair for an invariant
measure which naturally led to the discussion of the relation between the two kinds
of entropy pairs. Then Huang and Ye [15] introduced the notion of entropy tu-
ples both in topological and measure-theoretical settings. Just recently, Dou, Ye
and Zhang [9] generalized the notion (of entropy tuples) to entropy sequences and
entropy sets in both settings. To study the relation of entropy tuples in both set-
tings, a local variational inequality [4], a local variational relation [15] and finally
local variational principles [20], [14] which refine the classical variational principle
were found. Moreover, a local variational principle for conditional entropy was
proved [16], and relative entropy tuples in both settings, relative u.p.e. and c.p.e.
extensions were studied [17].

The main purpose of the paper is to fill a missing case: entropy point. First
several notions of entropy points, namely, entropy point, full entropy point, uni-
form entropy point and uniform full entropy point are introduced using Bowen’s
definition of topological entropy. Some basic properties of them are discussed. It
turns out that there are no entropy points of any kind if we consider a TDS with
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zero entropy, and the support of any ergodic measure with positive entropy is con-
tained in the set of uniform entropy points. In general, the sets of entropy points
by the mentioned four definitions are different, and they coincide with each other
and equal the whole space if we consider a minimal TDS with positive entropy. A
somewhat surprising consequence of the study of uniform entropy points is that for
any topological dynamical system there is a countable closed subset whose entropy
is equal to the entropy of the original system. In fact, the countable subset A can
be chosen such that the set of the limit points of A has at most one limit point. It
is worth mentioning that some applications of the above results will be carried out
in a forthcoming paper in [18].

Second along the line of entropy pair, tuple, sequence and set, the notions of C-
entropy point are introduced both in topological and measure-theoretical settings.
It is shown that each C-entropy point is an entropy point, and the set of C-entropy
points is the union of sets of C-entropy points for an invariant measure over all
invariant measures. However, even if we consider a minimal TDS with positive
entropy, the set of C-entropy points need not be the whole space.

After finishing the writing of the paper, we found that in [10] the authors also
introduced a notion called entropy point when studying preimage entropy of con-
tinuous maps, which measures the degree of the non-invertibility of the system.
Thus, their notion is essentially different from our’s. Moreover, we note that in a
forthcoming paper by Blanchard and Huang [6], the notion of C-entropy point is
introduced in a different way.

The paper is organized as follows. In section 2 after stating some basic properties
of Bowen’s entropy, we introduce notions of entropy point and full entropy point.
In section 3 we study the structure of the set of entropy points and prove that
the support of any ergodic measure with positive entropy is contained in the set
of entropy points. In section 4 we define and study entropy function serving as a
tool of studying uniform entropy point. In section 5 by means of entropy function
we introduce and discuss some properties of uniform entropy point and uniform
full entropy point, and show that for any topological dynamical system there is a
countable closed subset whose entropy is equal to the entropy of the original system.
Finally in section 6 along the line of entropy tuple we introduce notions of C-entropy
point both in topological and measure-theoretical settings, and investigate some
basic properties of them.

2. Entropy point and full entropy point

In this section after recalling Bowen’s definition of topological entropy, we intro-
duce and discuss some basic properties of entropy point and full entropy point.

By a topological dynamical system we mean a pair (X, T ), where X is a compact
metric space and T : X → X is a self-homeomorphism. Before proceeding, let’s
first recall Bowen’s definition of topological entropy using separated and spanning
sets and some relevant results (see [21], P168−174).

Let d be a metric on TDS (X, T ). For each n ∈ N we define a new metric dn on
X: ∀x, y ∈ X, dn(x, y) = max0≤i≤n−1 d(T ix, T iy). Let K ⊆ X and ε > 0. A subset
F ⊆ X is said to be (n, ε) span K with respect to T if for any x ∈ K, there exists
some y ∈ F with dn(x, y) ≤ ε. A subset E ⊆ K is said to be (n, ε) separated with
respect to T if x, y ∈ E, x �= y implies dn(x, y) > ε. Denote by rn(d, T, ε, K) (resp.
sn(d, T, ε, K)) the smallest (resp. largest) cardinality of any (n, ε)-spanning subset
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(resp. (n, ε) separated subset) for K with respect to T . Then following from some
simple arguments, we have rn(d, T, ε, K) ≤ sn(d, T, ε, K) ≤ rn(d, T, ε

2 , K). Set

r(d, T, ε, K)=lim sup
n→+∞

log rn(d, T, ε, K)
n

and s(d, T, ε, K)=lim sup
n→+∞

log sn(d, T, ε, K)
n

.

Obviously, r(d, T, ε, K) and s(d, T, ε, K) both increase when ε > 0 decreases to zero,
and r(d, T, ε, K) ≤ s(d, T, ε, K) ≤ r(d, T, ε

2 , K). Then define the limit

(2.1) lim
ε→0+

r(d, T, ε, K) = lim
ε→0+

s(d, T, ε, K)

to be the topological entropy of K with respect to T (denoted by h(d, T, K)), and
define the topological entropy of (X, T ) as h(d, T ) = supK h(d, T, K) where the
supremum is taken over all compact subsets of X, equivalently h(d, T ) = h(d, T, X).
The following result is easy to check:

Lemma 2.1. Let (X, T ) be a TDS and d a metric on X.

1: Let K1, · · · , Km ⊆ X (m ∈ N). Then r(d, T, ε,
⋃m

i=1 Ki) = max1≤i≤m

r(d, T, ε, Ki) for each ε>0, and so h(d, T,
⋃m

i=1 Ki)=max1≤i≤m h(d, T, Ki).
2: Bowen’s definition of topological entropy depends only on the topology on

X. Precisely, let d′ be another metric on X which is compatible with d.
Then for any given ε1 > 0 there exist 0 < ε3 < ε2 < ε1 such that for each
K ⊆ X one has r(d, T, ε1, K) ≤ r(d′, T, ε2, K) ≤ r(d, T, ε3, K).

For a given TDS (X, T ) and K ⊆ X, Lemma 2.1 tells us that h(d, T, K) is
independent of the selection of the metric d, and so in the following we write
h(d, T, K) by h(T, K), and h(d, T ) by h(T ) or h(T, X). Lemma 2.1 stimulates the
following

Definition 2.2. Let (X, T ) be a TDS.

(1) We say x ∈ X is an entropy point if h(T, K) > 0 for each closed neighbor-
hood K of x. Denote by Ep(X, T ) the set of all entropy points.

(2) We say x ∈ X is a full entropy point if h(T, K) = h(T ) > 0 for each closed
neighborhood K of x. Denote by Ef

p (X, T ) the set of all full entropy points.

It is clear that if (X, T ) is a TDS with zero entropy, then Ef
p (X, T ) = Ep(X, T ) =

∅. In general, Ef
p (X, T ) ⊆ Ep(X, T ), and both Ep(X, T ) and Ef

p (X, T ) are closed.
Moreover, let (X, T ) and (Y, S) be two TDSs; by a factor map we mean a continuous
surjective map π : (X, T ) → (Y, S) with Sπ = πT . If in addition it is one to one,
then we say π is an isomorphism. We have

Proposition 2.3. Let π : (X, T ) → (Y, S) be a factor map between TDSs. Then

1: π(Ef
p (X, T )) ⊇ Ef

p (Y, S) when h(T ) = h(S) > 0.
2: π(Ep(X, T )) ⊇ Ep(Y, S).
3: Moreover, if the factor map π is open, then we have

(1) π−1(Ef
p (Y, S)) ⊆ Ef

p (X, T ) when h(T ) = h(S) > 0.
(2) π−1(Ep(Y, S)) ⊆ Ep(X, T ).

Proof. Say dX and dY are metrics on TDSs (X, T ) and (Y, S), respectively.
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Claim. If ε > 0, then there exists ε′ > 0 such that r(dY , S, ε, π(J)) ≤ r(dX , T, ε′, J)
for any given subset J ⊆ X. Moreover, h(S, π(J)) ≤ h(T, J) when J ⊆ X.

Proof of the Claim. Assume ε > 0 and let ε′ > 0 such that ε > ε′ and for x′
1, x

′
2 ∈ X,

dX(x′
1, x

′
2) ≤ ε′ implies dY (πx′

1, πx′
2) ≤ ε. Now let E be an (n, ε′)-spanning set

for J with respect to T with the smallest cardinality rn(dX , T, ε′, J); then π(E)
is an (n, ε)-spanning set for π(J) with respect to S. Thus rn(dY , S, ε, π(J)) ≤
rn(dX , T, ε′, J) which implies r(dY , S, ε, π(J)) ≤ r(dX , T, ε′, J). Letting ε → 0+ we
have h(S, π(J)) ≤ h(T, J). �

1. Assume h(T ) = h(S) > 0. Let y1 ∈ Ef
p (Y, S) and for each n ≥ 2 let Kn be a

closed neighborhood of y1 with diameter at most 1
n . Then by the Claim

h(T, π−1Kn) ≥ h(S, Kn) = h(S) = h(T ) > 0.

