TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Volume 360, Number 1, January 2008, Pages 273–305
S 0002-9947(07)04218-3
Article electronically published on May 17, 2007

FROBENIUS-UNSTABLE BUNDLES AND \(p \)-CURVATURE

BRIAN OSSERMAN

Abstract. We use the theory of \(p \)-curvature of connections to analyze stable vector bundles of rank 2 on curves of genus 2 which pull back to unstable bundles under the Frobenius morphism. We take two approaches, first using explicit formulas for \(p \)-curvature to analyze low-characteristic cases, and then using degeneration techniques to obtain an answer for a general curve by degenerating to an irreducible rational nodal curve, and applying the results of additional works by the author. We also apply our explicit formulas to give a new description of the strata of curves of genus 2 of different \(p \)-rank.

1. Introduction

The primary theme of this paper is to use the following question as an invitation to a detailed study of the theory of \(p \)-curvature of connections in positive characteristic:

Question 1.1. Given a smooth curve \(C \) of genus 2 over an algebraically closed field \(k \) of positive characteristic, what is the number of Frobenius-unstable vector bundles of rank 2 and trivial determinant on \(C^{(p)} \)? That is, if \(F : C \to C^{(p)} \) denotes the relative Frobenius morphism from \(C \) to its \(p \)-twist, how many vector bundles \(\mathcal{F} \) are there on \(C^{(p)} \) (of the stated rank and determinant) which are themselves semistable, but for which \(F^* \mathcal{F} \) is unstable?

Because semistability is preserved by pullback under separable morphisms (see [5, Lem. 3.2.2]), the Frobenius-unstable case is in some sense a universal case for destabilization. Furthermore, Frobenius-unstable bundles are closely related to the study of the generalized Verschiebung, and its relationship to \(p \)-adic representations of the fundamental group of \(C \), in the case that \(C \) is defined over a finite field; see [16] for details.

Our question can be rephrased in terms of the theory of \(p \)-curvature of connections; this has the advantages that it is amenable to explicit calculation, and that it naturally extends to nodal curves, allowing degeneration arguments. Thus, the main analysis of our question is in two parts: first, we use explicit formulas for \(p \)-curvature to calculate the answer directly for odd characteristics \(\leq 7 \); and second, we use the abstract theory of \(p \)-curvature to give a new proof of the answer for a general curve of genus 2 in any odd characteristic, via degeneration to an irreducible rational nodal curve and application of the results of [17] and [19]. The latter result is originally due to Mochizuki; see [14] and [18]. The main advantage

Received by the editors September 17, 2004 and, in revised form, November 11, 2005.

2000 Mathematics Subject Classification. Primary 14H60.

This paper was partially supported by fellowships from the National Science Foundation and Japan Society for the Promotion of Science.

©2007 American Mathematical Society
Reverts to public domain 28 years from publication

273
of the explicit approach, as compared to the more general degeneration argument, is that the \(p \)-curvature formulas may be used to study arbitrary smooth curves, and do not give results only for general curves. This distinction is underscored by an algorithm derived via the same techniques to explicitly describe the loci of curves of genus 2 and \(p \)-ranks 0 or 1 in any specified characteristic. Additionally, the explicit approach is useful for computing examples in order to formulate conjectures; one aim of this paper is therefore to serve as an illustration of how \(p \)-curvature may be used very concretely for experimental purposes, and more theoretically for more general results.

Our main theorem is:

Theorem 1.2. Let \(C \) be a smooth, proper curve of genus 2 over an algebraically closed field \(k \) of characteristic \(p \); it may be described on the complement of a Weierstrass point by \(y^2 = x^5 + a_1 x^4 + \cdots + a_4 x + a_5 \) for some \(a_i \). Then the number of semistable vector bundles on \(C \) with trivial determinant which pull back to unstable vector bundles under the relative Frobenius morphism is:

\[
\begin{align*}
 p = 3 : & 16 \cdot 1; \\
 p = 5 : & 16 \cdot e_5, \text{ where } e_5 = 5 \text{ for } C \text{ general, and is given for an arbitrary } C \text{ as the number of distinct roots of a quintic polynomial with coefficients in terms of the } a_i; \\
 p = 7 : & 16 \cdot e_7, \text{ where } e_7 = 14 \text{ for } C \text{ general, and is given for an arbitrary } C \text{ as the number of points in the intersection of two curves in } k^2 \text{ whose coefficients are in terms of the } a_i; \\
 p > 2 : & (Mochizuki [14], [18]) 16 \cdot \frac{p^5 - p}{24} \text{ for } C \text{ general.}
\end{align*}
\]

Furthermore, when \(C \) is general, any Frobenius-unstable bundle \(\mathcal{F} \) has no non-trivial deformations which yield the trivial deformation of \(F^* \mathcal{F} \).

There is a considerable amount of literature on Frobenius-unstable vector bundles. Gieseker and Raynaud produced certain examples of Frobenius-unstable bundles in [3] and [20, p. 119], but, aside from the results of Mochizuki discussed below, the first classification-type result is due to Laszlo and Pauly, who answered our main question in characteristic 2: there is always a single Frobenius-unstable bundle (see [12], argument for Prop. 6.1 2.; the equations for an ordinary curve are not used). Joshi, Ramanan, Xia and Yu obtain results on the Frobenius-unstable locus in characteristic 2 for higher-genus curves in [6]. Most recently, and concurrently with the initial preparation of the present paper, Lange and Pauly [10] have recovered the formula of Theorem 1.2 for general \(C \) in the case of ordinary curves via a completely different approach.

However, the most comprehensive results to date follow from Mochizuki’s work (see [14] and [18]), which was carried out in the context of \(\mathbb{P}^1 \)-bundles on curves in any odd characteristic, via degeneration techniques quite similar to those which we pursue in Sections 8 and 9. Indeed, key results and their arguments in Sections 7, 8 and 9 are essentially the same as Mochizuki’s; in the first case, the argument presented here was discovered independently, while in the other cases, the author’s original arguments were more complicated and less general than Mochizuki’s, and have thus been replaced. There are several justifications for the logical redundancy: the arguments in question are all quite short, and it seems desirable to have a self-contained proof of the main theorem, without translating to projective bundles and back; the argument of Section 7 is actually substantially simpler in our case of curves.
of genus 2; and finally, the gluing statements of Section 8 require some ridigifying hypotheses in the context of vector bundles that do not arise in Mochizuki’s work.

Lastly, we remark that as discussed in [18], Mochizuki’s strategy is to degenerate to totally degenerate curves, while our strategy is to degenerate to irreducible nodal curves. Aside from allowing one to make more naive arguments in terms of explicit degenerations, ours is a substantially more difficult approach, since after reducing the problem to self-maps of \mathbb{P}^1 with prescribed ramification, in Mochizuki’s case it suffices to handle the case of three ramification points, while our argument requires four, and is therefore far more complicated; see [19] for details. However, degenerating to irreducible curves is helpful for studying Frobenius-unstable bundles in higher genus; see [18].

We begin in Section 2 by relating our main question to p-curvature, and Section 3 is then devoted to developing explicit and completely general combinatorial formulas for p-curvature. We make certain necessary computations for genus 2 curves in Section 4 which we also apply to obtain an explicit algorithm for generating p-rank formulas in any given odd characteristic. Section 5 is devoted to computing the space of connections on a certain unstable bundle, and in Section 6 we conclude the computation with explicit descriptions of the locus having p-curvature zero in characteristics 3, 5 and 7. The space of connections on the same bundle having nilpotent p-curvature is shown to be finite and flat in Section 7 again by explicit computation; this completes the proof of Theorem 1.2 for $p \leq 7$, and also provides a key step of the general case. In Section 8 we discuss the relationship between connections on nodal curves and their normalizations, and finally in Section 9 we show that connections on nodal curves deform, and apply the results of [17] and [19] to conclude our main theorem.

Computations were carried out in Maple and Mathematica, and in the case of the p-curvature formulas of Section 3, using simple C code.

The contents of this paper form a portion of the author’s 2004 Ph.D. thesis at MIT, under the direction of Johan de Jong.

2. FROM FROBENIUS-INSTABILITY TO p-CURVATURE

In this section, we review the theory of p-curvature of connections, and explain its relationship to classification of Frobenius-unstable vector bundles. Here and throughout, for X/S we let $F : X \to X^{(p)}$ denote the relative Frobenius morphism.

For our discussion of general properties of connections and p-curvature, we will assume the following situation and notation:

Situation 2.1. Let C/S be a flat, at worst nodal, relative curve over a scheme S of characteristic p, and $\omega_{C/S}$ the relative dualizing sheaf.

Remark 2.2. We are fundamentally interested in the case that C is a smooth curve over S, and $S = \text{Spec} \ k$ is a point, and for conceptual purposes it will suffice to consider this case until the degeneration arguments of sections 8 and 9. We allow arbitrary S only for technical purposes, particularly in analysis of deformations. Although p-curvature is more general, we have restricted ourselves to the case of curves to avoid dealing with integrability hypotheses.

Definition 2.3. In the above situation, and given a vector bundle E on C, a connection on E (relative to S) is an O_S-linear map $\nabla : E \to \omega_{C/S} \otimes E$ satisfying
the connection rule
\[\nabla(fs) = f \nabla(s) + df \otimes s, \]
where in the case that \(C/S \) is a nodal curve, \(df \) is considered as an element of \(\omega_{C/S} \) via the natural map \(\Omega^1_{C/S} \to \omega_{C/S} \), which one can obtain by applying [1] Prop. VIII.1.16, (i) to the normalization map.

Also using this natural map, we define a derivative \(\theta \) on \(C \) to be a map \(\mathcal{O}_C \to \mathcal{O}_C \) obtained as the composition \(\hat{\theta} \circ d \) for some \(\hat{\theta} \in \omega^1_{C/S} \).

The most basic theory of connections and p-curvature on smooth curves, as in [9, §5], can easily be checked to extend to our situation, when \(\Omega^1_{C/S} \) is replaced throughout by \(\omega_{C/S} \) (and in particular, when the sheaf of derivations is replaced by \(\omega^1_{C/S} \)), except as discussed below. Note also that the induced connection on tensor products descends to wedge products, so that for a vector bundle \(\mathcal{E} \) with connection, we obtain an induced determinant connection on \(\mathcal{E} \). If \(C \) is proper, and \(\det \mathcal{E} \cong \mathcal{O}_C \), it makes sense to impose the condition that \(\nabla \) has trivial determinant, since the equation \(\det \nabla = d \) will not depend on the isomorphism \(\det \mathcal{E} \cong \mathcal{O}_C \). Additionally, given \(\varphi \in \text{Aut}(\mathcal{E}) \) and a \(\nabla \) on \(\mathcal{E} \), we refer to the operation of conjugation by \(\varphi \) on \(\nabla \) as transport.

Notation 2.4. In the situation of the above definition, we write \(\text{Conn}(\mathcal{E}) \) for the space of connections on \(\mathcal{E} \), and for \(\nabla \in \text{Conn}(\mathcal{E}) \), we write \(\psi_{\nabla} \) for the p-curvature of \(\nabla \). Also, for \(n \in \mathbb{N} \) we write \(M_n(C) \) for the category of vector bundles of rank \(n \) on \(C \). We further set:

\[\text{Conn}_p(\mathcal{E}) := \{ \nabla \in \text{Conn}(\mathcal{E}) : \psi_{\nabla} = 0 \} , \]
\[M_{n,0}(C) := \{ \mathcal{E}' \in M_n(C) : \det \mathcal{E}' \cong \mathcal{O}_C \}. \]

Finally, if \(C \) is proper, and \(\det \mathcal{E} \cong \mathcal{O}_C \), we write:

\[\text{Conn}^0(\mathcal{E}) := \{ \nabla \in \text{Conn}(\mathcal{E}) : \det \nabla = d \} , \]
\[\text{Conn}^0_p(\mathcal{E}) := \{ \nabla \in \text{Conn}^0(\mathcal{E}) \cap \text{Conn}_p(\mathcal{E}) \}. \]

We summarize the basic results relating Frobenius with p-curvature, attributed by Katz to Cartier [9].

Theorem 2.5. Let \(C/S \) be as in Situation 2.1. For any vector bundle \(\mathcal{E} \) with connection \(\nabla \) on \(C \), the kernel of \(\nabla \), denoted \(\mathcal{E}^\nabla \), is naturally an \(\mathcal{O}_{C(p)} \)-module. For any vector bundle \(\mathcal{F} \) on \(C^{(p)} \), \(\mathcal{F}^p \mathcal{F} \) is equipped with a canonical connection \(\nabla^{\text{con}} \), which has p-curvature zero, and we have \(\mathcal{F}^p((\mathcal{F}^p \mathcal{F})^{\nabla^{\text{con}}}) = \mathcal{F}^p \mathcal{F} \).

Also, if \(C \) is smooth over \(S \), the operations \(\mathcal{F} \mapsto (\mathcal{F}^p \mathcal{F}, \nabla^{\text{con}}) \) and \((\mathcal{E}, \nabla) \mapsto \mathcal{E}^\nabla \) are mutually inverse functors inducing an equivalence

\[M_n(\mathcal{O}_{C(p)}) \cong \{ (\mathcal{E}, \nabla) : \mathcal{E} \in M_n(\mathcal{O}_C), \nabla \in \text{Conn}_p(\mathcal{E}) \}. \]

Furthermore, if \(C \) is proper, restriction induces an equivalence

\[M_{n,0}(\mathcal{O}_{C(p)}) \cong \{ (\mathcal{E}, \nabla) : \mathcal{E} \in M_{n,0}(\mathcal{O}_C), \nabla \in \text{Conn}^0_p(\mathcal{E}) \}. \]

Proof. For the statements in the smooth case in terms of coherent sheaves, see [9, §5], and in particular [9, Thm. 5.1]. It only remains to check that the categorical equivalence on coherent sheaves gives an equivalence on vector bundles, and again in the case of trivial determinant. The first assertion follows from the fact that \(F \) is
faithfully flat when C/S is smooth. The second is easily checked by verifying that the operation $\mathcal{F} \mapsto (F^* \mathcal{F}, \nabla^{\text{can}})$ commutes with taking determinants.

For the non-smooth case, there is probably a more direct proof, but we give a reference in the language of log structures: we recall that a relative nodal curve has canonical log structures on the curve and base under which the map becomes log smooth, and the dualizing sheaf is the sheaf of logarithmic differentials (see [8]). We then obtain the desired statements in the log category from the $i = 0$ case of [15, Thm. 1.2.5 (1.)]. Finally, we conclude that the p-twist and relative Frobenius morphism in the log category agree with the usual ones because a relative nodal curve, having semistable reduction, is of Cartier type; see Remark 1.2.3 of loc. cit. □

In the case that C is not smooth, for any given \mathcal{E} and $\nabla \in \text{Conn}_p(\mathcal{E})$, the isomorphism $\mathcal{E} \cong F^*(\mathcal{E}\nabla)$ may fail, because one expects $\mathcal{E}\nabla$ to fail to generate \mathcal{E} at the nodes.

However, on smooth curves we see that p-curvature is naturally related to the study of Frobenius-pullbacks. The categorical equivalence implies that isomorphism classes of \mathcal{F} will correspond to transport equivalence classes of connections with p-curvature zero. In the case of our particular question, the relationship is particularly helpful. To pursue this further, we assume we are in the following situation.

Situation 2.6. C is a smooth, proper curve of genus 2, over an algebraically closed field k of characteristic p.

We recall:

Definition 2.7. For $\mathcal{E} \in \mathcal{M}_n(C)$, \mathcal{E} is said to be **semistable** if for all non-zero proper sub-bundles $\mathcal{F} \subset \mathcal{E}$, we have

$$\frac{\deg \mathcal{F}}{\text{rk} \mathcal{F}} \leq \frac{\deg \mathcal{E}}{\text{rk} \mathcal{E}},$$

and **stable** if strict inequality holds. Otherwise, \mathcal{E} is **unstable**.

We denote by $M_n^{ss}(C)$ and $M_n^s(C)$ the categories of semistable and stable bundles of rank n on C, and similarly for $M_n^{s,0}(C)$.

We say that $\mathcal{E} \in M_n^{s,s}(C(p))$ is **Frobenius-unstable** if $F^* \mathcal{E} \notin M_n^{s,s}(C)$.