Cover π−1Kn by closed balls with diameter at most 1
n . Then there is such a closed

ball Bn with h(T, Bn) = h(T, π−1Kn) by Lemma 2.1. Let x1 be a limit point
of the sequence of balls {Bn : n ∈ N}. Then π(x1) = y1 and it is easy to see
x1 ∈ Ef

p (X, T ). That is, π(Ef
p (X, T )) ⊇ Ef

p (Y, S).
2. Following the proof of 1 we get 2.
3. We just show π−1(Ef

p (Y, S)) ⊆ Ef
p (X, T ), and the other case follows similarly.

Assume that h(T ) = h(S) > 0. Let y2 ∈ Ef
p (Y, S) and x2 ∈ X with π(x2) = y2.

For each n ∈ N, let Kn be a closed neighborhood of x2 with diameter at most 1
n

such that the diameter of π(Kn) is also at most 1
n . Since π is open, π(Kn) is also

a closed neighborhood of y2, and so h(S, π(Kn)) = h(S) as y2 ∈ Ef
p (Y, S). Then

h(T ) ≥ h(T, Kn) ≥ h(S, π(Kn)) (by the Claim) = h(S) = h(T ) > 0.

That is, x2 ∈ Ef
p (X, T ), which implies π−1(Ef

p (Y, S)) ⊆ Ef
p (X, T ). �

The next proposition says that in a positive entropy system Ef
p (X, T ) is not

empty.

Proposition 2.4. Let (X, T ) be a TDS. Then

1: Ef
p (X, T ) �= ∅ when h(T ) > 0.

2: Both Ep(X, T ) and Ef
p (X, T ) are T -invariant.

Consequently, if T is minimal and h(T ) > 0, then Ef
p (X, T ) = Ep(X, T ) = X.

Proof. Since Ep(X, T ) and Ef
p (X, T ) are closed, we only need to show parts 1 and

2.
1. Cover X by finitely many closed balls B1

1 , · · · , B1
i1

with diameter at most 1. By
Lemma 2.1, as h(T ) = h(T, X) = maxj h(T, B1

j ), there is j1 with h(T ) = h(T, B1
j1

).
Cover B1

j1
by finitely many closed balls B2

1 , · · · , B2
i2

of B1
j1

with diameter at most
1
2 . By the same reasoning, there is j2 with h(T ) = h(T, B2

j2
). By induction, for

each n ≥ 2, there is a closed ball Bn
jn

of Bn−1
jn−1

with diameter at most 1
n such that

h(T ) = h(T, Bn
jn

).
Set {x} =

⋂
n∈N

Bn
jn

. It is clear that x is a full entropy point when h(T ) > 0.
2. Since T : (X, T ) → (X, T ) and T−1 : (X, T ) → (X, T ) are isomorphisms be-

tween TDSs, applying Proposition 2.3 to T and T−1 we obtain that T (Ep(X, T )) =
Ep(X, T ) and T (Ef

p (X, T )) = Ef
p (X, T ). �
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Moreover, using the same method as in the proof of Proposition 2.4 we have

Proposition 2.5. Let (X, T ) be a TDS and K ⊆ X a closed subset.
1: If h(T, K) > 0, then K ∩ Ep(X, T ) �= ∅.
2: If h(T, K) = h(T ) > 0, then K ∩ Ef

p (X, T ) �= ∅.

3. Structure of the set of entropy points

Based on the theories and results established in [2], [5], [15] and [19], in this
section we study the structure of the set of entropy points. It is proved that
the support of any ergodic measure with positive entropy is contained in the set
of entropy points, and the topological entropy of a TDS equals the topological
entropy over the set of entropy points whereas it doesn’t hold for the set of full
entropy points, as Ef

p (X, T ) could be a singleton for some positive entropy TDS.
Let (X, T ) be a TDS. Denote by M(X, T ) and Me(X, T ) respectively the set

of all invariant probability measures and all ergodic invariant probability measures
on (X,BX , T ), where BX is the Borel σ-algebra of X. Let µ ∈ M(X, T ). For
a given finite measurable partition P, write Pn−1

0 =
∨n−1

i=0 T−iP (∀n ∈ N) and
P− =

∨
i≥1 T−iP. The entropy of µ for P is defined as

hµ(T, P) = lim
n→+∞

1
n

Hµ(Pn−1
0 ) = Hµ(P|P−).

The entropy of µ is given by hµ(T ) = sup hµ(T, P), where P ranges over all finite
measurable partitions of (X,BX , T ). The variational principle states that

(3.1) h(T ) = sup
µ∈M(X,T )

hµ(T ) = sup
µ∈Me(X,T )

hµ(T ).

The notion of entropy pair introduced in [2], [5] is generalized to entropy tuple
in [15] both in topological and measure-theoretical settings. For each n ≥ 2 and
µ ∈ M(X, T ), denote by En(X, T ) the set of entropy n-tuples, and by Eµ

n(X, T )
the set of entropy n-tuples for µ.

Let (X, T ) be a TDS, µ ∈ M(X, T ) and measure-theoretical dynamical system
(MDS, for short) (Y,D, ν, S) the Pinsker factor of (X,B, µ, T ), where B is the
completion of BX under µ. For each n ≥ 2, define an invariant probability measure
λn(µ) on (X(n),B(n), T (n)) by letting

(3.2) λn(µ)(
n∏

i=1

Ai) =
∫

X

n∏
i=1

E(1Ai
|D)dµ,

where X(n) = X×· · ·×X (n times), B(n) = B×· · ·×B (n times), T (n) = T ×· · ·×T
(n times), Ai ∈ B and E(1Ai

|D) is the conditional expectation of 1Ai
with respect

to D (1 ≤ i ≤ n). Let µ =
∫

Y
µydν(y) be the disintegration of µ over ν; it’s well-

known that λn(µ) =
∫

Y
µ

(n)
y dν(y) where µ

(n)
y = µy × · · · ×µy (n times). Denote by

∆n(X) = {(xi)n
1 ∈ X(n) : x1 = · · · = xn}, the n-th diagonal of X. Then En(X, T )

(resp. Eµ
n(X, T )) is T (n)-invariant and En(X, T )∪∆n(X) (resp. Eµ

n(X, T )∪∆n(X))
is a closed subset of X(n). Moreover, one has (see Theorems 4.4, 4.9, 6.1 and 6.4
in [15]):

Proposition 3.1. Let (X, T ) be a TDS and µ ∈ M(X, T ). Then
1: En(X, T ) ⊇ Eµ

n(X, T ) = Supp(λn(µ)) \ ∆n(X) for each n ≥ 2.
2: There is µ0 ∈ M(X, T ) with Eµ0

n (X, T ) = En(X, T ) for each n ≥ 2.
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Proposition 3.2. Let (X, T ) be a TDS and µ ∈ M(X, T ). Say µ =
∫
Ω

µωdη(ω) is
the ergodic decomposition of µ. Then we have

1: Eµω
n (X, T ) ⊆ Eµ

n(X, T ) for each n ≥ 2 and η-a.e. ω ∈ Ω.
2: If (xi)n

1 ∈ Eµ
n(X, T ), then η({ω ∈ Ω|

∏n
i=1 Vi ∩ Eµω

n (X, T ) �= ∅}) > 0 for
any measurable neighborhood Vi of xi (1 ≤ i ≤ n). Thus for an appropriate
choice of Ω

⋃
{Eµω

n (X, T ) : ω ∈ Ω} \ ∆n(X) = Eµ
n(X, T ).

Moreover, in [15] the authors proved (see Theorem 7.3 in [15])

Lemma 3.3. Let (X, T ) be a TDS with (xi)n
1 /∈ ∆n(X) (n ≥ 2). Then (xi)n

1 ∈
En(X, T ) iff (if and only if) for any given neighborhood Ui of xi (1 ≤ i ≤ n),
there exist some b > 0 and Mb ∈ N such that for any m ≥ Mb we can find
Jm ⊆ {1, 2, · · · , m} satisfying |Jm| ≥ bm and

⋂
j∈Jm

T−jUs(j) �= ∅ when s ∈
{1, 2, · · · , n}Jm .

Now we are ready to show

Theorem 3.4. Let (X, T ) be a TDS and (xi)n
1 ∈ En(X, T ) (n ≥ 2). Then

{x1, · · · , xn} ⊆ Ep(X, T ).

Proof. We only need to prove x1 ∈ Ep(X, T ). Let d be a metric on X.
Without loss of generality we assume xi �= xj if i �= j. Let Ui be any closed neigh-

borhood of xi (1 ≤ i ≤ n) with Ui ∩Uj = ∅ if i �= j. Then ε = min1≤i<j≤n d(Ui, Uj)
> 0. Let b and Mb be the constants constructed in Lemma 3.3. Then for any
m ≥ Mb there exists Jm ⊆ {1, 2, · · · , m} such that |Jm| ≥ bm and when s ∈
{1, 2, · · · , n}Jm ,⋂

j∈Jm

T−jUs(j) �= ∅, say xs ∈
⋂

j∈Jm

T−jUs(j), and so T jxs ∈ Us(j)(∀j ∈ Jm).

Set jm to be the minimal element in Jm and

E = {T jmxs : s ∈ {1, 2, · · · , n}Jm with s(jm) = 1} ⊆ U1.

Obviously |E| = n|Jm|−1 ≥ nbm−1. Note that for s1, s2 ∈ {1, 2, · · · , n}Jm : s1 �= s2

and s1(jm) = s2(jm) = 1, say km ∈ Jm with s1(km) �= s2(km), then

dm(T jmxs1 , T
jmxs2) ≥ d(T kmxs1 , T

kmxs2) ≥ d(Us1(km), Us2(km)) ≥ ε.

This means that E forms an (m, ε
2 ) separated subset of U1 with respect to T , which

implies sm(d, T, ε
2 , U1) ≥ nbm−1. Thus h(d, T, U1) ≥ s(d, T, ε

2 , U1) ≥ b log n > 0,
and hence x1 ∈ Ep(X, T ). This ends the proof. �

Let (X, T ) be a TDS and let n ≥ 2. Denote by pn : X(n) → X the projection
to the first coordinate. Then we have pn(En(X, T )) ⊆ Ep(X, T ) (by Theorem 3.4)
and so pn(En(X, T )) ⊆ Ep(X, T ). Moreover

Theorem 3.5. Let (X, T ) be a TDS. Then

1: If µ ∈ Me(X, T ) satisfies hµ(T ) > 0, then Supp(µ) ⊆ Ep(X, T ).
2: h(T, Ep(X, T )) = h(T ).
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Proof. 1. Let µ =
∫

Y
µydν(y) be the disintegration of µ over its Pinsker factor.

Since

1 = λ2(µ)(Supp(λ2(µ))) =
∫

Y

µy × µy(Supp(λ2(µ)))dν(y),

there exists some measurable Y2 ⊆ Y such that ν(Y2) = 1 and µy×µy(Supp(λ2(µ)))
= 1 for each y ∈ Y2. Then by Proposition 3.1, when y ∈ Y2

(3.3) Supp(µy) × Supp(µy) ⊆ Supp(λ2(µ)) ⊆ E2(X, T ) ∪ ∆2(X),

as Supp(µy ×µy) = Supp(µy)×Supp(µy). Since µ ∈ Me(X, T ) and hµ(T ) > 0, it’s
well-known that for ν-a.e. y ∈ Y , Supp(µy) is a compact subset without isolated
points (see for example Lemma 4.1 in [22]). Now applying Theorem 3.4 to (3.3) one
has, for ν-a.e. y ∈ Y , Supp(µy) ⊆ Ep(X, T ). This implies Supp(µ) ⊆ Ep(X, T ).

2. Using 1 it is a direct application of the variational principle. �

Similar to Bowen’s definition of topological entropy, Katok [19] has given an
analogous description of measure-theoretical entropy and proved the following re-
sult.

Lemma 3.6. Let (X, T ) be a TDS, d a metric on X and µ ∈ Me(X, T ). For ε > 0
and 1 > δ > 0, denote by rn(d, T, ε, δ, µ) the minimum number of ε-balls in the dn

metric whose union has µ-measure at least 1− δ. Then for each 1 > δ > 0 we have

hµ(T ) = lim
ε→0+

lim sup
n→∞

1
n

log rn(d, T, ε, δ, µ).(3.4)

With the help of Lemma 3.6 we have

Theorem 3.7. Let (X, T ) be a TDS, d a metric on X and µ ∈ Me(X, T ). Then

(3.5) lim
ε→0+

inf{s(d, T, ε, K) : K ∈ BX with µ(K) > 0} ≥ hµ(T ).

In particular, for any K ∈ BX , h(d, T, K) ≥ hµ(T ) if µ(K) > 0.

Proof. For the proof it is sufficient to show (3.5). Let 1 > δ > 0 be a given constant.
Let ε > 0 and K ∈ BX satisfy µ(K) > 0. Since µ ∈ Me(X, T ), there exists

m(K) ∈ Z+ such that µ(
⋃m(K)

i=0 T iK) ≥ 1 − δ.
Claim: For each m ∈ Z+, s(d, T, ε, K) = s(d, T, ε,

⋃m
i=0 T iK).

Proof of the Claim. For each n ∈ N, let E ⊆
⋃m

i=0 T iK be any (n, ε) separated
subset of

⋃m
i=0 T iK with respect to T . Then there exists some i0(n) : 0 ≤ i0(n) ≤ m

such that |E∩T i0(n)K| ≥ |E|
m+1 . Note that T−i0(n)E∩K is an (n+i0(n), ε) separated

(hence (n + m, ε) separated) subset of K with respect to T . One has

(3.6) sn+m(d, T, ε, K) ≥ 1
m + 1

sn(d, T, ε,
m⋃

i=0

T iK) ≥ 1
m + 1

sn(d, T, ε, K),

which implies s(d, T, ε, K) = s(d, T, ε,
⋃m

i=0 T iK). This ends the proof of the Claim.
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Since rn(d, T, ε, K) ≤ sn(d, T, ε, K) for each n ∈ N, by the Claim we have

inf{s(d, T, ε, K) : K ∈ BX with µ(K) > 0}

= inf{s(d, T, ε,

m(K)⋃
i=0

T iK) : K ∈ BX with µ(K) > 0}

≥ inf{lim sup
n→∞

1
n

log rn(d, T, ε,

m(K)⋃
i=0

T iK) : K ∈ BX with µ(K) > 0}

≥ lim sup
n→∞

1
n

inf{log rn(d, T, ε,

m(K)⋃
i=0

T iK) : K ∈ BX with µ(K) > 0}

≥ lim sup
n→∞

1
n

log rn(d, T, ε, δ, µ) (in the notation of Lemma 3.6).

Letting ε → 0+, the inequality (3.5) follows directly from the above discussion and
Lemma 3.6. This ends the proof. �

As an easy application of Theorem 3.7, we have

Corollary 3.8. Let (X, T ) be a TDS with positive entropy. Then we have

⋃
{Supp(µ) : µ ∈ Me(X, T ), hµ(T ) = h(T )} ⊆ Ef

p (X, T ).

Corollary 3.8 says that if there is an ergodic measure with maximal entropy, then
h(T, Ef

p (X, T )) = h(T ). Now we describe a TDS which has no ergodic measure with
maximal entropy such that Ef

p (X, T ) is a singleton.

Example 3.9. For any given b > 0 (including b = ∞) there exists a TDS (X, T )
such that h(T ) = b and Ef

p (X, T ) is a singleton.

Proof. Let b > 0 be fixed. Clearly, there exist b > bn > 0 with bn → b and a
sequence {(Xn, Tn)}n∈N of TDSs satisfying h(Tn) = bn (∀n ∈ N) and Xn ⊂ R2.
Let Bn be a sequence of disjoint closed balls in R2 with diam(Bn) → 0, (0, 0) /∈ Bn

and Bn → (0, 0). Embed Xn into Bn for each n and put X =
⋃

n∈N
Xn ∪ {(0, 0)}.

Define T : X → X such that T |Xn
= Tn and (0, 0) is a fixed point. Then (X, T ) is

a TDS and h(T ) = b.
It is clear that there is no ergodic measure with maximal entropy for (X, T ).

Moreover, by definition and Proposition 2.4, ∅ �= Ef
p (X, T ) ⊆ X \

⋃
n∈N

Xn; then
(0, 0) is the unique full entropy point. �

4. Entropy function

In this section, as a tool for studying uniform entropy point appearing in the next
section, we introduce the concept of entropy function and discuss its fundamental
properties.

Let (X, T ) be a TDS and d a metric on X. For each ε > 0 and x ∈ X, define

hd(x, ε) = inf{r(d, T, ε, K) : K is a closed neighborhood of x}.
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Obviously, hd(x, ε) increases as ε decreases to zero. Put hd(x) = lim
ε→0+

hd(x, ε) ≤
h(T ). By Lemma 2.1, it’s not hard to see that the value of hd(x) depends only on
the topology of X. Thus in the sequel sometimes we will write hd(x) as h(x).

Definition 4.1. Let (X, T ) be a TDS. The function h : X → [0, h(T )], x �→ h(x)
is said to be the entropy function of (X, T ).

Since r(d, T, ε, K) ≤ s(d, T, ε, K) ≤ r(d, T, ε
2 , K), we have

h(x) = lim
ε→0+

inf{s(d, T, ε, K) : K is a closed neighborhood of x}.

Then using the language of entropy function, Theorem 3.7 tells us that

Theorem 4.2. Let (X, T ) be a TDS, h its entropy function and x ∈ X. Then

h(x) ≥ sup{hµ(T ) : µ ∈ Me(X, T ), x ∈ Supp(µ)}.

In particular, if (X, T ) is minimal, then h ≡ h(T ) is a constant function.

The following is the lift-up property of entropy function.

Proposition 4.3. Let π : (X, T ) → (Y, S) be a factor map between TDSs. If hX

and hY are the entropy functions of (X, T ) and (Y, S), respectively, then
1: For each y1 ∈ Y , sup

x∈π−1(y1)

hX(x) ≥ hY (y1).

2: Moreover, if π is open, then hX(x) ≥ hY (y2) for all y2 ∈ Y and x ∈
π−1(y2).