In our situation, Mehta remarked that there are at most finitely many Frobenius-unstable vector bundles in $M_{2,0}(C(p))$ (see [7] Thm. 3.2); we will obtain another proof from Corollary [7,2]. Lange and Stuhler gave the following description of them (see [11] Cor. to Props. 2.4 and 2.6, and [11] Prop. 3.3 for a simpler argument in modern language):

Proposition 2.8 (Lange-Stuhler). Suppose we have $\mathcal{F} \in M_{n,0}^{s,s}(C(p))$ such that $\mathcal{E} := F^* \mathcal{F} \notin M_{n,0}^{s,s}(C)$. Then there is a non-split exact sequence

$$0 \to \mathcal{L} \to \mathcal{E} \to \mathcal{L}^{-1} \to 0,$$

where \mathcal{L} is a **theta characteristic**, that is, $\mathcal{L}^{\otimes 2} \cong \omega_C$.

We thus have a natural set of unstable vector bundles upon which to look for connections with p-curvature zero. Indeed, it is easy to see that the proposition is sharp.
Corollary 2.9. If $F \in M^{2,0}_S(C(p))$ is Frobenius-unstable, then $F \in M^{2,0}_S(C(p))$. The functors of Theorem 2.5 induce a bijection between such bundles and pairs $(E, [\nabla])$, with E as in the above proposition, and $[\nabla]$ a transport-equivalence class of connections in $\text{Conn}^0_p(E)$.

This correspondence is functorial in the sense that after arbitrary base change $S \to \text{Spec} k$, vector bundles $F \in \text{Conn}^0_S(C(p))$ with $F^* \bar{F} \cong \delta_S$ are in bijection with transport-equivalence classes of connections in $\text{Conn}^0_p(E_S)$.

Proof. The functoriality is the more obvious statement, in light Theorem 2.5. For the rest, all we need to check is that if $F^* \bar{F} \cong \delta$ for some F, we necessarily have that F is stable. But if $M \subset F$ is a non-negative line sub-bundle, $F^* M \subset F$ is non-negative with degree a multiple of p, which cannot occur when $F^* \bar{F} \cong \delta$ by the following standard lemma. □

Lemma 2.10. Let E be a rank 2 vector bundle of degree 0 on C, and suppose L is a positive line bundle giving an exact sequence

$$0 \to L \to E \to E/L \to 0.$$

Then L is unique, and is the maximal degree line bundle inside E, and E has no quotient line bundle of degree 0.

Proof. One checks this simply by looking at maps of the form $L \to E \to E/L'$, and considering the degrees of the line bundles in question. □

Next, we note that the E of Proposition 2.8 are nearly unique.

Proposition 2.11. There are only 16 choices for E as described in Proposition 2.8, one for each choice of L.

Proof. Any two choices of L differ by one of the $2^g = 16$ line bundle of order 2 on C. With L chosen, we calculate that $\text{Ext}^1(L^{-1}, L) \cong H^0(C, O_C) \cong k$, so the isomorphism class of E is uniquely determined. □

Lastly, we observe that it suffices to handle a single choice of E.

Corollary 2.12. For any E, E' as in Proposition 2.11 there is a canonical functorial equivalence

$$\{ F \in M_{2,0}(C(p)) : F^* F \cong \delta \} \cong \{ F \in M_{2,0}(C(p)) : F^* F \cong \delta' \}.$$

Proof. From Proposition 2.11 we see that E and E' are related by tensoring by a 2-torsion line bundle. The corollary is then easily verified by the bijectivity of F^* on 2-torsion line bundles. □

Having reduced our main question to a matter of classifying connections with p-curvature zero on a certain vector bundle, we briefly return to our more general situation to develop the formal properties of p-curvature, which we will not need to use until Section 7 and the following sections. The statement is:

Proposition 2.13. Given C/S as in Situation 2.7 with C proper, and a connection ∇ on a vector bundle δ on C/S, we have the following description of the p-curvature ψ_∇ of ∇.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(i) We may describe \(\psi_{\nabla} \) as an element of
\[\Gamma(C, \mathcal{E}\text{nd}(\mathcal{E}) \otimes F^*\omega_{\mathcal{C}(p)/S})^{\nabla_{\text{ind}}}, \]
where the superscript denotes the subspace of sections horizontal for \(\nabla_{\text{ind}} \), the natural induced connection on \(\mathcal{E}\text{nd}(\mathcal{E}) \otimes F^*\omega_{\mathcal{C}(p)/S} \).

(ii) We have:
\[\psi_{\text{det}} \nabla = \text{Tr} \psi_{\nabla}; \]
in particular, if \(\mathcal{E} \) and \(\nabla \) have trivial determinant, we find that \(\psi_{\nabla} \) lies in
\[\Gamma(C, \mathcal{E}\text{nd}^0(\mathcal{E}) \otimes F^*\omega_{\mathcal{C}(p)/S})^{\nabla_{\text{ind}}}, \]
where \(\mathcal{E}\text{nd}^0(\mathcal{E}) \) denotes the sheaf of traceless endomorphisms of \(\mathcal{E} \).

(iii) Assuming \(\mathcal{E} \) has a connection, we may also consider \(p \)-curvature as giving morphisms between affine spaces
\[
\psi : \Gamma(C, \text{Conn}(\mathcal{E})) \to \Gamma(C, \mathcal{E}\text{nd}(\mathcal{E}) \otimes F^*\omega_{\mathcal{C}(p)}),
\]
\[
\psi^0 : \Gamma(C, \text{Conn}^0(\mathcal{E})) \to \Gamma(C, \mathcal{E}\text{nd}^0(\mathcal{E}) \otimes F^*\omega_{\mathcal{C}(p)}).
\]

(iv) We may take the determinant of the previous maps, and in the case that \(\mathcal{E} \) has trivial determinant, we obtain a map
\[\det \psi^0 : \Gamma(C, \text{Conn}^0(\mathcal{E})) \to \Gamma(C^{(p)}, (\omega_{\mathcal{C}(p)})^{\otimes n}), \]
where \(n = \text{rk} \mathcal{E} \).

Proof. Assertion (i) follows directly from the linearity and \(p \)-linearity results of Katz [9, 5.0.5, 5.2.0], together with the fact that \(\psi_{\nabla}(\theta) \) commutes with \(\nabla_{\theta'} \) for any \(\theta' \), by [9, 5.2.3]. Assertion (ii) follows from explicit computation, in Corollary 3.6(ii). We then obtain assertion (iii) formally: since we are working over an arbitrary scheme, we obtain the map on arbitrary \(T \)-valued points, and if \(\mathcal{E} \) has a connection, the space of connections is a torsor over \(\Gamma(C, \mathcal{E}\text{nd}(\mathcal{E}) \otimes \omega_{\mathcal{C}}) \), and likewise after arbitrary pull-back, and hence representable by an affine space. Finally, for assertion (iv), we just put together assertions (ii) and (iii), checking that in the trivial determinant case, the induced connection on the determinant of \(\mathcal{E}\text{nd}^0(\mathcal{E}) \) is likewise trivial. \(\square \)

3. Explicit \(p \)-Curvature Formulas

In this section, we develop general combinatorial formulas which may be used to explicitly compute the \(p \)-curvature of a connection for any given \(p \). We specify our notation for the section.

Situation 3.1. Let \(C/S \) and \(\omega_{\mathcal{C}/S} \) be as in Situation 2.1. Let \(U \) denote an affine open on \(C \). We are given a vector bundle \(\mathcal{E} \) trivialized on \(U \), and a \(\theta \) a derivation on \(U \). We thus obtain a connection matrix \(\bar{T} \) on \(U \) associated to any connection \(\nabla \) on \(\mathcal{E} \), such that \(\nabla_\theta(s) = \bar{T}s + \theta s \). Also denote by \(T_{(p)} \) the connection matrix associated to \(\nabla \) and \(\theta^p \).

One can then easily check the following explicit formula for the \(p \)-curvature associated to \(\nabla \) and \(\theta \).

Lemma 3.2. We have \(\psi_{\nabla}(\theta) = (\bar{T} + \theta)^p - \bar{T}_{(p)} - \theta^p \).

We now describe the expansion of \((\bar{T} + \theta)^n\) using the commutation relation \(\theta \bar{T} = (\theta \bar{T}) + \bar{T} \theta \), where, in order to make formulas easier to parse, \((\theta \bar{T})\) denotes the application of \(\theta \) to the coordinates of \(\bar{T} \).
Proposition 3.3. Given \(i = (i_1, \ldots, i_\ell) \in \mathbb{N}^{\ell-1} \times (\mathbb{N} \cup \{0\}) \) with \(\sum_{j=1}^\ell i_j = n \), denote by \(i_j \) the coefficient of \(\hat{T}_i := (\theta^{i_1-1}T) \cdots (\theta^{i_{\ell-1}}T) \theta^{i_{\ell}} \) in the full expansion of \((\hat{T} + \theta)^n\). Also denote by \(i_0 \) the vector \((i_1, \ldots, i_{\ell-1}, 0)\). Then we have:

\[
\hat{n}_i = \binom{n}{i_{\ell}} \hat{n}_{i_0}.
\]

Proof. Although this formula may be seen directly, the proof is expressed most clearly by induction on \(n \), which we sketch. We may assume that \(i_\ell > 0 \), or the statement is trivial. By definition, we have

\[
(\hat{T} + \theta)^n = (\hat{T} + \theta)\left(\sum_{i'} \sum_{|i'| = n-1} \hat{n}_{i'} \hat{T}_{i'}\right),
\]

where \(i' = (i'_1, \ldots, i'_\ell) \), and \(|i'| := \sum i'_j \). Multiplying out and commuting the \(\theta \) from left to right until we obtain another such expression, we find two cases: \(i_1 = 1 \) and \(i_1 > 1 \); we handle the case \(i_1 > 1 \), the other being essentially the same. In this case, we obtain the inductive formula \(\hat{n}_i = \sum_j \hat{n}_{i-1,j} \), where \(1_j \) denotes the vector which is \(1 \) in the \(j \)th position and \(0 \) elsewhere, and where \(j \) is allowed to range only over values where \(i_j > 1 \). We then also have that \(\hat{n}_{i_0} = \sum_{j < \ell} \hat{n}_{i_0-1,j} \), so that if we induct on \(n \), we have \(\hat{n}_i = \sum_j \hat{n}_{i-1,j} = \sum_{j < \ell} \left(\begin{array}{c} n-1 \\ i_{\ell}-1 \end{array} \right) \hat{n}_{i(i-1)_j} + \left(\begin{array}{c} n-1 \\ i_{\ell}-1 \end{array} \right) \hat{n}_{(i-1)e_j} = \left(\begin{array}{c} n-1 \\ i_{\ell}-1 \end{array} \right) \hat{n}_i \), where the last equality makes use of the observation that \(i_0 = (1-1)e_j \). Then the identity \(\begin{array}{c} n-1 \\ r-1 \end{array} \) completes the proof.

It follows that if \(n = p \), \(\hat{n}_i \) is non-zero mod \(p \) only if \(i_\ell = 0 \) or \(i_\ell = p \), and in the latter case, we have \(\ell = 1 \), \(i_1 = p \), and \(\hat{n}_1 = 1 \), which precisely cancels the \(\theta^p \) subtracted off in the formula for \(\psi(\theta) \). We immediately see that \(\psi(\theta) \) is in fact given entirely by linear terms. In particular, this explicitly recovers the statement we already knew to be true that \(p \)-curvature takes values in the space of \(\mathcal{O}_C \)-linear endomorphisms of \(E \). We may now restrict our attention to the linear terms in the expansion, and will shift our notation accordingly:

Proposition 3.4. Given \(i = (i_1, \ldots, i_\ell) \in \mathbb{N}^{\ell} \) with \(\sum_{j=1}^\ell i_j = n \), denote by \(n_i \) the coefficient of \(\hat{T}_i = (\theta^{i_1-1}T) \cdots (\theta^{i_{\ell-1}}T) \) in the full expansion of \((\hat{T} + \theta)^n\). Also denote by \(\hat{i} \) the truncated vector \((i_1, \ldots, i_{\ell-1})\). Then we have:

\[
n_i = \binom{n-1}{i_{\ell}-1} n_{\hat{i}}.
\]

We thus get

\[
n_i = \prod_{j=1}^\ell \left(\frac{n-1 - \sum_{m=j+1}^\ell i_m}{i_j-1} \right) = \frac{(n-1)!}{(\prod_{j=1}^\ell (i_j-1)!)(\prod_{j=1}^\ell (\sum_{m=1}^j i_m)!)}.
\]

Proof. This follows from the same induction argument as the previous proposition.

We note that this implies that every such term in the expansion of \((\hat{T} + \theta)^n\) is non-zero mod \(n \) when \(n = p \), since the numerator in the resulting formula is simply \((n-1)!\). Thus, the \(p \)-curvature formula is always maximally complex, having an exponential number of terms. However, when some of the terms commute, the formulas tend to simplify considerably.
Proposition 3.5. Given \(\ell > 0 \) and a subset \(\Lambda \subseteq \{1, \ldots, \ell\} \), denote by \(S^\Lambda_\ell \) the subset of the permutation group \(S_\ell \) which preserves the order of the elements of \(\Lambda \); that is, \(S^\Lambda_\ell := \{ \sigma \in S_\ell : \forall j < j' \in \Lambda, \sigma(j) < \sigma(j') \} \). Also given \(i = (i_1, \ldots, i_\ell) \in \mathbb{N}^\ell \) with \(\sum_{j=1}^\ell i_j = n \), we denote by \(n^\Lambda_i \) the sum over all \(\sigma \in S^\Lambda_\ell \) of \(n_{\sigma(i)} \), where \(\sigma(i) \) denotes the vector \((i_{\sigma^{-1}(1)}, \ldots, i_{\sigma^{-1}(\ell)}) \) obtained from \(i \) by permuting the coordinates under \(\sigma \). Then we have:

\[
n^\Lambda_i = \frac{n!}{\prod_{j=1}^\ell (i_j - 1)! \prod_{j=1}^\ell (i_j + \sum_{m < j} \sigma(m) \cdot i_m)}. \]

Note that the last sum in the denominator is non-empty only for \(j \in \Lambda \).

Proof. First note that if we want the entries of \(i \) with indices in \(\Lambda \) to have the same order in \(\sigma(i) \), we must apply \(\sigma^{-1} \) rather than \(\sigma \) to the indices, as in our definition.