Proof. Say dX and dY are metrics on TDSs (X, T ) and (Y, S), respectively. Let ε >
0; then by the Claim of Proposition 2.3, there exists ε′ > 0 such that r(dY , S, ε, π(J))
≤ r(dX , T, ε′, J) if J ⊆ X. In particular, r(dY , S, ε, K) ≤ r(dX , T, ε′, π−1(K)) if
K ⊆ Y .

1. ∀n ∈ N, let Kn be a closed neighborhood of y1 with diameter at most 1
n . By

Lemma 2.1, there exists a closed Bn ⊆ π−1(Kn) with diameter at most 1
n such that

r(dX , T, ε′, Bn) = r(dX , T, ε′, π−1(Kn)) ≥ r(dY , S, ε, Kn) ≥ hY
dY (y1, ε).

Let x1 be a limit point of the sequence of closed subsets {Bn : n ∈ N}. Obvi-
ously, π(x1) = y1 and hX

dX (x1, ε
′) ≥ hY

dY (y1, ε). This means supx∈π−1(y1) hX(x) ≥
hY

dY (y1, ε). Then the conclusion follows by letting ε → 0+.
2. Let x2 ∈ π−1(y2): fixed. ∀n ∈ N, let Kn be a closed neighborhood of x2 with

diameter at most 1
n such that the diameter of π(Kn) is less than 1

n . As π is open,
π(Kn) is a closed neighborhood of y2 and

r(dX , T, ε′, Kn) ≥ r(dY , S, ε, π(Kn)) ≥ hY
dY (y2, ε).

Then hX(x2) ≥ hX
dX (x2, ε

′) ≥ hY
dY (y2, ε) and so hX(x2) ≥ hY (y2). �

Let f be an extended real-valued function defined on a compact metric space
Z. f is called upper semi-continuous (u.s.c., for short) if for each r ∈ R the
subset f−1([−∞, r)) is open, equivalently, lim supz′→z f(z′) ≤ f(z) for each z ∈ Z.
Obviously, each u.s.c. function is Borel measurable. As immediate consequences of
the definition, we have that the infimum of any family of u.s.c. functions is u.s.c.,
and both the sum and supremum of finitely many u.s.c. functions are u.s.c.
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Proposition 4.4. Let (X, T ) be a TDS, d a metric on X and h its entropy function.
Then

1: h is T -invariant.
2: For each ε > 0, hd(•, ε) is u.s.c. on X and so h is Borel measurable.
3: If K ⊆ X is closed, then sup

x∈K
h(x) ≥ h(T, K). In particular, sup

x∈X
h(x) =

h(T ).

Proof. 1. As T : (X, T ) → (X, T ) and T−1 : (X, T ) → (X, T ) are isomorphisms
between TDSs, applying Proposition 4.3 to T and T−1 we obtain the conclusion.

2. Let ε > 0 be given. For each r ∈ R, if hd(x0, ε) < r, then r(d, T, ε, K) < r for
some open neighborhood K of x0, which implies that hd(x, ε) < r for each x ∈ K,
that is, the function hd(•, ε) is u.s.c. on X. Moreover, h, as the limit function of a
sequence of u.s.c. functions {hd(•, 1

n )}, is Borel measurable on X.
3. It suffices to consider the case of h(T, K) > 0. Let ε > 0 be fixed. Cover K

by finitely many closed balls B1
1 , · · · , B1

i1
with diameter at most 1. By Lemma 2.1,

there is j1 with r(d, T, ε, K) = r(d, T, ε, B1
j1
∩K). Cover B1

j1
by finitely many closed

balls B2
1 , · · · , B2

i2
of B1

j1
with diameter at most 1

2 . By the same reasoning, there
is j2 with r(d, T, ε, K) = r(d, T, ε, B2

j2
∩ K). By induction, for each n ≥ 2, there

is a closed ball Bn
jn

of Bn−1
jn−1

with diameter at most 1
n satisfying r(d, T, ε, K) =

r(d, T, ε, Bn
jn

∩ K).
Set {x0} =

⋂
n∈N

Bn
jn

; then x0 ∈ K, as K is a closed subset. Let K ′ be any
closed neighborhood of x0. Then for each sufficiently large n ∈ N, Bn

jn
∩ K ⊆ K ′

and so
r(d, T, ε, K ′) ≥ r(d, T, ε, Bn

jn
∩ K) = r(d, T, ε, K),

which implies h(x0) ≥ hd(x0, ε)≥r(d, T, ε, K). This means sup
x∈K

h(x) ≥ r(d, T, ε, K).

Then the conclusion follows by letting ε → 0+. �

Then we have

Theorem 4.5. Let (X, T ) be a TDS and h its entropy function. Then
1: For each µ ∈ Me(X, T ), there is some c with h(T ) ≥ c ≥ hµ(T ) such that

h(x) = c for µ-a.e. x ∈ X.
2: For each µ ∈ M(X, T ),

∫
X

h(x)dµ(x) ≥ hµ(T ).

Proof. 1. Let µ ∈ Me(X, T ). Since h is T -invariant and sup
x∈X

h(x) = h(T ) (by

Proposition 4.4), there exists some constant c with h(T ) ≥ c such that h(x) = c for
µ-a.e. x ∈ X. Moreover, following from Theorem 4.2 one has c ≥ hµ(T ).

2. Say µ =
∫
Ω

µωdη(ω) is the ergodic decomposition. As h is a non-negative
Borel measurable function on X (by Proposition 4.4), we have∫

X

h(x)dµ(x) =
∫

Ω

{∫
X

h(x)dµω(x)
}

dη(ω).(4.1)

Now applying part 1 to (4.1) we obtain∫
X

h(x)dµ(x) ≥
∫

Ω

hµω
(T )dη(ω) = hµ(T ) (by Theorem 8.4 of [21]).

This completes the proof. �



ENTROPY POINTS AND APPLICATIONS 6177

Remark 4.6. In [8], the authors considered a local version of the characterization
of entropy, and obtained a theorem on local entropy, which can be viewed as a
topological version of the well-known Shannon-MacMillan-Breiman Theorem (see
for example [12]), whereas, it is just an almost everywhere definition for any given
invariant measure over (X, T ). Precisely, if µ ∈ M(X, T ), then for µ-a.e. x ∈ X

(4.2) lim
ε→0+

lim inf
n→+∞

− 1
n

log µ(Bn(x, ε)) = lim
ε→0+

lim sup
n→+∞

− 1
n

log µ(Bn(x, ε)),

which is denoted by hµ(x), where Bn(x, ε) denotes the open dn-ball of X with
center x and radius ε. Moreover, hµ(x) is T -invariant and

∫
X

hµ(x)dµ(x) = hµ(T ).
In particular, if µ ∈ Me(X, T ), then hµ(x) = hµ(T ) for µ-a.e. x ∈ X. Now using
Theorem 4.5 we have that if µ ∈ Me(X, T ), then hµ(x) = hµ(T ) ≤ h(x) for µ-a.e.
x ∈ X.

5. Uniform entropy point and uniform full entropy point

Starting from the definitions of uniform entropy point and uniform full entropy
point, we discuss their basic properties and characterize them using entropy function
introduced in the previous section. Applying Theorem 3.7 we know that the support
of an ergodic measure with positive entropy is contained in the set of uniform
entropy points. A consequence of these results is that for any TDS there exists a
countable closed subset whose Bowen entropy is equal to the entropy of the original
system.

Definition 5.1. Let (X, T ) be a TDS and h its entropy function.
(1) We say x ∈ X is a uniform entropy point if h(x) > 0. Denote by Eup(X, T )

the set of all uniform entropy points.
(2) We say x ∈ X is a uniform full entropy point if h(x) = h(T ) > 0. Denote

by Ef
up(X, T ) the set of all uniform full entropy points.

These notions are related to the notions of entropy point and full entropy point
in the following way.

Proposition 5.2. Let (X, T ) be a TDS. Then
1: Ef

up(X, T ) ⊆ Eup(X, T ) ∩ Ef
p (X, T ), Eup(X, T ) ⊆ Ep(X, T ).

2: If K ⊆ X is a closed subset with h(T, K) > 0, then K ∩Eup(X, T ) �= ∅. In
particular, Eup(X, T ) �= ∅ when h(T ) > 0.

3: Eup(X, T ) and Ef
up(X, T ) are both T -invariant.

4: Eup(X, T ) ⊆ X is an Fσ subset, and Ef
up(X, T ) ⊆ X is an Fσδ subset.

Proof. Part 1 follows directly from the definitions. Parts 2 and 3 are the easy
consequences of Proposition 4.4. Now we prove part 4.

Without loss of generality we assume h(T ) > 0. Let d be a metric on X. Then

Eup(X, T ) =
⋃

m∈N

⋃
n∈N

{x ∈ X : hd(x,
1
n

) ≥ 1
m
}.

If h(T ) < +∞, Ef
up(X, T ) =

⋂
m∈N

⋃
n∈N

{x ∈ X : hd(x,
1
n

) ≥ h(T ) − 1
m
}.

If h(T ) = +∞, Ef
up(X, T ) =

⋂
m∈N

⋃
n∈N

{x ∈ X : hd(x,
1
n

) ≥ m}.
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Note that for each ε > 0, the function hd(•, ε) is u.s.c. on X. Thus, it follows that
Eup(X, T ) ⊆ X is an Fσ subset, and Ef

up(X, T ) ⊆ X is an Fσδ subset. �

In general, for a TDS (X, T ) with positive entropy, we can’t assert that Eup(X, T )
is closed, or Ef

up(X, T ) is closed or Ef
up(X, T ) �= ∅, as the following example shows.

Example 5.3. We have the following examples:

1: For any given b > 0 (including b = ∞) there exists a TDS (X, T ) such that
h(T ) = b, Eup(X, T ) ⊆ X is not closed and Ef

up(X, T ) = ∅.
2: For any given b > 0 (including b = ∞) there exists a TDS (X, T ) such that

h(T ) = b and Ef
up(X, T ) ⊆ X is not closed.

Proof. 1. For a given b > 0 (including b = ∞), let (X, T ) and {(Xn, Tn)} be the
systems constructed in Example 3.9. Then ∀n ∈ N, Eup(X, T ) ⊇ Eup(Xn, Tn) �= ∅
(by Proposition 5.2), which implies (0, 0) is contained in the closure of Eup(X, T ).
Now by definition it is easy to see that h(0, 0) = 0. Moreover, (0, 0) /∈ Eup(X, T )
and Ef

up(X, T ) = ∅, where h is the entropy function of (X, T ).
2. For a given b > 0 (including b = ∞), let (Y, S) be a TDS with a maximal

ergodic measure µ with hµ(S) = h(S) = b. In the construction of Example 3.9 let
Xn = Y and Tn = S for each n ∈ N. Then ∀n ∈ N, h(T ) = b and Ef

up(X, T ) ⊇
Xn, and hence (0, 0) is in the closure of Ef

up(X, T ). Similarly we have (0, 0) �∈
Ef

up(X, T ). �

As a direct application of Theorem 4.2 we have

Corollary 5.4. Let (X, T ) be a TDS with positive entropy. Then

1: If µ ∈ Me(X, T ) satisfies hµ(T ) > 0, then Supp(µ) ⊆ Eup(X, T ).
2: If µ ∈ Me(X, T ) satisfies hµ(T ) = h(T ) > 0, then Supp(µ) ⊆ Ef

up(X, T ).
3: If (X, T ) is minimal, then Eup(X, T ) = Ef

up(X, T ) = X.
4: h(T, Eup(X, T )) = h(T ).

Remark 5.5. Note that we let (X, T ) be an expansive TDS (that is, there exists
δ > 0 such that supn∈Z

d(Tnx1, T
nx2) > δ whenever x1 �= x2, where d is a metric

on X). If (X, T ) has positive entropy, then it admits an ergodic measure with
maximal entropy, so Ef

up(X, T ) �= ∅ (by Corollary 5.4). The same holds for any
asymptotically h-expansive TDS. As in [7] it was proved that each asymptotically
h-expansive TDS admits a good extension to a symbolic TDS which is expansive.
Moreover, it follows from the definition that for a full shift on finite symbols, each
point is a uniform full entropy point.

For a factor map π : (X, T ) → (Y, S) between TDSs, generally it doesn’t hold
that π(Ef

up(X, T )) ⊇ Ef
up(Y, S). Nevertheless we have

Proposition 5.6. Let π : (X, T ) → (Y, S) be a factor map between TDSs. Then

1: π(Eup(X, T )) ⊇ Eup(Y, S).
2: Moreover, if the factor map π is open, then we have

(1) π−1(Eup(Y, S)) ⊆ Eup(X, T ).
(2) π−1(Ef

up(Y, S)) ⊆ Ef
up(X, T ) when h(T ) = h(S) > 0.

Proof. Say hX and hY are the entropy functions of (X, T ) and (Y, S), respectively.
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1. ∀y1 ∈ Eup(Y, S): hY (y1) > 0, fixed. By Proposition 4.3, there exists x1 ∈
π−1(y1) with hX(x1) > 0 (equivalently, x1 ∈ Eup(X, T )). That is, π(Eup(X, T )) ⊇
Eup(Y, S).

2. Since the proof is similar, we only show (2), the latter.
Let x2 ∈ X with y2

.= π(x2) ∈ Ef
up(Y, S) (equivalently, hY (y2) = h(S) > 0):

fixed. Since the factor map π is open and h(T ) = h(S) > 0, by Proposition 4.3 we
have

h(T ) ≥ hX(x2) ≥ hY (y2) = h(S) = h(T ) > 0 =⇒ hX(x2) = h(T ) > 0,

equivalently, x2 ∈ Ef
up(X, T ). That is, π−1(Ef

up(Y, S)) ⊆ Ef
up(X, T ). �

In the remainder of this section, we study the entropy function using dynam-
ical behavior of points in the system and apply these results to Eup(X, T ) and
Ef

up(X, T ).

Theorem 5.7. Let (X, T ) be a TDS and h its entropy function.

1: Suppose that K is a countable closed subset of X with a unique limit point
x0. Then h(x0) ≥ h(T, K).

2: Suppose x0 ∈ X. Then there exists a countable closed subset K ⊆ X such
that x0 ∈ K is its unique limit point in X and h(T, K) = h(x0).

Proof. Say d is a metric on TDS (X, T ).
1. Let ε > 0: fixed. By the assumption of K, for any closed neighborhood W

of x0, K \ W is finite which implies r(d, T, ε, W ) ≥ r(d, T, ε, K). Then h(x0) ≥
hd(x0, ε) ≥ r(d, T, ε, K). The conclusion follows by letting ε → 0+.

2. Since the proof is similar, we only present a proof for the case when h(x0) <
+∞.

Set Kn = {x ∈ X : d(x, x0) ≤ 1
n} (∀n ∈ N). ∀m ∈ N, choose εm > 0 such that

h(x0) −
1
m

< inf
n∈N

s(d, T, εm, Kn) = inf
n∈N

lim sup
k→+∞

log sk(d, T, εm, Kn)
k

.

Then there exists a strictly increasing sequence {kn,m}n∈N ⊆ N such that for all n ∈
N, skn,m

(d, T, εm, Kn) ≥ ekn,m(h(x0)− 1
m ). Say En,m ⊆ Kn is a (kn,m, εm) separated

subset of Kn with respect to T with the largest cardinality skn,m
(d, T, εm, Kn).

Put K =
⋃

m≥1

⋃
n≥m En,m ∪{x0}. We prove that K is just the subset we need.

If V is a neighborhood of x0, then Kn0 ⊆ V for some n0 ∈ N. Moreover

K \ V ⊆ K \ Kn0 ⊆
n0−1⋃
m=1

n0−1⋃
n=m

En,m.

In particular, K \ V is finite and so no other points except x0 can be a limit point
of K in X. Thus x0 ∈ K is the unique limit point of K in X.

Now we show h(T, K) = h(x0). Let m ∈ N: fixed. When n ≥ m, En,m ⊆ K is
(kn,m, εm) separated with respect to T , so

skn,m
(d, T, εm, K) ≥ |En,m| = skn,m

(d, T, εm, Kn) ≥ ekn,m(h(x0)− 1
m ).
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Thus

(5.1)

h(T, K) ≥ s(d, T, εm, K) = lim sup
k→+∞

log sk(d,T,εm,K)
k

≥ lim sup
n→+∞

log skn,m (d,T,εm,K)

kn,m

≥ lim sup
n→+∞

log ekn,m(h(x0)− 1
m

)

kn,m
= h(x0) − 1

m .

Since (5.1) holds for all m ∈ N, letting m → +∞ we have h(T, K) ≥ h(x0).
Moreover, h(T, K) = h(x0) (using part 1). This completes the proof. �

An immediately consequence of the above theorem is

Corollary 5.8. Let (X, T ) be a TDS with x0 ∈ X. Then

1: x0 ∈ Eup(X, T ) iff there exists a countable closed subset K ⊆ X such that
h(T, K) > 0 and x0 ∈ K is its unique limit point in X.

2: x0 ∈ Ef
up(X, T ) iff there exists a countable closed subset K ⊆ X such that

h(T, K) = h(T ) > 0 and x0 ∈ K is its unique limit point in X.

Now, using Proposition 4.4 and Theorem 5.7 for a general TDS we could obtain
the following unexpected result:

Theorem 5.9. Let (X, T ) be a TDS. Then there exists a countable closed subset
K ⊆ X such that h(T, K) = h(T ). Moreover, K can be chosen such that the set of
limit points of K has at most one limit point, and K has a unique limit point iff
there is x ∈ X with h(x) = h(T ).

Proof. Let d be a metric on X and h its entropy function. For each x ∈ X and any
ε > 0, set Bx(ε) = {x′ ∈ X : d(x, x′) < ε}.

As X is compact, by Proposition 4.4 there exists {xn}n∈N ⊆ X such that

(5.2) lim
n→+∞

xn = x0 ∈ X and lim
n→+∞

h(xn) = h(T ).