Applying our previous formula, we really just want to show that

\[
\sum_{\sigma \in S^\Lambda_\ell} \prod_{j=1}^{\ell-1} \frac{1}{\prod_{m=1}^{i_{\sigma^{-1}(m)}}} = \frac{n}{\prod_{j=1}^\ell (i_j + \sum_{m < j} \sigma(m) \cdot i_m)} = \frac{\sum_{j=1}^\ell i_j}{\prod_{j=1}^\ell (i_j + \sum_{m < j} \sigma(m) \cdot i_m)}.
\]

Dividing through by \(\sum_{j=1}^\ell i_j \) reduces the identity to

\[
(3.1) \quad \sum_{\sigma \in S^\Lambda_\ell} \prod_{j=1}^\ell \frac{1}{\prod_{m=1}^{i_{\sigma^{-1}(m)}}} = \frac{1}{\prod_{j=1}^\ell (i_j + \sum_{m < j} \sigma(m) \cdot i_m)}.
\]

We show this by induction on \(\ell \) (noting that it is rather trivial in the case \(\ell = 1 \), whether or not \(\Lambda \) is empty), breaking up the first sum over \(S^\Lambda_\ell \) into \(\ell - |\Lambda| + 1 \) pieces, depending on which \(i_e \) ends up in the final place. There are two cases to consider: \(r \not\in \Lambda \), or \(r = \Lambda_{\text{max}} \). In either case, the relevant part of the sum on the left hand side becomes

\[
\sum_{\sigma \in S^\Lambda_\ell} \prod_{j=1}^\ell \frac{1}{\prod_{m=1}^{i_{\sigma^{-1}(m)}}} = \sum_{\sigma \in S^\Lambda_\ell} \prod_{j=1}^\ell \frac{1}{\prod_{m=1}^{i_{\sigma^{-1}(m)}}}
\]

where \(S^\Lambda_\ell \) denotes the subset of \(S^\Lambda_\ell \) sending \(r \) to \(\ell \). Now, the point is that for our sums, this will be equivalent to an order-preserving subset of the symmetric group acting on a set of \(\ell - 1 \) elements, allowing us to apply induction. In the case that \(r \not\in \Lambda \), \(\Lambda \) is in essence unaffected, and we find that

\[
\sum_{\sigma \in S^\Lambda_\ell \setminus \Lambda \ell} \prod_{j=1}^\ell \frac{1}{\prod_{m=1}^{i_{\sigma^{-1}(m)}}} = \frac{1}{n} \sum_{\sigma \in S^\Lambda_\ell \setminus \Lambda \ell} \prod_{j=1}^\ell \frac{1}{\prod_{m=1}^{i_{\sigma^{-1}(m)}}}.
\]

and one checks that this sum is of the same form as (3.1) with \(i_e \) omitted, so by induction we find that this sum is equal to

\[
\frac{1}{n} \prod_{j \not\in \Lambda} (i_j + \sum_{m < j} \sigma(m) \cdot i_m) = \prod_{j \not\in \Lambda} (i_j + \sum_{m < j} \sigma(m) \cdot i_m),
\]

since \(r \not\in \Lambda \). In the case that \(r = \Lambda_{\text{max}} \), we effectively reduce the size of \(\Lambda \) by one, but because \(r \) is maximal in \(\Lambda \), for \(j \neq r \) the term \(\sum_{m < j} \sigma(m) \cdot i_m \) is unaffected by omitting \(r \) from \(\Lambda \). We thus find, arguing as before,

\[
\sum_{\sigma \in S^\Lambda_\ell \setminus \Lambda \ell} \prod_{j=1}^\ell \frac{1}{\prod_{m=1}^{i_{\sigma^{-1}(m)}}} = \prod_{j \not\in \Lambda} (i_j + \sum_{m < j} \sigma(m) \cdot i_m),
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Adding these up as r ranges over Λ_{max} and all values not in Λ, and using $n = \sum_j i_j$, we get the desired identity.

We give some specific applications of this formula.

Corollary 3.6. Suppose we are in Situation 3.1 and \mathfrak{g} has rank r. We have:

(i) If $r = 1$, p-curvature is given by:

$$\psi_{\nabla}(\theta) = \overline{T}^p + (\theta^{p-1}\overline{T}) - \overline{T}_p.$$

(ii) We have:

$$\psi_{\det \nabla} = \text{Tr} \psi_{\nabla}.$$

(iii) Suppose ∇' is a connection on U with $\nabla' - \nabla = \omega I$ a scalar endomorphism. Then we have

$$\psi_{\nabla'}(\theta) - \psi_{\nabla}(\theta) = ((\hat{\theta}(\omega))^p + \theta^{p-1}(\hat{\theta}(\omega)) - \hat{\theta}(\omega))^p I.$$

Proof. From the previous proposition, we see that when $n = p$ and Λ is empty, so that all the involved matrices commute, we have

$$n_{i_1^{p}} = \frac{p!}{\prod_{j=1}^{i_j} j!},$$

but the actual coefficient will be $n_{i_1^{p}}/P_i$, where P_i is the number of permutations fixing the vector i, since summing up over all permutations will count each term P_i times. We see that this expression can be non-zero mod p only if either P_i is a multiple of p, or some i_j is. Since P_i is the order of a subgroup of S_{ℓ}, it can be a multiple of p if and only if $\ell = p$ and each $i_j = 1$. On the other hand, an i_j can be a multiple of p if and only if $\ell = 1$ and $i_1 = p$; these two terms simply reiterate that the coefficients of \overline{T}^p and $(\theta^{p-1}\overline{T})$ are both 1, and we see that every other coefficient vanishes mod p. We immediately conclude (i), and for (ii) we see similarly that we have

$$\text{Tr} \psi_{\nabla}(\theta) = \text{Tr} \overline{T}^p + \text{Tr}(\theta^{p-1}\overline{T}) - \text{Tr} f_{\theta^p\overline{T}}.$$

We conclude the desired result by (i) and the observation (for instance, by passing to the algebraic closure of k and taking the Jordan normal form) that $\text{Tr}(\overline{T}^p) = (\text{Tr} \overline{T})^p$.

For (iii), we can compare the p-curvatures of ∇ and ∇' term by term; we have $\overline{T} + \hat{\theta}(\omega) \text{id}$ as the matrix for ∇', and we see that if we expand each term of $\psi_{\nabla'}(\theta)$, we get $\psi_{\nabla}(\theta)$ from expanding out only terms involving \overline{T} and θ, and $((\hat{\theta}(\omega))^p + \theta^{p-1}(\hat{\theta}(\omega)) - \hat{\theta}(\omega)) \text{id}$ from expanding out terms involving only $\hat{\theta}(\omega)$ and θ, since these last all commute with one another. We thus want to show that all of the coefficients of the cross terms are always zero mod p. If we consider a particular term $(\theta^{p-1}(\overline{T} + \hat{\theta}(\omega) \text{id})) \ldots (\theta^{p-1}(\overline{T} + \hat{\theta}(\omega) \text{id}))$ corresponding to a vector i, a cross term will arise by choosing a subset $\Lambda \subset \{1, \ldots, \ell\}$ from which the \overline{T} terms will be chosen, with the $\hat{\theta}(\omega) \text{id}$ term being chosen for all indices outside Λ. To compute the relevant coefficient we can essentially sum over all permutations in the S_{ℓ}^p of Proposition 3.5. The only caveat is that if $\sigma \in S_{\ell}^p$ fixes Λ and leaves the vector i unchanged, then it will give the same term in the expansion as the identity. Such σ form a subgroup of S_{ℓ}, and if we denote the order of this subgroup by $P_{i_1^{p}}$, we
find that the coefficient we want to compute is given by, still in the notation of Proposition 3.5, the expression $n_i^\Lambda / P_i \Lambda$. Now, the only way to cancel the p in the numerator of n_i^Λ would be for either $P_i \Lambda$ or the denominator of n_i^Λ to also be divisible by p. The denominator of n_i^Λ cannot be divisible by p, since the i_j add up to p, and the only way that p could appear in the denominator would therefore be when Λ is all of $\{1, \ldots, \ell\}$, which corresponds to the terms which only involve \bar{T}, or when $\ell = 1$, which gives the $\theta p^{-1}(\hat{\theta}(\omega))$ term. Similarly, P_i^Λ is the order of a subgroup of S_ℓ which fixes Λ, so it can be a multiple of p only if $\ell = p$ and $|\Lambda| = 0$, which corresponds to the term $((\hat{\theta}(\omega))^p$. This yields the desired result.

\begin{remark}
We do not use the last statement of the corollary in this paper, but it is applicable to analyzing notions of p-curvature for connections on projective bundles. We also remark that results such as statements (ii) and (iii) above may generally be obtained more abstractly via functoriality statements on p-curvature, but this requires a different and more abstract definition; see [18].
\end{remark}

All of the above is phrased in such a way as to remain valid if C/S is replaced by a smooth scheme of any dimension over S, and ∇ by any integrable connection. However, we conclude with some observations which are special to the case of curves.

\begin{lemma}
Because C is a curve, the p-curvature of a connection ∇ is identically 0 if and only if $\psi_{\nabla}(\theta) = 0$ for any non-zero derivation θ. In addition, $T_{(p)} = f_\theta \bar{T}$ for some function f_θ, satisfying $f_\theta \theta = \theta^p$.
\end{lemma}

\begin{proof}
These statements follow trivially from the fact that the sheaf of derivations is invertible, and from the p-linearity of the p-curvature map with respect to derivations.
\end{proof}

Finally, we record in this situation the general p-curvature formulas in characteristics 3, 5, and 7, for later use.

Characteristic 3:

\begin{equation}
\psi_{\nabla}(\theta) = \bar{T}^3 + (\theta \bar{T}) \bar{T} + 2\bar{T}(\theta \bar{T}) + (\theta^2 \bar{T}) - f_\theta \bar{T}.
\end{equation}

Characteristic 5:

\begin{equation}
\psi_{\nabla}(\theta) = \bar{T}^5 + 4\bar{T}^3(\theta \bar{T}) + 3\bar{T}^2(\theta \bar{T}) \bar{T} + \bar{T}(\theta \bar{T}) + 2\bar{T}(\theta \bar{T}) \bar{T}^2
\end{equation}

\begin{align*}
&\quad + 3\bar{T}(\theta \bar{T})^2 + 3\bar{T}(\theta \bar{T}) \bar{T} + 4\bar{T}(\theta \bar{T}) + (\theta \bar{T}) \bar{T}^3 \\
&\quad + 4(\theta \bar{T}) \bar{T}(\theta \bar{T}) + 3(\theta \bar{T})^2 \bar{T} + (\theta \bar{T})(\theta \bar{T})(\theta \bar{T}) + (\theta \bar{T})^2 \bar{T}^2 \\
&\quad \quad + 4(\theta \bar{T})(\theta \bar{T}) \bar{T} + (\theta \bar{T})(\theta \bar{T}) - f_\theta \bar{T}.
\end{align*}
Characteristic 7:

$$\psi_C(\theta) = T^7 + 6T^5(\theta^1T) + 5T^4(\theta^1T)T + T^4(\theta^2T) + 4T^3(\theta^1T)T^2$$
$$+ 3T^3(\theta^1T)^2 + 3T^3(\theta^2T) + 6T^3(\theta^3T) + 3T^2(\theta^1T)^3$$
$$+ 4T^2(\theta^1T)(\theta^1T)T + T^2(\theta^1T)^2T + 3T^2(\theta^1T)(\theta^2T) + 6T^2(\theta^2T)T^2$$
$$+ T^2(\theta^2T)(\theta^1T) + 3T^2(\theta^3T) + T^2(\theta^4T) + 2T(\theta^1T)T^4$$
$$+ 5T(\theta^1T)T^2(\theta^1T) + 3T(\theta^1T)(\theta^1T)T + 2T(\theta^1T)T(\theta^2T)$$
$$+ T(\theta^1T)T^2 + 6T(\theta^1T)^3 + 6T(\theta^1T)(\theta^2T)T + 5T(\theta^1T)(\theta^3T)$$
$$+ 3T(\theta^2T)T^3 + 4T(\theta^2T)T(\theta^1T) + T(\theta^2T)(\theta^1T)T + 3T(\theta^2T)^2$$
$$+ 4T(\theta^3T)T^2 + 5T(\theta^4T)(\theta^1T) + 6T(\theta^5T) + (\theta^1T)^2T^5$$
$$+ 6(\theta^1T)T^3(\theta^1T) + 5(\theta^1T)^2T(\theta^1T) + (\theta^1T)^2T(\theta^2T)$$
$$+ 4(\theta^1T)T(\theta^1T)T^2 + 3(\theta^1T)T(\theta^1T)^2 + 3(\theta^1T)T(\theta^2T)$$
$$+ 6(\theta^1T)T(\theta^1T) + 3(\theta^1T)^2T^3 + 4(\theta^1T)^2(\theta^1T) + (\theta^1T)^3T^3$$
$$+ 3(\theta^1T)^2(\theta^2T) + 6(\theta^1T)(\theta^2T)T^2 + (\theta^1T)(\theta^2T)(\theta^1T)^2$$
$$+ 3(\theta^1T)(\theta^4T) + (\theta^1T)(\theta^4T) + (\theta^2T)^4 + 6(\theta^2T)T^2(\theta^1T)$$
$$+ 5(\theta^2T)T(\theta^1T)T + (\theta^2T)(\theta^2T) + 4(\theta^2T)(\theta^1T)^2T^2$$
$$+ 3(\theta^2T)(\theta^1T)^2 + 3(\theta^2T)^2T + 6(\theta^2T)(\theta^3T) + (\theta^3T)T^3$$
$$+ 6(\theta^3T)T(\theta^1T) + 5(\theta^3T)(\theta^1T)T + (\theta^3T)(\theta^2T) + (\theta^4T)^2T^2$$
$$+ 6(\theta^4T)(\theta^1T) + (\theta^5T)T + (\theta^6T) - f_{\theta^7}.$$

4. On f_{θ^7} and p-rank in genus 2

In this section, we give an explicit formula for f_{θ^7} on a genus 2 curve C, and note that we can use these ideas to derive explicit formulas for the p-rank of the Jacobian of C. Throughout, we work under the hypotheses and notation of Situations 2.4 and 3.1.

We first note that (irrespective of the genus of C), although f_{θ^7} will be 0 only if $\theta(f) = 1$ for some f on U, we will always have:

Lemma 4.1. $\theta(f_{\theta^7}) = 0$.

Proof. Given any f, $\theta^2(f) = f_{\theta^7} \theta(f)$, so $\theta^{p+1}(f) = \theta(f_{\theta^7} \theta(f)) = \theta(f_{\theta^7}) \theta(f) + f_{\theta^7} \theta^2(f) = \theta(f_{\theta^7} \theta(f)) + \theta^p(\theta(f)) = \theta(f_{\theta^7}) \theta(f) + \theta^{p+1}(f)$. Since this is true for all f, we must have $\theta(f_{\theta^7}) = 0$, as desired. \(\square\)

We now specify some normalizations and notational conventions special to genus 2, which we will follow through the end of our explicit calculations in Section 4.

Situation 4.2. C is a proper, at worst nodal curve of arithmetic genus 2 over an algebraically closed field k with dualizing sheaf ω_C. It is presented explicitly on an affine open set U_2 by

$$y^2 = g(x) = x^5 + a_1 x^4 + a_2 x^3 + a_3 x^2 + a_4 x + a_5,$$

with the complement of U_2 being a single, smooth, Weierstrass point w at infinity. We also have the form $\omega_2 = y^{-1} dx$ trivializing $\omega_C \cong \mathcal{O}(2|w|)$ on U_2 and vanishing
to order 2 at \(w \), and the derivation \(\theta \) on \(U_2 \) determined by \(\theta(f) = \frac{df}{2x} \). Equivalently, \(\hat{\theta}(\omega^2) = 1 \).

The assertion for \(\omega_C \) and \(\omega_2 \) is easily checked explicitly for \(C \) smooth, and we obtain the same statement by limiting arguments in the nodal case. Indeed, \(\omega_C \) is obtained by base change from the relative dualizing sheaf for the entire family, and since limits of line bundles are unique for families of irreducible curves, we find that \(\omega_C = \mathcal{O}(2[w]) \) on the nodal fibers as well. Similarly, because the total space of the family is regular, the section \(\omega_2 \), clearly defined away from the nodes, which are in codimension 2, extends to a section over the whole family, necessarily still invertible at the nodes, since \(2[w] \) is the only vanishing divisor on the total space.

For this section only, we set \(U = U_2 \) and \(\omega = \omega_2 \). We set \(g_k(x) = \theta^{k-1} x \); we see by induction that this is a polynomial in \(x \) for \(k \) odd. Noting that \(\theta(p(x)) = yp'(x) \) for \(p(x) \) any polynomial in \(x \), and \(\theta(y) = \frac{1}{2} g'(x) \), we have that for \(k \) odd, \(g_k(x) = \theta^2(g_{k-2}(x)) = \theta(yg'_{k-2}(x)) \), and we get the recursive formula:

\[
(4.1) \quad g_k(x) = g''_{k-2}(x)g(x) + \frac{1}{2} g'_{k-2}(x)g'(x)
\]

for \(k \) odd.

But \(f_{\theta^p} = \hat{\theta}^p(y^{-1}dx) \) by definition, which is just \(y^{-1}\theta^p(x) \), so we also find

\[
(4.2) \quad f_{\theta^p} = y^{-1}\theta g_p(x) = g'_p(x).
\]

In particular, \(f_{\theta^p} \) is a polynomial in \(x \), and because \(\theta(f_{\theta^p}) = 0 \), it can only have non-zero terms mod \(p \) in degrees which are multiples of \(p \). However, by (4.1) the degree of \(g_k(x) \) goes up by at most 3 when \(k \) increases by 2, so \(\deg f_{\theta^p} < \frac{p}{2} p < 2p \), and the only non-zero terms of \(f_{\theta^p} \) are the constant term and the \(p \)th power term (from which it follows that the only non-zero terms of \(g_p(x) \) are the constant, linear, \(p \)th power, and \((p + 1) \)st power terms).