Let {rn}n∈N be any given sequence of positive real numbers with rn → 0 as n → ∞.
Using Theorem 5.7 for each n ∈ N we can select a countable closed subset Kn

such that h(T, Kn) = h(xn) and xn is its unique limit point in X. In particular,
Kn \ Bxn

(rn) is a finite subset, so without loss of generality we assume Kn ⊆
Bxn

(rn).
Set K = {x0}∪

⋃
n∈N

Kn. Then K is a countable closed subset of X and the set
of limit points of K in X is just {x0} ∪ {xn : n ∈ N}, as xn → x0 and rn → 0 when
n → ∞. Obviously, h(T, K) ≥ h(T, Kn) = h(xn) (∀n ∈ N), so h(T, K) = h(T ) (by
(5.2)). That is, K is just the subset we need. �

Remark 5.10. Let (X, T ) be a TDS with positive entropy. We can’t require the
subset K in Theorem 5.9 to be T -invariant, since the topological entropy of any
homeomorphism on a compact countable space is zero. Meanwhile, Example 5.3
implies that we can’t require K to have only one limit point.

Now let π : (X, T ) → (Y, S) be a factor map such that π−1(y) is countable
for each y ∈ Y . Is it possible that h(T ) > h(S)? The answer is negative, since
if h(T ) > h(S), then there is y ∈ Y such that π−1(y) contains an uncountable
scrambled set; see [22].
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Now we give two interesting examples stated in Example 5.11. Let (X, T ) be a
TDS. By Corollary 5.4 one has

Eup(X, T ) ⊇
⋃

{Supp(µ) : µ ∈ Me(X, T ), hµ(T ) > 0},

Ef
up(X, T ) ⊇

⋃
{Supp(µ) : µ ∈ Me(X, T ), hµ(T ) = h(T ) > 0}.

The first example in Example 5.11 shows that the converse of the above inclu-
sions need not hold. In fact, for this example Ef

up(X, T ) \ Supp(X, T ) �= ∅, where
Supp(X, T ) is the union of the supports of all invariant measures. Since Ep(X, T ) is
closed and T -invariant, we may consider Ep(Ep(X, T ), T ). The same example tells
us that Ep(X, T ) may contain isolated points and so Ep(Ep(X, T ), T ) � Ep(X, T ).
Moreover, we have a TDS (X, T ) with Ep(X, T ) = X and Supp(X, T ) �= X.

Example 5.11. We have the following examples:

1: There exists a TDS (X, T ) such that Ef
up(X, T ) \ Supp(X, T ) �= ∅ and

Ep(X, T ) contains isolated points, which implies Ep(Ep(X, T ), T ) �

Ep(X, T ).
2: There exists a TDS (X, T ) such that Ep(X, T ) = X and Supp(X, T ) �= X.

Proof. 1. Let {xi}i∈Z+ be a closed subset of {1, 2}Z such that limxi = x0 =
(· · · , 1; 1, · · · ) and h(σ, {xi}i∈Z+) = log 2 (by Remark 5.5 and Corollary 5.8, such
a subset exists). For each i ∈ Z+ let yi = (· · · , 0; xi(1), xi(2), · · · ) and 0 .=
(· · · , 0; 0, · · · ). Set

X = {1, 2}Z ∪ {0} ∪ {σn(yi) : n ∈ Z, i ∈ Z+}.

Clearly, X ⊆ {0, 1, 2}Z is closed and invariant under the shift σ. It’s not hard
to show that Ep(X, σ) = Ef

up(X, σ) = {1, 2}Z ∪ {0} ∪ {σny0 : n ∈ Z}, whereas
Supp(X, σ) = {1, 2}Z ∪ {0} � X. At the same time, it is easy to see that
Ep(Ep(X, σ), σ) = {1, 2}Z � Ep(X, σ) and σny0 is an isolated point of Ep(X, σ) for
each n ∈ Z.

2. Let X ⊆ {0, 1, 2}Z with (xi)∞−∞ ∈ X iff (xi)∞−∞ ∈ {1, 2}Z or (xi)∞−∞ = 0 or
there exists j ∈ Z such that xk = 0 for k ≤ j and xk ∈ {1, 2} for k > j. Clearly,
X ⊆ {0, 1, 2}Z is closed and invariant under the shift σ. It’s not hard to show that
Ef

up(X, σ) = X, whereas Supp(X, σ) = {1, 2}Z ∪{0} � X. �

To end the section we give two remarks which state that some results obtained
in the previous sections hold for more general settings.

Remark 5.12. Let Z be a compact metric space and R : Z → Z a continuous map.
Similarly, following Bowen’s definition we can also introduce separated and span-
ning subsets and define the topological entropy of (Z, R) (we use the same notations
with TDS). Moreover, along the line of sections 4 and 5, we can prove a result anal-
ogous with Theorem 5.9 (we skip the proof, since it is just a repetition). Precisely,
if (Z, R) has positive topological entropy, then: (1) there exists a countable closed
subset K1 ⊆ Z such that h(R, K1) > 0 and K1 contains only one limit point; (2)
there exists a countable closed subset K2 ⊆ Z such that h(R, K2) = h(R) > 0.

Remark 5.13. Let (X, T ) be a TDS and E a closed subset of X. For each ε > 0 and
x ∈ E define h(x, ε, E) = inf{r(d, T, ε, K) : K is a closed neighborhood of x in E}.
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Let h(x, E) = lim
ε→0+

h(x, ε, E). Then using the same methods we could show

1: h(x, ε, E) is u.s.c. and supx∈E h(x, E) = h(T, E).
2: If E′ is a countable closed subset of E with a unique limit point x, then

h(T, E′) ≤ h(x, E).
3: For each x ∈ E there is a countable closed subset Ex of E with a unique

limit point x such that h(T, Ex) = h(x, E).
4: There is a countable closed subset E′ ⊆ E with h(T, E′) = h(T, E). More-

over, E′ can be chosen such that the set of limit points of E′ has at most
one limit point, and E′ has a unique limit point iff there is x ∈ E with
h(x, E) = h(T, E).

6. C-entropy point in topological

and measure-theoretical settings

Different from the previous sections, in this section we introduce the notions of
C-entropy point both in topological and measure-theoretical settings along the line
of entropy pair ([2], [5]), tuple ([15]), sequence and set ([9]). We show that each
C-entropy point is an entropy point, and the set of C-entropy points is a union
of sets of C-entropy points for a measure over all invariant measures. Some other
properties of C-entropy points are discussed.

Definition 6.1. Let (X, T ) be a TDS and µ ∈ M(X, T ).

(1) We say x ∈ X is a C-entropy point if there exists x′ ∈ X such that (x, x′) ∈
E2(X, T ). Denote by E1(X, T ) the set of all C-entropy points.

(2) We say x ∈ X is a C-entropy point for µ if there exists x′ ∈ X such that
(x, x′) ∈ Eµ

2 (X, T ). Denote by Eµ
1 (X, T ) the set of all C-entropy points for

µ.

It is clear that both E1(X, T ) and Eµ
1 (X, T ) are T -invariant (as both E2(X, T )

and Eµ
2 (X, T ) are T × T -invariant), E1(X, T ) �= ∅ iff h(T ) > 0 and Eµ

1 (X, T ) �= ∅
iff hµ(T ) > 0. Since E1(X, T ) = p2(E2(X, T )) (resp. Eµ

1 (X, T ) = p2(E
µ
2 (X, T ))),

we have

Proposition 6.2. Let (X, T ) be a TDS. Then

1: ∀µ ∈ M(X, T ), Eµ
1 (X, T ) ⊆ E1(X, T ) ⊆ Ep(X, T ).

2: There exists µ0 ∈ M(X, T ) such that Eµ0
1 (X, T ) = E1(X, T ).

3: E1(X, T ) ⊆ X is an Fσ subset.
4: ∀µ ∈ M(X, T ), Eµ

1 (X, T ) ⊆ X is an Fσ subset.

Proof. Parts 1 and 2 follow directly from Proposition 3.1 and Theorem 3.4. By
part 2, part 3 follows from part 4. Now we are going to prove part 4.

Say d is a metric on X. Since

Eµ
2 (X, T ) = Supp(λ2(µ)) \ ∆2(X) =

⋃
n≥1

Supp(λ2(µ)) \ {(x1, x2) : d(x1, x2) <
1
n
},

where Supp(λ2(µ))\{(x1, x2) : d(x1, x2) < 1
n} ⊆ X(2) is closed (∀n ∈ N), Eµ

1 (X, T )
= p2(E

µ
2 (X, T )) is the union of a countably many closed subsets. This ends the

proof. �
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As a direct corollary of Proposition 3.2 one has

Proposition 6.3. Let (X, T ) be a TDS and µ ∈ M(X, T ). Say µ =
∫
Ω

µωdη(ω) is
the ergodic decomposition of µ. Then

1: Eµω

1 (X, T ) ⊆ Eµ
1 (X, T ) for η-a.e. ω ∈ Ω.

2: If x ∈ Eµ
1 (X, T ), then η({ω ∈ Ω|V ∩Eµω

1 (X, T ) �= ∅}) > 0 for any measur-
able neighborhood V of x. Thus for an appropriate choice of Ω we have⋃

{Eµω

1 (X, T ) : ω ∈ Ω} = Eµ
1 (X, T ).

Now we investigate the topological entropy of E1(X, T ) and Eµ
1 (X, T ).

Theorem 6.4. Let (X, T ) be a TDS and µ ∈ M(X, T ) satisfy hµ(T ) > 0. Then

1: If µ ∈ Me(X, T ), then Supp(µ) = Eµ
1 (X, T ).

2: h(T, Eµ
1 (X, T )) ≥ hµ(T ).

Proof. 1. As Supp(λ2(µ)) ⊆ Supp(µ) × Supp(µ), one has

Eµ
1 (X, T ) ⊆ p2(Supp(λ2(µ))) (by Proposition 3.1) ⊆ Supp(µ).

To show Supp(µ) ⊆ Eµ
1 (X, T ), we follow the same discussion as in Theorem

3.5. Let µ =
∫

Y
µydν(y) be the disintegration of µ over its Pinsker factor. Then

for ν-a.e. y ∈ Y , Supp(µy) ⊆ Eµ
1 (X, T ) and so Supp(µ) ⊆ Eµ

1 (X, T ). That is,
Supp(µ) = Eµ

1 (X, T ).
2. It’s not hard to check that h(T, K) = h(T, K) for each K ⊆ X. Now for all

µ ∈ Me(X, T ) the conclusion follows from part 1. In general, by Proposition 6.3,
Ω can be chosen appropriately such that Eµω

1 (X, T ) ⊆ Eµ
1 (X, T ) (∀ω ∈ Ω), where

µ =
∫
Ω

µωdη(ω) is the ergodic decomposition of µ. Then

h(T, Eµ
1 (X, T )) ≥ sup

ω∈Ω
h(T, Eµω

1 (X, T )) ≥ sup
ω∈Ω

hµω
(T ).(6.1)

As hµ(T ) =
∫
Ω

hµω
(T )dη(ω) (Theorem 8.4 in [21]), the right hand side in the

inequality (6.1) is not less than hµ(T ), that is, h(T, Eµ
1 (X, T )) ≥ hµ(T ). The proof

is completed. �

Theorem 6.5. Let (X, T ) be a TDS. Then

1: E1(X, T ) =
⋃
{Supp(µ) : µ ∈ Me(X, T ), hµ(T ) > 0}.

2: h(T, E1(X, T )) = h(T ).

Proof. 1. The direction “⊇” is clear (using Theorem 6.4). For the direction “⊆”,
by Proposition 6.2 there exists µ0 ∈ M(X, T ) such that E1(X, T ) = Eµ0

1 (X, T ).
Obviously, Eµ0

1 (X, T ) is contained in
⋃
{Supp(µ) : µ ∈ Me(X, T ) and hµ(T ) > 0}

(following from Proposition 6.3 (2) and Theorem 6.4 (1)). This proves the equality.
2. It follows from Theorem 6.4 by applying (3.1). �

Let (X, T ) be a TDS and µ ∈ M(X, T ) with hµ(T ) > 0. Say µ =
∫
Ω

µωdη(ω)
is the ergodic decomposition. Then Ω0 = {ω ∈ Ω : hµω

(T ) > 0} ⊆ Ω is mea-
surable and η(Ω0) > 0. In this case, set µe .= 1

η(Ω0)

∫
Ω0

µωdη(ω); for exam-
ple, µe = µ if µ ∈ Me(X, T ). Then µ = η(Ω0)µe + η(Ω \ Ω0)µr, where µr =

1
η(Ω\Ω0)

∫
Ω\Ω0

µωdη(ω) when η(Ω0) < 1 and µr = µ when η(Ω0) = 1. Note that
µe, µr ∈ M(X, T ) are both determined completely by µ. Now following similar
discussions as in Theorem 6.4 it’s not hard to obtain Eµ

1 (X, T ) = Supp(µe) =



6184 XIANGDONG YE AND GUOHUA ZHANG

⋂
Ω∗⊂Ω0:η(Ω∗)=η(Ω0)

⋃
{supp(µω) : ω ∈ Ω∗} (for the second equality, see for example

Proposition 5.1 in [9]).
Now using Propositions 3.1, 3.2 and 6.3 it’s not hard to obtain

Proposition 6.6. Let (X, T ) be a TDS with µ ∈ M(X, T ). Then

1: x ∈ Eµ
1 (X, T ) iff for each neighborhood V of x in X one has (V × V ) ∩

Eµ
2 (X, T ) �= ∅.

2: x ∈ E1(X, T ) iff for each neighborhood V of x in X one has (V × V ) ∩
E2(X, T ) �= ∅.

Now let 2X = {K ⊆ X : K is closed and non-empty} be equipped with the
Hausdorff topology. Then combining Proposition 6.6 with the results in [9] one has

Proposition 6.7. Let (X, T ) be a TDS. Then
1: For each µ ∈ M(X, T ) with hµ(T ) > 0, {K ∈ 2X : K is an entropy set for

µ} ∪{{x} : x ∈ Eµ
1 (X, T )} is a closed non-empty subset of 2X .

2: If (X, T ) has positive entropy, then {K ∈ 2X : K is an entropy set }∪{{x} :
x ∈ E1(X, T )} is a closed non-empty subset of 2X .

Moreover, using the lift-up property of an entropy pair ([2], [5]), we have the lift-
up property of a C-entropy point in both settings. Recall that if π : (X, T ) → (Y, S)
is a factor map between TDSs, then

(1) ∀(yi)21 ∈ E2(Y, S), there exists (xi)21 ∈ E2(X, T ) such that π(xi) = yi, i =
1, 2.

(2) ∀µ ∈ M(X, T ), ∀(yi)21 ∈ Eπµ
2 (Y, S), there exists (xi)21 ∈ Eµ

2 (X, T ) such
that π(xi) = yi, i = 1, 2.

An immediate consequence is

Proposition 6.8. Let π : (X, T ) → (Y, S) be a factor map between TDSs. Then
1: ∀y ∈ E1(Y, S), there exists x ∈ E1(X, T ) such that π(x) = y.
2: ∀µ ∈ M(X, T ), ∀y ∈ Eπµ

1 (Y, S), there exists x ∈ Eµ
1 (X, T ) such that

π(x) = y.

To end the paper, we give two results about the structure of the set of C-entropy
points.

It is natural to ask for a TDS, whose point will not be a C-entropy point. We
have the following partial answer for a minimal TDS. To state the result we need
some notations. Let (X, T ) be a TDS and x0 ∈ X. The proximal relation is defined
by

P = {(x1, x2) ∈ X(2) : ∃ni ↗ +∞ and x ∈ X such that (Tnix1, T
nix2) → (x, x)}.

We call x0 a distal point of (X, T ) if {x′ ∈ X : (x0, x
′) ∈ P} = {x0}. Denote by

D(X, T ) the set of all distal points of the system. We have

Theorem 6.9. Let (X, T ) be a minimal TDS. Assume that E1(X, T ) �= X. Then
X \ E1(X, T ) is a dense Gδ subset of X and D(X, T ) ⊆ X \ E1(X, T ).

Proof. By Proposition 6.2 it is obvious that X \E1(X, T ) forms a Gδ subset of X,
moreover, it is dense in X, as (X, T ) is minimal and X \E1(X, T ) is a T -invariant
non-empty subset. Now we aim to show D(X, T ) ⊆ X \ E1(X, T ).
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Assume the contrary that there exists x1 ∈ D(X, T ) with x1 /∈ X \ E1(X, T ).
This means x1 ∈ E1(X, T ), and so there exists x2 ∈ X such that (x1, x2) ∈
E2(X, T ).

Let W = {(Tmx1, Tmx2) : m ∈ Z+}. Then W ⊆ E2(X, T ) ∪ ∆2(X), since
E2(X, T ) ∪ ∆2(X) ⊆ X(2) is closed and T × T -invariant, and (x1, x2) ∈ E2(X, T ).
Moreover, as x1 is a distal point, we have W ∩ ∆2(X) = ∅. Thus, W ⊆ E2(X, T ).
As (X, T ) is minimal, and W is closed and T × T -invariant, we have p1(W ) = X.
This implies that E1(X, T ) = p1(E2(X, T )) = X, a contradiction, as we assume
E1(X, T ) �= X. This finishes the proof. �

Call a TDS point distal if there is a distal point. It is well-known that for a
minimal point distal TDS (X, T ), D(X, T ) is a residual subset. Assume now that
(X, T ) is a minimal TDS with positive entropy and (Y, S) is a non-trivial distal
TDS, and π : (X, T ) → (Y, S) is almost one to one (for the existence of such an
extension see [13]). It is not hard to show that {x ∈ X : π−1π(x) = {x}} = D(X, T )
and D(X, T ) ⊆ X \ E1(X, T ). This is just the situation described in Theorem 6.9.

Moreover, in [11] Glasner constructed an example (X, T ) which is minimal point
distal and E2(X, T ) ∩ D(X, T ) × D(X, T ) �= ∅ (in fact, this example is a compact
group extension of a TDS which is an almost one to one extension of a Kronecker
system), in particular, E1(X, T ) ∩ D(X, T ) �= ∅. Then applying Theorem 6.9 we
know that for this example we have E1(X, T ) = X. For systems with this property,
by Theorem 6.5 they admit invariant measures with full support.