For later use, we note the formulas for characteristics 3, 5, and 7 obtained by combining equations (4.1) and (4.2):

Characteristic 3:

\[
(4.3) \quad f_{\theta^3} = x^3 + a_3.
\]

Characteristic 5:

\[
(4.4) \quad f_{\theta^5} = 2a_1x^5 + a_3^2 + 2a_2a_4 + 2a_1a_5.
\]

Characteristic 7:

\[
(4.5) \quad f_{\theta^7} = (3a_1^2 + 3a_2)x^7 + a_3^3 + 6a_2a_3a_4 + 3a_1a_4^2 + 3a_2^2a_5 + 6a_1a_3a_5 + 6a_4a_5.
\]

As a final note, we can use this to derive explicit formulas for the \(p \)-rank of the Jacobian of a smooth \(C \) in terms of the coefficients of \(g(x) \).

Proposition 4.3. Suppose that \(C \) is smooth. If we denote by \(h_1, h_2, h_3, h_4 \) the polynomials in the coefficients of \(g(x) \) giving the constant, linear, \(p \)th power, and \((p + 1) \)st power terms of \(g_p(x) \), then the \(p \)-rank of the Jacobian of \(C \) is:

- 2 if \(h_1h_4 - h_2h_3 \neq 0 \);
- 1 if \(h_1h_4 - h_2h_3 = 0 \) but either \(h_3^2 - h_2h_4^{p-1} \neq 0 \) or \(h_1^p h_4 - h_2^{p+1} \neq 0 \);
- 0 if \(h_1h_4 - h_2h_3 = h_3^2 - h_2h_4^{p-1} = h_1^p h_4 - h_2^{p+1} = 0 \).
Proof. Since endomorphisms of a line bundle on a proper curve are simply scalars, transport of connections is always trivial, so the p-torsion of the Jacobian is simply the number of connections with p-curvature 0 on the trivial bundle. We note that the space of connections on \mathcal{O}_C can be written explicitly as $f \mapsto df + f(c_1 + c_2x)\omega$, meaning that the connection matrix on U with respect to θ is given simply by the function $\hat{T} = c_1 + c_2x$. Using the p-curvature formula for rank 1 given by Corollary 3.6 (i), we find

\begin{align*}
\psi_\nabla(\theta) &= (c_1 + c_2x)^p + \theta^{p-1}(c_1 + c_2x) - f\theta(c_1 + c_2x) \\
&= c_1^p + c_2^p x^p + c_2g_\theta(x) - g_\theta'(x)(c_1 + c_2x) \\
&= (c_1^p + c_2h_1 - c_1h_2) + (c_2^p + c_2h_3 - c_1h_4)x^p.
\end{align*}

Setting the p-curvature to zero, we obtain:

$$0 = (c_1^p + c_2h_1 - c_1h_2) + (c_2^p + c_2h_3 - c_1h_4)x^p.$$

We first consider this equation in the case that $h_4 \neq 0$. In this case, we find that we can write $c_1 = \frac{c_1^p + c_2h_3}{h_4}$, and substituting in, we find we get p^2 solutions if $h_1h_4^4 - h_2h_3h_4^{p-1} \neq 0$, and otherwise, p solutions if $h_2^p - h_2h_4^{p-1} \neq 0$, and finally 1 solution if both vanish. On the other hand, in the case that $h_4 = 0$, we see that c_2 becomes independent of c_1, we get p^2 solutions if and only if both h_2 and h_3 are non-zero; p solutions if either but not both are non-zero, and 1 solution if they are both 0. One can then check that both these cases are expressed by the asserted polynomial conditions in the h_i.

\begin{example}
For $p = 3$, we have

$$g_\theta(x) = 1x^4 - a_1x^3 + a_3x - a_4,$$

so h_4 is always non-zero, and we find that the p-rank of C is 2 when $a_4 - a_1a_3 \neq 0$, is 1 when $a_4 - a_1a_3 = 0$ but $a_1^2 - a_3 \neq 0$, and is 0 when $a_4 - a_1a_3 = a_1^2 - a_3 = 0$.

For $p = 5$, we have

$$g_\theta(x) = 2a_1x_6 + (4a_1^2 + 3a_2)x_5 + (a_3^2 + 2a_2a_4 + 2a_1a_5)x + (3a_3a_4 + 3a_2a_5),$$

so the p-rank of C is 2 when

$$a_1(a_3a_4 + a_2a_5) - (4a_1^2 + 3a_2)(a_3^2 + 2a_2a_4 + 2a_1a_5) \neq 0.$$

The p-rank is 1 when

$$a_1(a_3a_4 + a_2a_5) - (4a_1^2 + 3a_2)(a_3^2 + 2a_2a_4 + 2a_1a_5) = 0$$

but either

$$4a_1^{10} + 3a_2^5 - (a_3^2 + 2a_2a_4 + 2a_1a_5)a_4^4 \neq 0$$

or

$$(3a_3^3a_4^2 + 3a_3^2a_2^3)2a_1 - (a_3^2 + 2a_2a_4 + 2a_1a_5)^6 \neq 0.$$

Lastly, the p-rank is 0 when

$$0 = a_1(a_3a_4 + a_2a_5) - (4a_1^2 + 3a_2)(a_3^2 + 2a_2a_4 + 2a_1a_5)$$

$$= 4a_1^{10} + 3a_2^5 - (a_3^2 + 2a_2a_4 + 2a_1a_5)a_4^4$$

$$= (3a_3^3a_4^2 + 3a_3^2a_2^3)2a_1 - (a_3^2 + 2a_2a_4 + 2a_1a_5)^6.$$
\end{example}
While explicit computations of the p-rank of the Jacobian of a curve are not hard in general, it is perhaps worth mentioning that this method, aside from providing a complete and explicit solution for genus 2 curves, does so in a sufficiently elementary way that it can be presented as a calculation of the p-torsion of Pic(C) without knowing any properties of the Jacobian, or even that it exists.

5. The Space of Connections

In this section we carry out the first portion of the necessary computations for the explicit portion of Theorem 1.2 by calculating the space of transport-equivalence classes of connections on a particular vector bundle E. We suppose:

Situation 5.1. With the notation and hypotheses of Situation 4.2, we further declare that E is the bundle determined by Propositions 2.8 and 2.11 for the choice $\mathcal{L} = \mathcal{O}_C([w])$.

Note that the same calculation shows that E is uniquely determined by \mathcal{L} even when C is nodal.

In our situation, if U_1, U_2 are a trivializing cover for \mathcal{L}, with transition function φ_{12}, then $\mathcal{L}^{-1}, \mathcal{L}^{\otimes 2} = \omega_C^1$, and E are all trivialized by this cover as well, and E can be represented with a transition matrix of the form

$$E = \begin{bmatrix} \varphi_{12} & \varphi_E \\ 0 & \varphi_{12}^{-1} \end{bmatrix}$$

for some φ_E regular on $U_1 \cap U_2$.

We see immediately that by appropriately restricting U_1, we can choose φ_{12} to be regular on U_1 with a simple zero at w, and non-vanishing elsewhere: For compatibility of trivializations of \mathcal{L} and ω_C, we must then set $\omega_1 = \varphi_{12}^{-2} \omega_2$. Beyond these properties, our specific choice of φ_{12} will be completely irrelevant, but we note that it is possible to choose φ_{12} to vary algebraically (in fact, to be in some sense invariant) as our a_i and the corresponding curves vary: we can simply set $\varphi_{12} = \varphi_{12}^x$.

Proposition 5.2. The unique non-trivial isomorphism class for E may be realized by setting $\varphi_E = \varphi_{12}^{-2}$.

Proof. We claim that there cannot be a splitting map from E back to \mathcal{L}. Indeed, one checks explicitly that such a splitting would require the existence of a rational function on C having a pole of order exactly 3 at w, and regular elsewhere, which is not possible, because w is a Weierstrass point. \qed

We now note that since φ_{12} has a simple zero at w, and ω_1 is invertible at w, if we further restrict U_1 we can guarantee that $\frac{d\varphi_{12}}{\omega_1}$ is likewise everywhere invertible on U_1. Having done so, $\varphi_E = \varphi_{12}^{-2}$, so $d\varphi_E = -2\varphi_{12}^3 d\varphi_{12}$, and $\frac{d\varphi}{\omega_1}$ is regular and non-vanishing on U_1 except for a pole of order 3 at w.

Now, we can trivialize $E \otimes \omega_C$ on the U_i with transition matrix $\varphi_{12}^{2}E$. We can then represent a connection $\nabla: E \rightarrow E \otimes \omega_C$ by 2×2 connection matrices \tilde{T}_1 and \tilde{T}_2 of functions regular on U_1 and U_2 respectively. These act by sending $s_i \rightarrow \tilde{T}_i s_i + \frac{d\omega}{\omega_1}$ on U_i, where the s_i are given as vectors under the trivialization, so one checks that \tilde{T}_1 and \tilde{T}_2 must be related by:

$$\tilde{T}_1 = \varphi_{12}^{2}E \tilde{T}_2 E^{-1} + E \frac{dE^{-1}}{\omega_1}.$$
We now explicitly compute \tilde{T}_2 in terms of \tilde{T}_1 in preparation for computing the space of connections. If $\tilde{T}_2 = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix}$, then:

$$\tilde{T}_1 = \begin{bmatrix} \varphi_{12}^2 f_{11} + f_T & \varphi_{12}^2 f_{12} + \varphi_{12} \varphi_1 (f_{22} - f_{11}) - \varphi_{12} \varphi_0 f_T - \varphi_{12} \frac{d \varphi_2}{\omega_1} \\ f_{21} & \varphi_{12}^2 f_{22} - f_T \end{bmatrix}$$

where $f_T = \varphi_{12} \varphi_0 f_{21} - \varphi_{12} \frac{d \varphi_2}{\omega_1}$.

Note that this implies f_{21} is everywhere regular and hence constant.

We now show:

Proposition 5.3. The space of connections on \mathcal{E} is given by $f_{21} = C_1$, $f_{11} = c_1 + c_2 x$, $f_{22} = c_3 + c_4 x$, and $f_{12} = c_6 + c_7 x^2 + c_8 y + c_9 x^3$, where the c_i are arbitrary constants subject to the single linear relation $c_8 = C_2 (c_2 - c_4)$, and C_1 and C_2 are predetermined non-zero constants satisfying $C_1 C_2 = \frac{1}{2}$.

Proof. We begin by looking at the lower right entry of the matrix for \tilde{T}_1 in (5.1), and note the $\varphi_{12}^2 \frac{d \varphi_2}{\omega_1}$ has a simple pole at w which must be cancelled by one of the other terms. We also note that since $\varphi_0 = \varphi_{12}^{-2}$, and f_{21} must be constant, the term $\varphi_{12} \varphi_0 f_{21} = \varphi_{12}^2 f_{21}$ is regular on U_1 away from w, where it can have at most a simple pole. Thus the $\varphi_{12}^2 f_{22}$ term must likewise be regular on U_1 away from w, with at most a simple pole at w. Since f_{22} must be regular on U_2 by hypothesis, we conclude it is regular on C except possibly for a pole of order at most 3 at w. But such a pole of order 3 isn’t possible, so $f_{22} \in \Gamma(\mathcal{O}_C(2[w]))$. This means that the simple poles of the other two terms must cancel, and f_{21} is determined as a (non-zero) constant C_1: explicitly, $C_1 = \frac{\varphi_{12}^2 (w)}{\omega_1}$. Precisely the same argument applies to the upper right entry, placing $f_{11} \in \Gamma(\mathcal{O}_C(2[w]))$, so it only remains to analyze the upper right entry of the matrix.

We immediately observe that on U_1, each term (excluding the $\varphi_{12}^4 f_{12}$ term) is regular except possibly for a pole of order at most 2 at w, which of course implies that $\varphi_{12}^4 f_{12}$ is also, and we can conclude that f_{12} is regular on C except for a pole of order at most 6 at w. Then we have $f_{21} = C_1 \in k^*$, $f_{11} = c_1 + c_2 x$, $f_{22} = c_3 + c_4 x$, and $f_{12} = c_6 + c_7 x^2 + c_8 y + c_9 x^3$, and we claim that C_2 is also determined: the only other terms which can have double poles are $-\varphi_{12}^2 \varphi_0 f_{21} + \varphi_0 \frac{d \varphi_2}{\omega_1} - \varphi_{12} \frac{d \varphi_2}{\omega_1} = -\varphi_{12}^2 f_{21} + 3 \varphi_{12}^2 \frac{d \varphi_2}{\omega_1}$ which are now predetermined, so C_2 is also determined, explicitly as $-2 (\varphi_{12}^{-6} x^{-3})(w) C_1$. Lastly, we note that there is a linear relation on c_2, c_4, and c_8 to insure that the simple poles cancel.

To conclude the proof, we use formal local analysis at w to obtain the desired statements on this linear relation and C_1 and C_2. Explicitly, our linear relation is given as

$$c_8 = ((\varphi_{12}^{-3} y^{-1} x)(w))(c_2 - c_4) + ((y^{-1} \varphi_{12}^{-5})(w))(\varphi_{12}^{-1} (C_1 - \frac{3 \varphi_{12} \omega_1}{d \omega_1}) - C_2 x^3 \varphi_{12}^5 (w)).$$

Now, choose a local coordinate z at w; we will denote by $\ell_z(f)$ and $\ell_z^t(f)$ the leading and second terms of the Laurent series expansion for f in terms of z. From our relation between x and y, we have $\ell_z(x)^3 = \ell_z(y)^2$ and $2 \ell_z(y) \ell_z^t(y) = 5 \ell_z(x)^4 \ell_z^t(x)$. Simply considering leading terms, we find that since $\omega_1 = \varphi_{12}^{-2} y^{-1} dx$, we have $C_1 = -\frac{\ell_z(\varphi_{12}) \ell_z^t(\varphi_{12})}{2 \ell_z(x)}$ and $C_2 = \frac{\ell_z(x)}{\ell_z(\varphi_{12}) \ell_z^t(\varphi_{12})}$. Thus, we have that $C_1 C_2 = \frac{1}{2}$, and
appropriately: we saw that
\(g \) and
\(C \) also that
\(f \) constant. Finally, the upper right term is then
\(\varphi \)
Note that the lower left entry for
\(f \) transport-equivalent connection with
\(g \) an automorphism is invariant under scaling the automorphism, we can then set
\(S \) constant diagonal coefficients,
\(\ell \)
earlier relation simplifies to
\(C \) \(-\) \(\ell \)
from which it follows that we can write
\(\ell \) \(-\) \(C \)
and check directly that we get the desired cancellation to order 2.

\[\Box \]

We also consider the endomorphisms of \(\mathcal{E} \), so that we can normalize our connections via transport to simplify calculations. An endomorphism is given by matrices \(S_i \) regular on \(U_i \), satisfying the relationship \(S_1 = ES_2E^{-1} \). If we write
\[S_2 = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}, \]
we find that
\[S_1 = \begin{bmatrix} g_{11} + \varphi_1^{-1} \varphi \epsilon g_{21} & \varphi_1^2 g_{12} + \varphi_1 \varphi \epsilon g_{22} - \varphi_1 \varphi \epsilon g_{12} - \varphi_1^2 g_{21} \\ \varphi_1^{-1} g_{21} & g_{22} - \varphi_1^{-1} \varphi \epsilon g_{22} \end{bmatrix}. \]

We can now compute directly:

\textbf{Proposition 5.4.} The space of endomorphisms of \(\mathcal{E} \) is given by
\(g_{21} = 0, g_{11} = g_{22} \in k, \) and
\(g_{12} = g_{02} + g_{12} x \in \Gamma(\mathcal{O}_C(2[w])) \). Every connection on \(\mathcal{E} \) has a unique transport-equivalent connection with
\(f_{11} = 0 \).

\textbf{Proof.} Noting that the lower left entry for \(S_1 \) in equation \([5.2] \) is \(\varphi_1^{-1} g_{21} \), we see that \(g_{21} \) has to be regular everywhere on \(C \), and vanishes to order at least 2 at \(w \); hence, it is 0. We then see that the upper left and lower right entries are just \(g_{11} \) and \(g_{22} \) respectively, meaning that these are both everywhere regular and hence constant. Finally, the upper right term is then \(\varphi_1 g_{12} + \varphi_1^{-1} (g_{22} - g_{11}) \); the second term will have a simple pole at \(w \) if and only if \(g_{22} \neq g_{11} \), and since \(g_{12} \) cannot have a triple pole at \(w \), we conclude that \(g_{22} = g_{11} \), and finally that \(g_{12} \in \Gamma(\mathcal{O}_C(2[w])) \), giving the description of the endomorphisms of \(\mathcal{E} \).

Such an endomorphism is invertible if and only if \(g_{11} \neq 0 \). Since transport along an automorphism is invariant under scaling the automorphism, we can then set
\(g_{11} = g_{22} = 1 \) without loss of generality. Now, since \(S_2 \) is upper triangular, with constant diagonal coefficients,
\(S_2^{-1} \frac{dS_2}{dw} \) has only its upper right coefficient non-zero. Moreover, conjugating \(T_2 \) by \(S_2 \) will simply subtract
\(f_{21} g_{12} \) from the upper left coefficient of \(T_2 \). Since we know \(f_{21} \) is a determined non-zero constant, and \(g_{12} \) and
\(f_{11} \) can both be arbitrary in \(\Gamma(\mathcal{O}_C(2[w])) \), this means that each connection has a unique transport class with
\(f_{11} = 0 \), as desired.

\[\Box \]

Thus, from now on we will normalize our calculations as follows: set
\(f_{11} = 0 \) by transport; set
\(f_{22} = 0 \) since we want the determinant connection (obtained by taking the trace) to be 0; and set
\(f_{21} = 1 \). We accomplish the last by scaling \(\varphi_{12} \) appropriately: we saw that
\(f_{21} = \frac{\varphi_{12}^3}{\varphi_{12}}(w) \), and recalling that
\(\varphi_1 = \varphi_{12}^{-1} y^{-1} dx \), it suffices to scale \(\varphi_{12} \) by a cube root of
\(f_{21} \). We also note that this does not pose any problems for our prior choice of
\(\varphi_{12} = \frac{x^2}{y} \); one can check that for this choice, we have
\(f_{21} = \frac{1}{x} \) invariant, and the scaling factor for \(\varphi_{12} \) is independent of the
Lastly, since \(c_8 = 0 \) now that \(c_2 = c_4 = 0 \), we conclude that we are reduced to considering the case:

Situation 5.5. Our connection matrix \(T_2 \) on \(U_2 \) is of the form

\[
T_2 = \begin{bmatrix} 0 & f_{12} \\ 1 & 0 \end{bmatrix},
\]

with \(f_{12} = c_5 + c_6 x + c_7 x^2 - \frac{1}{2} x^3 \).

Finally, for later use we formally generalize our results.

Proposition 5.6. Propositions 5.3 and 5.4 hold in the following more general settings:

(i) After base change to an arbitrary \(k \)-algebra \(A \), if we replace the \(k \)-valued constants by \(A \)-valued constants.

(ii) When we consider families of curves obtained from maps \(k[a_1, \ldots, a_5] \to A \) taking values in the open subset \(U_{\text{nod}} \subset k^5 \) corresponding to at worst nodal curves.

Proof. For (i), if we denote by \(f \) the map \(\text{Spec} A \to \text{Spec} k \), and \(\pi \) the structure map \(C \to \text{Spec} k \), this coefficient replacement corresponds to the natural map \(f^* \pi_* \mathcal{F} \to \pi_* f^* \mathcal{F} \) for the sheaves \(\mathcal{E}nd(\mathcal{E}) \otimes \omega_C \) and \(\mathcal{E}nd(\mathcal{E}) \). But since the base is a point, every base change is flat, and it immediately follows [4, Prop. III.9.3] that this natural map is always an isomorphism, giving the desired statement.

Finally, for (ii) we make use of the fact that, as remarked immediately above, we can choose \(\varphi_{12} \) to be a specific function varying algebraically in the whole family. Once again, if we denote by \(\mathcal{F} \) the sheaf \(\mathcal{E}nd(\mathcal{E}) \otimes \omega_C \) or \(\mathcal{E}nd(\mathcal{E}) \) as appropriate, but this time in the universal setting over \(U_{\text{nod}} \), we find from the computations of this section that \(h^0(C, \mathcal{F}) \) is constant on fibers even over the nodal locus, so the theory of cohomology and base change gives that \(\pi_* \mathcal{F} \) is locally free of the same rank, and pushforward commutes with base change. Now, if we let our constants describing sections of \(\mathcal{F} \) lie in \(k[a_1, \ldots, a_5] \), we clearly obtain a subsheaf of \(\pi_* \mathcal{F} \) of the correct rank; further, the inclusion map is an isomorphism when restricted to every fiber, so it must in fact be an isomorphism, which yields the desired result for arbitrary \(A \) via base change. \(\square \)

It follows formally that the closed subschemes we describe explicitly describing connections with \(p \)-curvature zero in Section 6 and nilpotent \(p \)-curvature in Section 7 are also functorial descriptions which hold for arbitrary base rings and families of curves.

6. Calculations of \(p \)-Curvature

Continuing with the situation and notations of the previous section, and in particular that of Situation 1.2, we conclude with the \(p \)-curvature calculations to complete the proof of Theorem 1.2 for \(p \leq 7 \), except for the statement on the general curve in characteristic 7, which depends on the results of the subsequent section. Although our calculations remain valid when \(C \) is nodal, only the smooth case will be relevant to us.

We write:

\[
\psi_{\mathcal{E}}(\theta) = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}.
\]
The first case we handle is \(p = 3 \). \(\Box \) gave us \(f_{\varphi^3} = x^3 + a_3 \). We show:

Proposition 6.1. In characteristic \(3 \), \(\text{Conn}^0_0(\mathcal{E}) \) has a unique transport equivalence class.

Proof. With all of our normalizations from Situation \(\Box \), the \(p \)-curvature matrix given by \(\Box \) becomes rather tame:

\[
\psi_\nabla(\vartheta) = \begin{bmatrix}
\theta f_{12} & f_{12}^3 + \theta f_{12} - f_{\varphi^3} f_{12} \\
\theta f_{12} & -\theta f_{12}
\end{bmatrix}.
\]

Even better, we note that we have

\[h_{12} = \theta(h_{11}) + f_{12}h_{21}, \]

so \(h_{12} \) vanishes if \(h_{11} \) and \(h_{21} \) do. Similarly, recalling that by Lemma \(\Box \), \(\theta f_{\varphi^3} = 0 \), we see that \(h_{11} = \theta(h_{21}) \), and \(h_{22} = -h_{11} \). Hence, to check if the \(p \)-curvature is zero, it suffices to check that \(h_{21} \) vanishes.

But this is a triviality, as we simply get that \(h_{21} = 0 \) if and only if \(f_{12} = a_3 + x^3 \). Recalling that after normalization \(f_{12} \) was given by \(c_5 + c_6 x + c_7 x^2 - \frac{1}{2} x^3 \), we get the unique solution \(c_5 = a_3, c_6 = c_7 = 0 \). \(\Box \)

We now handle the case \(p = 5 \). We had from \(\Box \) that \(f_{\varphi^5} = 2a_1 x^5 + a_3 + 2a_2 a_4 + 2a_1 a_5 \).

Proposition 6.2. In characteristic \(5 \), the number of transport equivalence classes in \(\text{Conn}^0_0(\mathcal{E}) \) is given as the number of roots of the quintic polynomial:

\[
(3a_1 a_2^2 + 3a_2 a_3 + a_5) + (a_1^2 a_2 + a_2^2 + 3a_1 a_3 + 4a_4) c_5 \\
+ (3a_1^2 + 4a_1 a_2 + a_3)c_5^2 + (3a_1^2 + 4a_2)c_5^3 + a_1 c_5^4 + 4c_5^5.
\]

Proof. With our normalizations as above, in terms of \(f_{12} \) and \(f_{\varphi^5} \), the \(p \)-curvature matrix obtained from \(\Box \) is

\[
\psi_\nabla(\vartheta) = \begin{bmatrix}
4 f_{12}^2 \theta(f_{12}) + \theta^3(f_{12}) + \theta^3(f_{12})^2 + 2f_{12} \theta^2(f_{12}) + \theta^4(f_{12}) + 4 f_{12} f_{\varphi^5} \\
4 f_{12}^2 + 3 \theta^2(f_{12}) + 4 f_{\varphi^5}
\end{bmatrix}.
\]

Conveniently, we note that as before it actually suffices to check that \(h_{21} \) is 0, since we see that \(h_{22} = 3\theta_0(h_{21}) \), that \(h_{11} = -h_{22} \), and that \(h_{12} = f_{12} h_{21} + 2 \theta h_{11} \).

Substituting for \(f_{12} \) and \(f_{\varphi^5} \), we get that the remaining (lower left) term is given by

\[
(4a_1^2 + 3a_2 a_4 + 3a_1 a_5 + c_5^2 + a_5 c_5) + (a_5 + 3a_3 c_4 + 2c_3 c_4 + 4a_4 c_5) x \\
+ (2a_2 c_4 + c_5^2 + 2a_3 c_5 + 2c_3 c_5) x^2 \\
+ (4a_3 + 4c_3 + a_1 c_4 + 2c_4 c_5) x^3 + (3a_2 + 4c_4 + 3a_1 c_5 + c_5^2) x^4.
\]

Setting the \(x^3 \) and \(x^4 \) terms to 0 allows us to solve for \(c_4 \) and \(c_3 \). Substituting, we find that the \(x^2 \) term drops out, while the coefficient of \(x \) is:

\[
(3a_1 a_2^2 + 3a_2 a_3 + a_5) + (a_1^2 a_2 + a_2^2 + 3a_1 a_3 + 4a_4) c_5 \\
+ (3a_1^2 + 4a_1 a_2 + a_3)c_5^2 + (3a_1^2 + 4a_2)c_5^3 + a_1 c_5^4 + 4c_5^5.
\]

The constant coefficient is \(c_5 + 3a_1 \) times the \(x \) coefficient, so we get that the connections with \(p \)-curvature 0 correspond precisely to the roots of the above polynomial, as asserted. \(\Box \)
Lastly, we take a look at the case \(p = 7 \). \(\text{(1.5)} \) gave us:

\[
 f_{0'7} = a_2^3 + 6a_2a_3a_4 + 3a_1a_4^2 + 3a_2^2a_5 + 6a_1a_3a_5 + 6a_4a_5 + (3a_1^2 + 3a_2)x^7.
\]

We will show:

Proposition 6.3. In characteristic 7, the number of transport equivalence classes in \(\text{Conn}_2(\mathcal{E}) \) is given as the intersection of two plane curves in \(\mathbb{A}^2 \). For a general curve, it is positive. The locus \(F_{2,7} \) of transport equivalence classes of connections on \(\mathcal{E} \) with \(p \)-curvature 0 and trivial determinant considered over the \(\mathbb{A}^5 \) with which we parametrize genus 2 curves is cut out by 2 hypersurfaces in \(\mathbb{A}^5 \times \mathbb{A}^2 \).

Proof. Here, even with our normalizations the \(p \)-curvature matrix obtained from \([3.4] \) is rather messy, but we find its coefficients are given by:

- \(h_{11} = 2f_{07}^2\theta(f_{12}) + \theta(f_{12})\theta^2(f_{12}) - 3f_{12}\theta^2(f_{12}) + \theta^3(f_{12}), \)
- \(h_{21} = -f_{07} + f_{12}^2 + 3(\theta(f_{12}))^2 - f_{12}^2\theta^2(f_{12}) - 2\theta^3(f_{12}), \)
- \(h_{12} = -f_{07}f_{12} + f_{12}^2 + f_{12}^2\theta^2(f_{12}) + (\theta^2(f_{12}))^2 - 2\theta(f_{12})\theta^3(f_{12}) + 2f_{12}\theta^4(f_{12}) + \theta^5(f_{12}), \)
- \(h_{22} = -2f_{12}^2\theta(f_{12}) - \theta(f_{12})\theta^2(f_{12}) + 3f_{12}^2\theta^3(f_{12}) - \theta^5(f_{12}). \)

Once again, it is enough to consider a single one of these coefficients, as we see that \(h_{11} = 3\theta(h_{21}), \) that \(h_{12} = f_{12}h_{21} + 3\theta^2(h_{21}), \) and that \(h_{22} = -h_{11}. \)

Then looking at the formula for \(h_{21} \), substituting for \(f_{12} \) and \(f_{07} \) gives a polynomial of degree 6 in \(x \). The \(x^6 \) term lets us solve for \(c_3 \):

\[
 c_3 = 5a_1a_2 + a_3 + 4a_1^2c_5 + 4a_2a_5 + 2a_1c_5^2 + 5c_5^3.
\]

The \(x^5 \) term is then

\[
(6.1) \quad h_{7,1} = 2a_1^3a_2 + a_1a_3 + 5a_4 + 4a_1^2c_4 + 5a_2a_4 + 6c_4^2 + 3a_3^2c_5 + 6a_1c_4c_5 + 3a_1c_5^3 + 6c_5^4,
\]

while the \(x^4 \) term is \(-c_5^2h_{7,1} \), and the \(x^3 \) term is \(-(c_5^2 + a_1c_5 + 3a_2 + c_5)c_5h_{7,1} \). Taking the \(x^2 \) term minus \(-5c_5^3 + 5a_2c_5^2 + 2c_4c_5 + 5a_1a_2 + 4a_3 + 2a_1c_4 \) \(h_{7,1} \) leaves:

\[
(6.2) \quad h_{7,2} = 3a_1^2a_2^2 + 6a_1^2a_2a_3 + 4a_1a_2^3 + 4a_1a_3 + 2a_2a_5 + 3a_1^2a_2c_4 + 4a_1^2a_3c_4 + 2a_1a_3c_4 + 4a_5c_4 + a_1c_5^2 + a_1^2c_5^2 + 3a_1c_5^3 + a_1a_2c_5 + 5a_1a_3c_5 + a_2a_4c_5 + 3a_4c_4c_5 + a_1^2c_5^2 + 5a_2c_5^2c_5 + c_5^3c_5 + 4a_1^2a_2^2 + 6a_1^2a_3c_5 + a_1a_4c_5 + 3a_5c_5^2 + 3a_1^2c_5^2 + a_1a_2c_5 + a_3c_5^2 + 3a_1^2a_2^2c_5 + a_1a_3c_5^2 + 4a_1^2c_4c_5^2 + 6c_5^2c_5.
\]

The \(x \) term is then

\[
(a_1^2a_2^2 - 2a_1a_3 - a_1^2c_4 + 2c_4^2c_5^2 + 2a_1c_4c_5 + a_4)h_{7,1} - (3a_1 + 2c_5)h_{7,2}.
\]

Lastly, the constant term is

\[
- (6c_5^2 + 5a_4c_5^3 + 3a_1^2c_5^3 + 2a_1^2c_5^2 + 5a_1a_2c_5^2 + 2a_3c_5^2 + 6a_1c_4c_5^2 + 5a_1a_3c_5 + 2a_4c_5 + 6a_2a_4c_5 + 2a_2c_5c_5 + 6c_5^2c_5 + 2a_1a_4 + 6a_5 + 6a_3c_4 + 4a_1c_4^2 + 5a_1^2c_4 + 2a_1^2a_2 + 3a_1a_3)h_{7,1} + (-3c_5^2 - 4a_1c_5 + 2a_2 + c_4 - a_1^2)h_{7,2}.
\]
The redundance of the last two terms was discovered by Macaulay2; the particular formulas for them were then found by trial and error. These polynomials \(h_{7,1} \) and \(h_{7,2} \) are thus the defining equations in characteristic 7, describing the locus as an intersection of 2 affine plane curves. It follows that any component has dimension at least 5; since we know that it can only have dimension 0 over any given choice for the \(a_i \) corresponding to a smooth curve, the positivity assertion for general \(a_i \) will follow from non-emptiness of any fiber, and in particular from the following lemma.

\[\square \]

Lemma 6.4. For the smooth curve given by \(a_1 = a_2 = a_3 = 0, a_4 = 1, \) and \(a_5 = 3 \), there are 14 solutions to our equations, all reduced.