We also have the following observation. Recall that a TDS (X, T ) has uniformly
positive entropy (u.p.e., for short) if E2(X, T ) = X(2) \ ∆2(X), and it has com-
pletely positive entropy (c.p.e., for short) if any non-trivial factor of (X, T ) has
positive entropy (see [1]). So the above example of Glasner is a minimal TDS
with E1(X, T ) = X which hasn’t c.p.e. Examples with the properties can also be
obtained in the following way.

Let (Y, S) be any non-trivial u.p.e. TDS and (Z, Θ) any non-trivial minimal
TDS with zero entropy. Set (X, T ) = (Y × Z, S × Θ). Then Proposition 3.1 of
[3] tells us that E2(X, T ) ∪ ∆2(X) = {((y1, z), (y2, z)) : y1, y2 ∈ Y, z ∈ Z} and
(Z, Θ) is the maximal zero entropy factor of (X, T ). Thus (X, T ) hasn’t c.p.e. and
E1(X, T ) = X. Note that (Y, S) and (Z, Θ) are disjoint (by Proposition 6 of [2]),
and so (X, T ) is minimal if (Y, S) is minimal.

To finish the paper we ask the following questions. Our first question (asked by
the referee) is

Question 6.10. Do there exist transitive non-minimal TDSs with properties stated
in Example 3.9 and Example 5.3?

We have proved that for a TDS (X, T ), E1(X, T ) ⊆ Ep(X, T ). It is clear that
if (X, T ) has only finitely many ergodic measures, then E1(X, T ) ⊆ Eup(X, T )
(using Corollary 5.4). However, it is not hard to construct an example (X, T ) by
modifying Example 5.3 for which E1(X, T ) ⊆ Eup(X, T ) does not hold. Thus, our
second question is

Question 6.11. Does E1(X, T ) ⊆ Eup(X, T ) hold for any TDS (X, T )?

Acknowledgement

We would like to thank the referee for the careful reading and useful comments
that resulted in substantial improvements to this paper.



6186 XIANGDONG YE AND GUOHUA ZHANG

References

[1] F. Blanchard, Fully positive topological entropy and topological mixing, Symbolic Dynamics
and its Applications, AMS Contemporary Mathematics, 135(1992), 95-105. MR1185082
(93k:58134)

[2] F. Blanchard, A disjointness theorem involving topological entropy, Bull. de la Soc. Math. de
France, 121(1993), 465-478. MR1254749 (95e:54050)

[3] F. Blanchard and Y. Lacroix, Zero-entropy factors of topological flows, Proc. Amer. Math.
Soc., 119(1993), 985-992. MR1155593 (93m:54066)

[4] F. Blanchard, E. Glasner and B. Host, A variation on the variational principle and ap-
plications to entropy pairs, Ergodic Th. and Dynam. Sys., 17(1997), 29-43. MR1440766
(98k:54073)

[5] F. Blanchard, B. Host, A. Maass, S. Mart́ınez and D. Rudolph, Entropy pairs for a measure,
Ergodic Th. and Dynam. Sys., 15(1995), 621-632. MR1346392 (96m:28024)

[6] F. Blanchard and W. Huang, Entropy sets, weak mixing sets and entropy capacity, to appear
in Discrete and Continuous Dynamical Systems.

[7] M. Boyle and T. Downarowicz, The entropy theory of symbolic extensions, Invent. Math.,

156 (2004), 119-161. MR2047659 (2005d:37015)
[8] M. Brin and A. B. Katok, On local entropy, Geometric dynamics (Rio de Janeiro, 1981), 30-

38, Lecture Notes in Math. 1007, New York, Springer-Verlag (1983). MR730261 (85c:58063)
[9] D. Dou, X. Ye and G. H. Zhang, Entropy sequences and maximal entropy sets, Nonlinearity,

19(2006), 53-74. MR2191619 (2006i:37037)
[10] D. Fiebig, U. Fiebig and Z. Nitecki, Entropy and preimage sets, Ergodic Th. and Dynam.

Sys., 23(2003), 1785-1806. MR2032488 (2004k:37025)
[11] E. Glasner, A simple characterization of the set of µ-entropy pairs and applications, Israel

Journal of Mathematics, 192(1997), 13-27. MR1489099 (98k:54076)
[12] E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs 101, Amer-

ican Mathematical Society, 2003. MR1958753 (2004c:37011)
[13] E. Glasner and B. Weiss, Topological entropy of extensions, Ergodic Theory and its con-

nections with Harmonic Analysis, Cambridge University Press, 1995, 299-307. MR1325706
(96b:54064)

[14] E. Glasner and B. Weiss, On the interplay between measurable and topological dynamics,
Handbook of Dynamical systems, Vol. 1B, Hasselblatt and Katok, eds., Elsevier, Amsterdam,
2006, 597-648. MR2186250 (2006i:37005)

[15] W. Huang and X. Ye, A local variational relation and applications, Israel Journal of Mathe-
matics, 151(2006), 237-280. MR2214126 (2006k:37033)

[16] W. Huang, X. Ye and G. H. Zhang, A local variational principle for conditional entropy,
Ergodic Th. and Dynam. Sys., 26(2006), 219-245. MR2201946 (2006j:37015)

[17] W. Huang, X. Ye and G. H. Zhang, Relative entropy tuples, relative u.p.e. and c.p.e. exten-

sions, Israel Journal of Mathematics, 158(2007), 249-284.
[18] W. Huang, X. Ye and G. H. Zhang, Lowering topological entropy over subsets, In preparation.
[19] A. B. Katok, Lyapunov exponents, entropy and periodic points for diffeomorphisms, Publ.

Math. I.H.E.S., 51(1980), 137-173.
[20] P. Romagnoli, A local variational principle for the topological entropy, Ergodic Th. and

Dynam. Sys., 23(2003), 1601-1610. MR2018614 (2004i:37030)
[21] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79, Springer-

Verlag, New York-Berlin, 1982. MR648108 (84e:28017)
[22] G. H. Zhang, Relative entropy, asymptotic pairs and chaos, Journal of London Mathematical

Society (2), 73(2006), 157-172. MR2197376 (2006k:37035)

Department of Mathematics, University of Science and Technology of China, Hefei,

Anhui, 230026, People’s Republic of China

E-mail address: yexd@ustc.edu.cn

Department of Mathematics, University of Science and Technology of China, Hefei,

Anhui, 230026, People’s Republic of China

E-mail address: ghzhang@mail.ustc.edu.cn

http://www.ams.org/mathscinet-getitem?mr=1185082
http://www.ams.org/mathscinet-getitem?mr=1185082
http://www.ams.org/mathscinet-getitem?mr=1254749
http://www.ams.org/mathscinet-getitem?mr=1254749
http://www.ams.org/mathscinet-getitem?mr=1155593
http://www.ams.org/mathscinet-getitem?mr=1155593
http://www.ams.org/mathscinet-getitem?mr=1440766
http://www.ams.org/mathscinet-getitem?mr=1440766
http://www.ams.org/mathscinet-getitem?mr=1346392
http://www.ams.org/mathscinet-getitem?mr=1346392
http://www.ams.org/mathscinet-getitem?mr=2047659
http://www.ams.org/mathscinet-getitem?mr=2047659
http://www.ams.org/mathscinet-getitem?mr=730261
http://www.ams.org/mathscinet-getitem?mr=730261
http://www.ams.org/mathscinet-getitem?mr=2191619
http://www.ams.org/mathscinet-getitem?mr=2191619
http://www.ams.org/mathscinet-getitem?mr=2032488
http://www.ams.org/mathscinet-getitem?mr=2032488
http://www.ams.org/mathscinet-getitem?mr=1489099
http://www.ams.org/mathscinet-getitem?mr=1489099
http://www.ams.org/mathscinet-getitem?mr=1958753
http://www.ams.org/mathscinet-getitem?mr=1958753
http://www.ams.org/mathscinet-getitem?mr=1325706
http://www.ams.org/mathscinet-getitem?mr=1325706
http://www.ams.org/mathscinet-getitem?mr=2186250
http://www.ams.org/mathscinet-getitem?mr=2186250
http://www.ams.org/mathscinet-getitem?mr=2214126
http://www.ams.org/mathscinet-getitem?mr=2214126
http://www.ams.org/mathscinet-getitem?mr=2201946
http://www.ams.org/mathscinet-getitem?mr=2201946
http://www.ams.org/mathscinet-getitem?mr=2018614
http://www.ams.org/mathscinet-getitem?mr=2018614
http://www.ams.org/mathscinet-getitem?mr=648108
http://www.ams.org/mathscinet-getitem?mr=648108
http://www.ams.org/mathscinet-getitem?mr=2197376
http://www.ams.org/mathscinet-getitem?mr=2197376

	1. Introduction
	2. Entropy point and full entropy point
	3. Structure of the set of entropy points
	4. Entropy function
	5. Uniform entropy point and uniform full entropy point
	6. C-entropy point in topological and measure-theoretical settings
	Acknowledgement
	References