Proof. First, setting \(a_1 = a_2 = a_3 = 0, a_4 = 1 \) and \(a_5 = 3 \) gives a smooth curve because one can check by direct calculation that \(x^5 + x + 3 \) has no multiple roots over \(\mathbb{F}_7 \). Our defining equations then become considerably simpler:

\[
\begin{align*}
 h_{7,1} &= 5 + 6c_2^2 + 6c_3^4, \\
 h_{7,2} &= 5c_4 + 3c_4c_5 + c_4^2c_5 + 2c_5^2 + 6c_4^2c_5^3.
\end{align*}
\]

If we use \(h_{7,1} \) to substitute for \(c_4^2 \) in \(h_{7,2} \), we get:

\[
c_4(5 + c_5 + 6c_5^5) + c_5^2(2 + 2c_5 + c_5^2).
\]

We check that we cannot have \(5 + c_5 + 6c_5^5 = 0 \), so we can localize away from \(5 + c_5 + 6c_5^5 \), setting \(c_4 = \frac{c_2^2(2+2c_5+c_5^2)}{5+c_5+6c_5^5} \). Making this substitution in \(h_{7,1} \) and taking the numerator, we obtain the polynomial:

\[
6 + c_5 + 5c_5^2 + 6c_5^4 + 2c_5^5 + 6c_5^6 + 6c_5^9 + 3c_5^{10} + 5c_5^{14}.
\]

One checks by computer that this polynomial has no multiple roots, and is in fact irreducible over \(\mathbb{F}_7 \). The former implies we have 14 reduced solutions, as desired. \(\square \)

7. **On the Determinant of the p-Curvature Map**

In this section we explicitly calculate the highest degree terms of \(\det \psi \), the determinant of the \(p \)-curvature map, in the case of a genus 2 curve and the specific unstable vector bundle of Situation 5.1. We use the calculation to prove that \(\det \psi \) is finite flat, of degree \(p^3 \), and therefore conclude that in families of curves, the kernel of \(\det \psi \) is finite flat. This has immediate implications for the connections on \(\mathcal{E} \) with \(p \)-curvature zero as well, in particular allowing us to finish the proof of the characteristic-specific portion of Theorem 1.2. The results here are a special case of Mochizuki’s work (see [3, Thm. II.2.3, p. 1029]), obtained by an argument which is essentially the same, but discovered independently, and significantly simpler in the special case handled here.

We now take our curve \(C \) of genus 2 from before, with \(\mathcal{E} \) the particular unstable bundle of rank 2 we had been studying, as in Situations 4.2 5.1 and 5.5. We also take the particular \(\theta \) from before, with \(\tilde{\theta} \omega_2 = 1 \). Recall that under our trivialization, \(\omega_C \) is identified with \(\mathcal{O}(2[w]) \). We know that our space of connections with trivial determinant on \(\mathcal{E} \) is (modulo transport) 3-dimensional, and of course

\[
h^0(C^{[0]}, (\omega_C^{[0]})^{\otimes 2}) = \deg(\omega_C^{[0]})^{\otimes 2} + 1 - g = 4g - 4 + 1 - g = 3g - 3 = 3,
\]

so we have a map from \(\mathbb{A}^3 \) to \(\mathbb{A}^3 \). We choose coordinates on the first space to be given by the \((c_5, c_6, c_7)\) determining \(f_{12} \), while the function we will get will be of the form

\[
\sqrt[3]{(x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3 + x_6^3 + x_7^3)}.
\]
\[f_1(c_5, c_6, c_7) + f_2(c_5, c_6, c_7)x^p + f_3(c_5, c_6, c_7)x^{2p}, \] and we obtain coordinates on the image space as the monomials \((1, x^p, x^{2p})\).

We wish to compute in our specific situation the morphism \(\psi^0\) (Proposition 2.13 (iv)), which is to say, the morphism obtained from \(\psi^0\) (Proposition 2.13 (iii)) by taking the determinant. In fact, we take \(\psi^0\) to be the induced map on transport-equivalence classes of connections.

We will use our earlier calculations to recover, in a completely explicit and elementar fashion, the genus 2 case of Mochizuki’s result:

Theorem 7.1. On the unstable vector bundle \(E\) described by Situation 5.1 for a smooth proper genus 2 curve \(C\) as in Situation 4.2, the map \(\det \psi^0\) is a finite flat morphism from \(\mathbb{A}^3\) to \(\mathbb{A}^3\), of degree \(p^3\). Further, \(\det \psi^0\) remains finite flat when considered as a family of maps over the open subset \(U_{\text{nod}} \subset \mathbb{A}^5\) corresponding to at worst nodal curves. Lastly, the induced map from \(\ker \det \psi^0\) to \(U_{\text{nod}}\) is finite flat.

Proof. It suffices to prove the asserted finite flatness for the family of maps \(\mathbb{A}^3 \times U_{\text{nod}} \rightarrow \mathbb{A}^3 \times U_{\text{nod}}\) over \(U_{\text{nod}}\), since the statements on individual curves and on the kernel of \(\det \psi\) both follow from restriction to fibers. This is turn will follow from the claim that the leading term of \(f_1\) is \(-c_7^{p-4}\), with all other terms of strictly lesser total degree in the \(c_i\), since it is then easy to check that \(k[a_1, \ldots, a_5, c_6, c_7]\) is finite and free over \(k[a_1, \ldots, a_5, f_1, f_2, f_3]\), generated by monomials of the form \(c_5^x c_6^y c_7^z\), with each \(e_i\) satisfying \(0 \leq e_i < p\). We calculate the leading terms directly.

If \(T = \begin{bmatrix} 0 & f_{12} \\ 1 & 0 \end{bmatrix}\) is the connection matrix for \(\nabla\), we claim that the leading term will come from the \(T^p\) term in the \(p\)-curvature formula. Now, \(T^2 = \begin{bmatrix} f_{12} & 0 \\ 0 & f_{12} \end{bmatrix}\), so we find

\[
T^p = \begin{bmatrix} 0 & (f_{12})^{\frac{p+1}{2}} \\ (f_{12})^{-\frac{p-1}{2}} & 0 \end{bmatrix}.
\]

Next, \(f_{12}\) is linear in the \(c_i\), as are \(\theta^i f_{12}\) for all \(i\). Considering the \(p\)-curvature formula coefficients as polynomials in \(\theta^i f_{12}\), we will show that the degree of the remaining terms are all less than or equal to \(\frac{p-1}{2}\), with the degree of the terms in the lower left strictly less. This will imply that the leading term of the determinant is given by

\[-(f_{12})^p = -(c_5 + c_6 x + c_7 x^2 - \frac{1}{2} x^3)^p = -c_5^p - c_6^p x^p - c_7^p x^{2p} + \frac{1}{2p} x^{3p},\]

giving the desired formula for the leading terms of the constant, \(x^p\), and \(x^{2p}\) terms.

We observe that since \(\theta^iT = \begin{bmatrix} 0 & \theta^i f_{12} \\ 0 & 0 \end{bmatrix}\) for all \(i > 0\), \((\theta^iT)(\theta^iT) = 0\) for any \(i, j > 0\). We use this and the fact that \(T^2\) is diagonal to write any term in the \(p\)-curvature as one of the following:

1. \(T^{2i_0}(\theta^i T)T \ldots (\theta^i T),\)
2. \(T^{2i_0}T(\theta^i T)T \ldots (\theta^i T),\)
3. \(T^{2i_0}(\theta^i T)T \ldots (\theta^i T)T,\)
4. \(T^{2i_0}T(\theta^i T)T \ldots (\theta^i T),\)

where \(2i_0 + \sum_{j>0}(i_j + 2) = p + 1, p, p, p - 1\) respectively.
We observe that these correspond to non-zero upper right, lower right, upper left, and lower left coefficients, respectively (in particular, at most one is non-zero).

We know that the first term is a scalar matrix of degree i_0 in f_{12}. We see that $T(\theta^{i_1}T) = \begin{bmatrix} 0 & 0 \\ 0 & \theta^{i_1}f_{12} \end{bmatrix}$, so a product of $k - 1$ such terms has total degree $k - 1$ in the $\theta^{i_1}f_{12}$. Lastly, multiplying on the left by $(\theta^{i_1}T)$ raises the degree by one and moves the non-zero coefficient back to the upper right. Thus, in the first case, we get total degree $i_0 + k$. But we see that this is actually the same in the other cases, as multiplying on the left or right by T just moves the non-zero coefficient, without changing it. Finally, with $k > 0$, we have $i_0 + k < \frac{1}{2}(2i_0 + \sum_{j>0}(i_j + 2))$, which is $\frac{1}{2}$ times $p + 1, p, p$ or $p - 1$ depending on the case. But this is precisely what we wanted to show, since it forces the degree to be less than or equal to $\frac{p - 1}{2}$ in the first three cases, and strictly less in the fourth.

Lastly, $-f_{p^p}T$ is linear in the c_i in the upper right term, and constant in the rest, so doesn’t cause any problems for $p \geq 3$. □

We can immediately conclude:

Corollary 7.2. The subscheme of $U_{\text{nod}} \times \mathbb{A}^3$ giving connections with p-curvature zero is finite over U_{nod}.

We are now ready to put together previous results to finish the proof of our main theorem in the case of characteristic 7:

Proof of Theorem 1.2, $p = 7$ case. We simply apply our finiteness result to our explicit example from Lemma 6.4. By the description of $F_{2,7}$ as a complete intersection, we know that it is CM, with every component having dimension at least 5. Hence, over U_{nod} every component must have dimension exactly 5, and by the regularity of the base, we conclude that $F_{2,7}$ is flat over U_{nod}. By the reduceness of our example, all its points are unramified over the base at this point, so in some neighborhood, $F_{2,7}$ must be étale over U_{nod}, so we conclude the desired statements in characteristic 7. □

Remark 7.3. In the situation of rank 2 vector bundles with trivial determinant, and after restricting to connections with trivial determinant, because the image of ψ^0 is contained among the traceless endomorphisms, the vanishing of the determinant of the p-curvature is then equivalent to square nilpotence of the endomorphisms given by the p-curvature map. Such connections are frequently called **nilpotent** in the literature (see, for instance, [9] or [14]).

8. Connections and nodes

This section and the next draw heavily on the results and ideas of Sections 2 and 3 of [17], but our account will be as self-contained as possible.

In this section, we discuss connections on nodal curves, and classify them by comparison to connections on the normalization. We will often say that an object on a nodal curve is a gluing of an object on its normalization if the pullback of the former under normalization gives the latter. For the sake of simplicity and generality, we follow Mochizuki’s argument for gluing, with the only difference being that we are not working with projective bundles, we must rigidify our situation by specifying glued line sub-bundles L, as in Proposition 8.11.
We suppose we are in Situation 2.1 with g_C, the arithmetic genus of C, and \mathcal{E} a vector bundle on C. We begin by fixing some terminology:

Definition 8.1. Given a reduced divisor D supported on the smooth locus of C, a D-logarithmic connection on \mathcal{E} is a k-linear map $\nabla : \mathcal{E} \to \mathcal{E} \otimes \omega_C(D)$ satisfying the connection rule.

We denote by $\text{Conn}_D(\mathcal{E})$ the space of (logarithmic) connections on \mathcal{E}, and by $\text{Conn}_D^0(\mathcal{E})$, $\text{Conn}_{D,p}(\mathcal{E})$, and $\text{Conn}_D^0(\mathcal{E})$ the corresponding spaces of trivial determinant and/or p-curvature zero.

The theory of p-curvature of D-logarithmic connections may be developed globally, but to check vanishing we can simply restrict ourselves to the complement of D and invoke the prior theory.

Notation 8.2. Let $\nu : \tilde{C} \to C$ be the normalization map, and $\tilde{\mathcal{E}}$ the pullback of \mathcal{E} to \tilde{C}. Given a connection ∇ on \mathcal{E}, we take a D_C-logarithmic connection $\tilde{\nabla}$ on $\tilde{\mathcal{E}}$, where D_C is the divisor of points lying above the nodes of C. We also denote by $P_1, Q_1, \ldots, P_\delta, Q_\delta \in \tilde{C}$ the pairs of points lying above each node of C.

We want a complete description of connections on $\tilde{\mathcal{E}}$ arising as pullbacks from connections on \mathcal{E}. We claim:

Proposition 8.3. Let $G_i : \tilde{\mathcal{E}}|_{P_i} \to \tilde{\mathcal{E}}|_{Q_i}$ be the gluing maps determining \mathcal{E} from $\tilde{\mathcal{E}}$. Then pullback under the normalization map induces a bijection between $\text{Conn}(\mathcal{E})$ and

$$\{ \tilde{\nabla} \in \text{Conn}_{D_C}(\tilde{\mathcal{E}}) : \forall i, \text{Res}_{P_i}(\tilde{\nabla}) = -G_i^{-1} \circ \text{Res}_{Q_i}(\tilde{\nabla}) \circ G_i \}.$$

The properties of having trivial determinant and p-curvature zero are preserved under this correspondence.

Proof. The main assertion follows easily from [2, Thm. 5.2.3] together with the remark [2, p. 226] for nodal curves, which together state that sections of ω_C correspond to sections of $\Omega^1_C(D_C)$ with residues at the pair of points above any given node adding to zero.

Since vanishing of p-curvature can be verified on open sets, and the normalization map is an isomorphism away from the nodes, it is clear that connections with p-curvature zero on C will correspond to connections with p-curvature zero on \tilde{C}. The same argument also works for triviality of the determinant. \[\square\]

We can in particular conclude:

Corollary 8.4. Let \mathcal{L} be a line bundle on C. Then $\text{Conn}_p(\mathcal{L})$ can be non-empty only if $p | \deg \mathcal{L}$.

Proof. Applying the previous proposition, if we pull back to $\tilde{\nabla}$ on $\tilde{\mathcal{L}}$ we find that the residues of $\tilde{\nabla}$ come in additive inverse pairs mod p. We obviously have $p | \mathcal{F}^*(\mathcal{L}^{\tilde{\nabla}})$, and then by [17, Cor. 2.11] we have that the determinant of the inclusion map $\mathcal{F}^*(\mathcal{L}^{\tilde{\nabla}}) \to \mathcal{L}$ has total order equal to the sum of the residues mod p, which is zero, so we conclude that $\deg \mathcal{L}$ must also vanish mod p, as asserted. \[\square\]

We now restrict to the situation:

Situation 8.5. Suppose that \mathcal{E} has rank 2 and trivial determinant, and we have fixed an exact sequence

$$0 \to \mathcal{L} \xrightarrow{i} \mathcal{E} \xrightarrow{j} \mathcal{L}^{-1} \to 0.$$
We then have the same conditions and corresponding exact sequence for \mathcal{E}.

We introduce some terminology in this situation:

Definition 8.6. Given a connection ∇ on \mathcal{E} the **Kodaira-Spencer map** associated to ∇ and a sub-line-bundle \mathcal{L} is the natural map $\kappa_{(\nabla, \mathcal{L})} : \mathcal{L} \to \mathcal{L}^{-1} \otimes \omega_C$ obtained as $(1 \otimes j) \circ \nabla \circ i$. One verifies directly that this is an \mathcal{O}_C-linear map. In the case that \mathcal{E} (resp., \mathcal{E}') is unstable, we will refer to the Kodaira-Spencer map κ_{∇} of ∇ to mean the map associated to ∇ and its destabilizing line bundle.

In the case of D-logarithmic connections on \mathcal{E}, and line sub-bundles \mathcal{L}, we make the analogous definitions.

Remark 8.7. Noting that Lemma 2.10 holds equally well for nodal curves, the destabilizing line bundle is unique, so the last part of the definition is justified. Note also that with this terminology, Joshi and Xia’s proof of Proposition 2.8 boils down to the statement that the Frobenius-pullback of a Frobenius-unstable bundle necessarily has a connection such that κ_{∇} is an isomorphism. Following Mochizuki’s notion of torally indigenous bundles, we therefore consider connections for which κ_{∇} is an isomorphism.

We note:

Lemma 8.8. Suppose that $g_C \geq 2$; that is to say, we are in the “hyperbolic” case. Then if for some connection ∇ on \mathcal{E}, $\kappa_{(\nabla, \mathcal{L})}$ is an isomorphism for any ∇ and \mathcal{L}, it follows that \mathcal{L} is a destabilizing line bundle for \mathcal{E}, and is thus uniquely determined even independent of ∇. The same holds for connections on \tilde{C} if $g_C + \frac{\deg D}{2} \geq \frac{3}{2}$.

Proof. The Kodaira-Spencer isomorphism gives $\mathcal{L} \otimes^2 \cong \omega_C$ (resp., $\tilde{\mathcal{L}} \otimes^2 \cong \Omega^1_{\tilde{C}}(D)$), which from the hypotheses has positive degree. □

We now fix \mathcal{E} on \tilde{C}, but do not assume a fixed gluing \mathcal{E} on C. That is to say:

Situation 8.9. Fix \mathcal{E} of rank 2 and trivial determinant, together with an exact sequence

$$0 \to \tilde{\mathcal{L}} \to \mathcal{E} \to \tilde{\mathcal{L}}^{-1} \to 0.$$

We recall that if a D_C-logarithmic connection $\tilde{\nabla}$ has p-curvature zero, its residue is diagonalizable (see, e.g., [17, Cor. 2.11]) with eigenvalues in \mathbb{F}_p, and if the rank is 2 and the connection has trivial determinant, the eigenvalues sum to 0 mod p. We can therefore define:

Definition 8.10. Given a D_C-logarithmic connection $\tilde{\nabla}$ on \mathcal{E} with p-curvature zero and trivial determinant, and a point $P \in D_C$, we denote by $e_P(\tilde{\nabla}) \in \mathbb{F}_p/\pm 1$ the equivalence class of the eigenvalues of $\text{Res}_P(\tilde{\nabla})$.

The main statement on gluing is:

Proposition 8.11. In Situation 8.9 let $\tilde{\nabla} \in \text{Conn}^0_{D_C, p}(\mathcal{E})$ such that κ_{∇} is an isomorphism. Further suppose that for all i, $e_P(\tilde{\nabla}) = e_{Q_i}(\tilde{\nabla})$. Then if one fixes a gluing \mathcal{L} of $\tilde{\mathcal{L}}$ with $\mathcal{L} \otimes^2 \cong \omega_C$, there is a unique gluing of $(\mathcal{E}, \tilde{\nabla})$ to a pair (\mathcal{E}, ∇) on C, such that one obtains a sequence

$$0 \to \mathcal{L} \to \mathcal{E} \to \mathcal{L}^{-1} \to 0,$$

and such that the resulting (\mathcal{E}, ∇) also has κ_{∇} an isomorphism. If $g_C \geq 2$, transport equivalence is preserved under this correspondence.
Proof. We first claim that the condition that 298 BRIAN OSSERMAN
that for any $P \in \{ P, Q \}$, $\mathcal{L}|_P$ is not contained in an eigenspace of $\text{Res}_P \nabla$, and that $e_P(\nabla) \neq 0$. Indeed, it suffices to check the first assertion, since $e_P(\nabla) = 0$ would give $\text{Res}_P \nabla = 0$. Now, considering the definition of κ_{∇}, we see that $\kappa_{\nabla}|_P = 0$ if and only if $\nabla(\mathcal{L})|_P \subset \mathcal{L} \otimes \Omega^1_C|_P$, which is the case precisely when $\mathcal{L}|_P$ is contained in an eigenspace of $\text{Res}_P \nabla$, as desired.

Given this, for each pair P, Q, Proposition [8.3] implies that in order for a given gluing map G_i to yield a connection ∇ induced by ∇, it is necessary and sufficient to map eigenspaces of opposing sign to each other. To glue \mathcal{L} as a sub-bundle, we also map its image at P_i to its image at Q_i. We thus obtain a set of three one-dimensional subspaces of $\mathcal{E}|_P$ and $\mathcal{E}|_Q$, which must be matched under G_i, and this determines G_i up to scaling. But scaling of G_i is equivalent to scaling the induced gluing map on \mathcal{L}, which is what determines the isomorphism class of the glued \mathcal{L}; thus, \mathcal{L} may be specified arbitrarily, and given a choice of \mathcal{L}, the G_i and hence the pair (\mathcal{E}, ∇) are uniquely determined, as desired. Lastly, we observe that since κ_{∇} gives an isomorphism $\mathcal{L} \otimes (\mathcal{E}/\mathcal{L})^{-1} \cong \omega_C$, the hypothesis that $\mathcal{L}^\otimes 2 \cong \omega_C$ is equivalent to the condition that the glued \mathcal{E} have trivial determinant.

Compatibility with transport follows from the uniqueness of the gluing, together with the hypothesis that $g_C \geq 2$, which implies that \mathcal{L} and \mathcal{L} are uniquely determined as the destabilizing sub-bundles of \mathcal{E} and \mathcal{E}.

Putting together the previous propositions, we finally conclude:

Corollary 8.12. Let \mathcal{E} be a vector bundle on \tilde{C} of rank 2, with $g_C \geq 2$, and suppose we have an exact sequence

$$0 \to \tilde{\mathcal{L}} \to \mathcal{E} \to \tilde{\mathcal{L}}^{-1} \to 0$$

as well as a gluing of $\tilde{\mathcal{L}}$ to a line bundle \mathcal{L} on C satisfying $\mathcal{L}^\otimes 2 \cong \omega_C$.

Then pullback under the normalization map gives a bijective equivalence between

\[
\left\{ (\mathcal{E}, \nabla) : \nu^*(\mathcal{E}) \cong \mathcal{E}, \exists \mathcal{L} \subset \mathcal{E} \text{ s.t. } \nu^* \mathcal{L} = \tilde{\mathcal{L}}, \det \mathcal{E} \cong \mathcal{O}_C, \nabla \in \text{Com}_p^0(\mathcal{E}), \kappa_{\nabla} \text{ is an isomorphism} \right\} / \sim
\]

and

\[
\left\{ \nabla \in \text{Com}_D(\mathcal{E}) : \forall i, e_P(\nabla) = e_Q(\nabla), \kappa_{\nabla} \text{ is an isomorphism} \right\} / \sim,
\]

where the first set is up to isomorphism and transport equivalence, and the second up to transport equivalence.

Further, this correspondence holds for first-order infinitesimal deformations.

Proof. We can immediately conclude the statement over a field from our previous propositions. For first-order deformations, the same arguments will go through, with the aid of the following facts: first and most substantively, it follows from [17, Cor. 3.6] that the residue matrices on \tilde{C} will still be diagonalizable over $k[\epsilon]/\epsilon^2$, with the eigenvalues the same as for the connection being deformed. Next, since we are simply taking a base change of our original situation over k, the general gluing description given by Proposition [8.3] still holds for formal reasons. Finally, one can easily verify that even over an arbitrary ring, it is still the case that up to scaling, an automorphism of a rank two free module is determined uniquely by sending any
three pairwise independent lines to any other three. We therefore conclude the desired statement for first-order deformations as well. □

Remark 8.13. One can approach the issue of gluing connections from two perspectives: either fixing the glued bundle \(E \) on \(C \), and exploring which connections on \(E \) will glue to yield connections on \(E \), or allowing the gluing of \(E \) itself to vary as well. The author had originally intended to use the first approach, since we ultimately wish to classify the connections on a particular unstable bundle on a nodal curve. However, the second approach, pursued by Mochizuki [14, p. 118], offers a more transparent view of the more general setting, and ultimately yields a cleaner argument even for our specific application.

9. Deforming to a smooth curve

The ultimate goal of this section is to prove that the connections we are interested in can always be smoothed from a general irreducible rational nodal curve, which together with the finiteness result of Section 7 and the main results of [19], [17], will allow us to finish the proof of the characteristic-independent portion of Theorem II.2. We begin with some general observations on when the space of connections can always be smoothed from a general irreducible rational nodal curve, which and of the previous section, once again following arguments of Mochizuki [14, Cor. II.2.5, p. 150] rather than the original approach of the author, for the sake of simplicity and generality.

Situation 9.1. We suppose that \(C_0 \) is an irreducible, rational proper curve with two nodes, \(\tilde{C}_0 \cong \mathbb{P}^1 \) its normalization, with \(P_1, Q_1, P_2, Q_2 \) being the points lying above the two nodes. We let \(\mathcal{E}_0 \) be the vector bundle described by Situation 5.1 and \(\nabla_0 \in \text{Conn}^0(\mathcal{E}_0) \).

By Proposition 2.13 \(p \)-curvature gives an algebraic morphism
\[
\psi_p : H^0(\text{End}^0(\mathcal{E}_0) \otimes \omega_{C_0}) \to H^0(\text{End}^0(\mathcal{E}_0) \otimes F^*\omega_{\tilde{C}_0(p)})
\]
with \(\psi_p(\varphi) = \psi^0(\nabla + \varphi) \) in the notation of the proposition, and such that for \(\varphi \in H^0(\text{End}^0(\mathcal{E}_0) \otimes \omega_{C_0}) \), in fact
\[
\psi_p(\varphi) \in H^0(\text{End}^0(\mathcal{E}_0) \otimes F^*\omega_{\tilde{C}_0(p)})(\nabla_0 + \varphi)^\text{ind}.
\]

Now, we first claim:

Lemma 9.2. Since \(\psi_{\nabla_0} = 0 \), the differential of \(\psi_p \) at 0 gives a linear map
\[
d\psi_p : H^0(\text{End}^0(\mathcal{E}_0) \otimes \omega_{C_0}) \to H^0(\text{End}^0(\mathcal{E}_0) \otimes F^*\omega_{\tilde{C}_0(p)})^{\nabla_0}.
\]

Proof. We simply consider the induced map on first-order deformations of \(\nabla_0 \). Denoting for the moment by \(C_1, \mathcal{E}_1 \) the base change of \(C_0, \mathcal{E}_0 \) to \(k[\epsilon]/(\epsilon^2) \), suppose that \(\varphi \in \epsilon H^0(\text{End}^0(\mathcal{E}_1) \otimes \omega_{C_1}) \cong H^0(\text{End}^0(\mathcal{E}_0) \otimes \omega_{C_0}) \), and consider \(\nabla_0 + \varphi \). Since \(\nabla_0 \) has \(p \)-curvature zero, the image under \(\psi_p \) is in \(\epsilon H^0(\text{End}^0(\mathcal{E}_1) \otimes F^*\omega_{\tilde{C}_0(p)})(\nabla_0 + \epsilon \varphi)^\text{ind} \), which is naturally isomorphic to \(H^0(\text{End}^0(\mathcal{E}_0) \otimes F^*\omega_{\tilde{C}_0(p)})^{\nabla_0} \), giving the desired result. □
If we are given a deformation C of C_0 and \mathcal{E} of \mathcal{E}_0 on C, with base S containing the point 0 whose fiber is C_0, we obtain functors on the category of closed subschemes T of S containing 0 given by $\text{Conn}_0^0(\mathcal{E}|_T)$ and $\text{Conn}_0^0(\mathcal{E}_T)$. We say that such a functor \mathcal{F} is formally smooth at an object $\nabla_0 \in \mathcal{F}(0)$ if for all such T, T', such that T' is a square-zero nilpotent thickening of T, the map $\mathcal{F}(T') \to \mathcal{F}(T)$ surjects onto the preimage of ∇_0 in $\mathcal{F}(T)$.

Our main assertion is:

Proposition 9.3. If the map $d\psi_p$ of the previous lemma is surjective, then given a deformation C of C_0 and \mathcal{E} of \mathcal{E}_0 on C, such that the functor determined by $\text{Conn}_0^0(\mathcal{E})$ is formally smooth at ∇_0, then the functor determined by $\text{Conn}_0^0(\mathcal{E})$ is formally smooth at ∇_0.

Proof. Following [21, Def. 1.2, Rem. 2.3], we say that a map $B \to A$ of local Artin rings over the base ring of our deformation and having residue field k is a **small extension** if the kernel is a principal ideal (ϵ) with $(\epsilon)B = 0$; it follows then that $\epsilon B \subset B$ is isomorphic to k. To verify (formal) smoothness, by virtue of [22, Prop. 17.14.2] it is easily checked inductively that it is enough to check on small extensions. By the formal smoothness hypothesis, there is no obstruction to deforming ∇_0 as a connection with trivial determinant; that is, we can always lift any deformation of ∇_0 over A to a deformation over B as a connection with trivial determinant. We thus want to show that for a small extension, if $d\psi_p$ is surjective, and if the deformation of ∇_0 over A has p-curvature zero, then some such lift to B will also have p-curvature zero.

Let C_B, \mathcal{E}_B be the given deformations over B of C_0, \mathcal{E}_0 respectively, with C_A, \mathcal{E}_A the induced deformations over A, and suppose that ∇_B is a connection on \mathcal{E}_B such that ∇_A has p-curvature zero. The main point is that it is straightforward to check that the hypothesis that $\epsilon B \cong k$ implies that $\epsilon H^0(\mathcal{E}nd^0(\mathcal{E}_B) \otimes \omega_{C_B}) \cong H^0(\mathcal{E}nd^0(\mathcal{E}_0) \otimes \omega_{C_0})$, and for any $\varphi \in \epsilon H^0(\mathcal{E}nd^0(\mathcal{E}_B) \otimes \omega_{C_B})$, we have $\epsilon H^0(\mathcal{E}nd^0(\mathcal{E}_B) \otimes F^* \omega_{\mathcal{E}_B})^{\nabla_B + \varphi)^{\text{ind}} \cong H^0(\mathcal{E}nd^0(\mathcal{E}_0) \otimes F^* \omega_{\mathcal{E}_0})^{\nabla_0^{\text{ind}}}$.

We denote this last isomorphism by $\frac{1}{\epsilon}$. We want to show that there exists $\varphi \in \epsilon H^0(\mathcal{E}nd^0(\mathcal{E}_B) \otimes \omega_{C_B})$ such that $\nabla_B + \varphi$ has p-curvature zero. But as in the lemma, since ∇_A has p-curvature zero, the image under ψ_p of $\nabla_B + \varphi$ is in $\epsilon H^0(\mathcal{E}nd^0(\mathcal{E}_B) \otimes F^* \omega_{\mathcal{E}_B})^{\nabla_B + \varphi)^{\text{ind}}}$, and under the above isomorphisms, the induced map is equal to $d\psi_p + \frac{1}{\epsilon} \psi_p(\nabla_B)$. Hence if $d\psi_p$ is surjective, we can choose φ so that $\nabla_B + \varphi$ has p-curvature zero, as desired. \hfill \square

We will need the following lemma:

Lemma 9.4. Given a vector bundle \mathcal{E} of rank 2 and trivial determinant on a smooth, proper curve \tilde{C}, with line sub-bundle $\mathcal{L} \subset \mathcal{E}$ having deg $\mathcal{L} > 0$, suppose also that we have $\tilde{\nabla}$, a (possibly D-logarithmic) connection on \mathcal{E} for which \mathcal{L} is not horizontal. Then there does not exist a non-zero map $\mathcal{E}nd^0(\mathcal{E}) \to \mathcal{O}_{\tilde{C}}$ whose kernel is horizontal for $\tilde{\nabla}^{\text{end}}$.
Proof. We first introduce the following:

\[\mathcal{E}' := \{ \varphi \in \mathcal{E}nd^0(\mathcal{E}) : \varphi(\mathcal{L}) \subset \mathcal{L} \}, \]

\[\mathcal{L}^{e-1} := \{ \varphi \in \mathcal{E}nd^0(\mathcal{E}) : \varphi(\mathcal{L}) = 0 \}, \]

\[\mathcal{L}' \cong \mathcal{E}nd^0(\mathcal{E})/\mathcal{E}', \]

with the last isomorphism following from the sharper statement that \(\mathcal{L}^{e-1} \cong \mathcal{H}om(\mathcal{L}^{-1}, \mathcal{L}) \) and \(\mathcal{L}' \cong \mathcal{H}om(\mathcal{L}'', \mathcal{L}'') \): the existence of natural maps is clear, and the fact that these maps are isomorphisms is easily checked on local coordinates. We claim that in fact, no proper sub-bundle of \(\mathcal{E}nd^0(\mathcal{E}) \) which contains \(\mathcal{L}^{e-1} \) is horizontal for \(\nabla^{\mathcal{E}nd} \). Indeed, one checks by direct computation in local coordinates that, given that \(\nabla^{\mathcal{E}nd} \) is not horizontal for \(\mathcal{L}'' \), a \(\varphi \in \mathcal{E}' \) has \(\nabla^{\mathcal{E}nd}(\varphi) \in \mathcal{E}' \otimes \Omega^1_C \), if and only if \(\varphi \in \mathcal{L}^{e-1} \), and a non-zero \(\varphi \in \mathcal{L}^{e-1} \) never has \(\nabla^{\mathcal{E}nd}(\varphi) \in \mathcal{L}^{e-1} \otimes \Omega^1_C \). Thus, we see that any sub-bundle horizontal for \(\nabla^{\mathcal{E}nd} \) and containing \(\mathcal{L}^{e-1} \) must also contain \(\mathcal{E}' \), and then must contain all of \(\mathcal{E}nd^0(\mathcal{E}) \). The desired statement now follows easily: since \(\mathcal{L}^{e-1} \cong \mathcal{H}om(\mathcal{L}^{-1}, \mathcal{L}) \), it has positive degree, so any map \(\mathcal{E}nd^0(\mathcal{E}) \to \mathcal{O}_C \) necessarily contains \(\mathcal{L}^{e-1} \) in its kernel, and the kernel cannot be horizontal. \(\square \)

By Proposition 8.3, \(\nabla_0 \) is a \(D_{\mathbb{C}_0} \)-logarithmic connection on \(\mathcal{E}_0 \) with trivial determinant and \(p \)-curvature zero. For the sake of cleanness and generality, we use Mochizuki’s arguments [14, Cor. II.2.5, p. 150] to prove the following.

Proposition 9.5. If \(\kappa \nabla_0 \neq 0 \), then

\[\dim H^0(C_0, \mathcal{E}nd^0(\mathcal{E}_0) \otimes F^*\omega_{\mathcal{C}_0^p})^{\nabla_0^{\infty}} = 3. \]

Proof. The proof proceeds in two parts: we first show that

\[H^1(C_0, (\mathcal{E}nd^0(\mathcal{E}_0) \otimes F^*\omega_{\mathcal{C}_0^p})^{\nabla_0^{\infty}}) = 0, \]

and then compute

\[\chi((\mathcal{E}nd^0(\mathcal{E}_0) \otimes F^*\omega_{\mathcal{C}_0^p})^{\nabla_0^{\infty}}) = \chi(\mathcal{E}nd^0(\mathcal{E}_0)^{\nabla_0^{\infty}}) + 6 = 3. \]

Both computations require formal local computations, so we begin by setting out the situation formally locally at a node of \(C_0 \). First, note that although taking kernels and tensor products of connections do not commute in general, there is no problem when one connection is obtained as the canonical connection of a Frobenius pullback, so we have \((\mathcal{E}nd^0(\mathcal{E}_0) \otimes F^*\omega_{\mathcal{C}_0^p})^{\nabla_0^{\infty}} = \mathcal{E}nd^0(\mathcal{E}_0)^{\nabla_0^{\infty}} \otimes \omega_{\mathcal{C}_0^p} \). Formally locally at the node, \(C_0 \) is isomorphic to Spec \(k[[x, y]]/(xy) \); moreover, we claim that \(\mathcal{E}_0 \) may to trivialized so that \(\nabla_0^{\mathcal{E}nd} \) has connection matrix

\[
\begin{bmatrix}
 e_{(\frac{dx}{x} - \frac{dy}{y})} & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & e_{(\frac{dy}{y} - \frac{dx}{x})}
\end{bmatrix}
\]

for some \(e \in \mathbb{F}_p^* \). Indeed, we note that if \(\text{Res}_p \nabla_0^{\mathcal{E}nd} \) has eigenvalues \(e', -e' \), then \(\text{Res}_p \nabla_0^{\mathcal{E}nd} \) has eigenvalues \(2e', 0, -2e' \). Then it follows from Proposition 8.3 and
the formal local diagonalizability result of [17 Cor. 2.10] applied to \(\tilde{C}_0 \) that the pullback to the normalization can be trivialized with connection matrices

\[
\begin{bmatrix}
 e \frac{dx}{x} & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & -e \frac{dy}{y}
\end{bmatrix}
\text{ and }
\begin{bmatrix}
 -e \frac{dx}{y} & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & e \frac{dy}{y}
\end{bmatrix}.
\]

By Proposition \(8.3\) once again, these glue to give a connection matrix of the desired form on \(C_0 \). Finally, we note that the kernel of the connection on \(C_0 \) is given over \(\mathcal{O}\mathcal{C}_0^{(p)} \) by \((x^{p-e}, y^e)\oplus(1)\oplus(x^e, y^{p-e})\), and by \((x^{p-e})\oplus(1)\oplus(x^e)\) and \((y^e)\oplus(1)\oplus(y^{p-e})\) on the normalization.

The formal local calculations of the following paragraphs are justified by the following facts: given a sheaf map, surjectivity, and more generally factoring through a given subsheaf, may be checked after completion; completion commutes with pullback, with taking kernels of connections in characteristic \(p \), and with modding out by torsion over a DVR; finally, completion is well-behaved with respect to pushforward under the normalization map by the theorem on formal functions.

Now, to check (9.1), by Grothendieck duality on \(\mathcal{C}_0^{(p)} \) it suffices to check that \(\text{Hom}(\mathcal{E}\text{nd}^0(\mathcal{E}_0)|^{\mathcal{C}_0^{\mathcal{E}_0}}, \mathcal{O}\mathcal{C}_0^{(p)}) = \text{Hom}(\mathcal{E}\text{nd}^0(\mathcal{E}_0)|^{\mathcal{C}_0^{\mathcal{E}_0}}, \mathcal{O}\mathcal{C}_0^{(p)}) = 0 \). Although a section of the latter need not come from a map \(\mathcal{E}\text{nd}^0(\mathcal{E}_0) \to \mathcal{C}_0 \), which is horizontal with respect to \(\nabla^{\mathcal{E}_0} \), we claim that it does after normalization. We have natural maps

\[
\text{Hom}(\mathcal{E}\text{nd}^0(\mathcal{E}_0)|^{\mathcal{C}_0^{\mathcal{E}_0}}, \mathcal{O}\mathcal{C}_0^{(p)})|_{\tilde{C}_0} \to \text{Hom}(\mathcal{E}\text{nd}^0(\mathcal{E}_0)|^{\mathcal{C}_0^{\mathcal{E}_0}}, \mathcal{O}\mathcal{C}_0^{(p)})|_{\tilde{C}_0},
\]

These are both isomorphisms away from the points above the nodes, for trivial reasons in the first case, and because of Theorem \(2.3\) for the second. We want to show that the first map factors through the second. Examining the formal local situation at a node, we first note that if \(e_1, e_2 > 0 \), any map from \((x^{e_1}, y^{e_2})\) to \(\mathcal{O}\mathcal{C}_0^{(p)} \) necessarily vanishes, and more specifically, sends \(x^{e_1} \) and \(y^{e_2} \) to positive \((p)\) powers of \(x \) and \(y \) respectively. It is thus clear that given a map \(\mathcal{E}\text{nd}^0(\mathcal{E}_0)|^{\mathcal{C}_0^{\mathcal{E}_0}} \to \mathcal{O}\mathcal{C}_0^{(p)} \), after normalization we can divide through to get a map formally locally \(\mathcal{E}\text{nd}^0(\mathcal{E}_0)|_{\tilde{C}_0} \to \mathcal{O}\mathcal{C}_0 \), which commutes with the induced connection, completing the proof of the claim. But the above lemma implies that such a map must be zero, so we conclude the desired vanishing statement.

Thus, it remains to check (9.2). Since we only have two non-zero eigenvalues at each \(P_i \) or \(Q_i \), it follows from [17 Cor. 2.11] that the cokernel of

\[
F^*((\mathcal{E}\text{nd}^0(\mathcal{E}_0)|_{\tilde{C}_0})^{\mathcal{E}_0^{\mathcal{E}_0}}) \to \mathcal{E}\text{nd}^0(\mathcal{E}_0)|_{\tilde{C}_0}
\]

is supported at the \(P_i, Q_i \), with length \(p \) at each point. Since \(\deg(\mathcal{E}\text{nd}^0(\mathcal{E}_0)|_{\tilde{C}_0}) = 0 \), we find that

\[
\deg(F^*((\mathcal{E}\text{nd}^0(\mathcal{E}_0)|_{\tilde{C}_0})^{\mathcal{E}_0^{\mathcal{E}_0}})) = -4p.
\]

Next, we claim that \((\mathcal{E}\text{nd}^0(\mathcal{E}_0)|_{\tilde{C}_0})^{\mathcal{E}_0^{\mathcal{E}_0}} \) is isomorphic to the quotient of

\[
(\mathcal{E}\text{nd}^0(\mathcal{E}_0)|_{\tilde{C}_0})^{\mathcal{E}_0^{\mathcal{E}_0}}|_{\tilde{C}_0}
\]

by its torsion, which we denote by \(\mathcal{T} \); indeed, we clearly have a morphism from the latter to the former, which is an isomorphism away from the points above
the nodes, hence gives an injection since we modded out by torsion. Surjectivity above the nodes is checked formally locally from our above description, so we have \(\deg(\mathcal{F}) = -4 \), and \(\chi(\mathcal{F}) = -1 \). Finally, we claim that the natural injection \(\mathcal{E}nd^0(\mathcal{E}_0)^{\nabla^{nd}} \hookrightarrow \nu_*\mathcal{F} \) has cokernel of length 1 at each node; again, this is checked formally locally, noting that the cokernel will arise only from the summand at each node on which the connection vanishes. We conclude therefore that \(\chi(\mathcal{E}nd^0(\mathcal{E}_0)^{\nabla^{nd}}) = -3 \), completing the proof of the proposition. \(\square \)

Finally, we put these results together in our specific situation:

Theorem 9.6. Let \(C_0 \) be a nodal rational curve of genus 2, and \(\mathcal{E}_0 \) as in Situation 5.1. Given \(\nabla_0 \in \text{Conn}_0^0(\mathcal{E}_0) \), suppose that any first-order deformation of \(\nabla_0 \) still having \(p \)-curvature zero arises from transport. Then given any deformation \(C \) of \(C_0 \), if \(\mathcal{E} \) is the corresponding deformation of \(\mathcal{E}_0 \), it follows that the space determined by \(\text{Conn}_0^0(\mathcal{E}) \) is formally smooth at \(\nabla_0 \).

Proof. The main point is that by Proposition 5.6, the functor of transport-equivalence classes of connections with trivial determinant on \(\mathcal{E}_0 \) or \(\mathcal{E} \) is explicitly represented by \(\mathbb{A}^3 \) over the appropriate base. In particular, deformations of \(\nabla_0 \) as a connection with trivial determinant are unobstructed, so it follows from Proposition 9.3 that it suffices to check that \(\text{d}\psi_p \) is surjective. We also see that the space of first-order deformations of \(\nabla_0 \) with trivial determinant, modulo those arising from transport, is 3-dimensional. By Proposition 9.3 the image space of \(\text{d}\psi_p \) is 3-dimensional. We therefore get surjectivity of \(\text{d}\psi_p \) precisely when transport accounts for the entire kernel, which is to say, when there are no deformations of \(\nabla_0 \) having \(p \)-curvature zero and trivial determinant other than those obtained by transport. This yields the desired statement. \(\square \)

Using the main theorems of [19] and [17], it is now a matter of some simple combinatorics to complete the proof of the characteristic-independent portion of Theorem 1.2.

Proof of Theorem 1.2, \(p > 2 \) case. By the results of Section 2 it suffices to show that, for a general smooth curve and the particular \(\mathcal{E} \) of Situation 5.1, there are precisely \(\frac{1}{24}p(p^2 - 1) \) transport-equivalence classes of connections with trivial determinant and \(p \)-curvature zero on \(\mathcal{E} \), and that none of these have any non-trivial deformations. We will show that this statement holds in the situation that \(C \) is a general rational nodal curve by comparison to the normalization and by the main theorems of [19] and [17], and then conclude the desired result by combining our earlier properness and smoothness results in order to go from the case of a general rational nodal curve to a general smooth curve.

We observe that even in the situation of a nodal curve, there is a unique extension \(\mathcal{E} \) of \(\mathcal{L}^{-1} \) by \(\mathcal{L} \); indeed, the proof of the uniqueness portion of Proposition 2.11 goes through unchanged. We also note that by Corollary 8.4, any connection with \(p \)-curvature zero on \(\mathcal{E} \) must have its Kodaira-Spencer map be an isomorphism, as otherwise it would induce a connection on \(\mathcal{L} \). We also observe that in our situation, the normalization \(\mathcal{E}_0 \) of \(\mathcal{E}_0 \) is isomorphic to \(\mathcal{O}(1) \oplus \mathcal{O}(-1) \); we certainly have \(\mathcal{L} \cong \mathcal{O}(1) \), so by Lemma 2.10 \(\mathcal{O}(1) \) is the maximal line bundle in \(\mathcal{E}_0 \), and then the desired splitting follows from [5] Proof of Thm. 1.3.1]. Thus, by Corollary 8.12, to count the desired connections on nodal curves, it suffices to count \(D \)-logarithmic connections on \(\mathcal{O}(1) \oplus \mathcal{O}(-1) \) on \(\mathbb{P}^1 \), which have the Kodaira-Spencer
map an isomorphism, and the eigenvalues of the residues at the points match in the appropriate pairs, where \(D \) is made up of four general points on \(\mathbb{P}^1 \). The lack of non-trivial deformations on the nodal curve also follows from the case of \(\mathbb{P}^1 \).

We note that by degree considerations, the Kodaira-Spencer map in this case is always either zero or an isomorphism, so if we fix \(0 < \alpha_i < \frac{p}{2} \) to be representatives of each \(e_{P_j} (\nabla) = e_{Q_i} (\nabla) \), by [17] Thm. 1.1 we find that we are looking for separable rational functions on \(\mathbb{P}^1 \) of degree \(2p - 1 - 2 \sum \alpha_i \), and ramified to order at least \(p - 2\alpha_i \) at \(P_i \) and \(Q_i \) (note that the coefficient doubling for the degree is due to our use of a single, matching \(\alpha_i \) for both \(P_i \) and \(Q_i \)). To count the desired rational functions, we use [19] Cor. 8.1, which is derived directly from the main theorem of loc. cit in the case of 4 ramification points. This result includes the lack of non-trivial deformations, so it suffices to show that the number of maps is correct.

The first formula of \textit{ibid}. gives that for each \((\alpha_1, \alpha_2)\) there are

\[
\min\{\{p - 2\alpha_i\}, \{p - 2\alpha_{3-i}\}, \{2\alpha_i\}, \{2\alpha_{3-i}\}\}
\]
such maps, which reduces to

\[
\min\{\{p - 2\alpha_1\}, \{2\alpha_1\}\}.
\]

We note that the number of maps will also be given by:

\[
\sum_{1 \leq j \leq (p-1)/2} \#\{(\alpha_1, \alpha_2) : j \leq 2\alpha_i, j \leq p - 2\alpha_i\}
\]

which then reduces to

\[
\sum_{1 \leq j \leq (p-1)/2} \left(\frac{p+1}{2} - j\right)^2 = \sum_{1 \leq j \leq (p-1)/2} j^2 = \sum_{1 \leq j \leq (p-1)/2} \left(\frac{j}{2}\right)^2 + j
\]

\[
= 2\left(\frac{p+1}{3}\right) + \frac{p+1}{2} \cdot \frac{p-1}{4} = \frac{1}{24} (p+1)(p-1)(p-3) + 3(p-1)) = \frac{(p+1)(p-1)}{24},
\]

so we obtain the desired result on \(\mathbb{P}^1 \), and hence for a general nodal curve.

We can now apply Theorem 9.6 to conclude that since none of our connections on the general nodal curve have non-trivial deformations, the space of connections with trivial determinant and \(p \)-curvature zero on our chosen bundle over our parameter space of genus 2 curves is formally smooth at each connection on the general nodal curve. Furthermore, by Corollary 7.2 this space of connections is finite, so we conclude that it is finite étale at the general nodal curve, and finite everywhere, which then gives the desired result for a general smooth curve.

\[\square \]

Acknowledgements

I would like to thank Johan de Jong for his tireless and invaluable guidance. I would also like to thank Shinichi Mochizuki, Ezra Miller, David Helm, Brian Conrad, and Arthur Ogus for their helpful conversations.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, BERKELEY, CALIFORNIA 94720-3840