Truncations of multilinear Hankel operators
HTML articles powered by AMS MathViewer
- by Aline Bonami, Sandrine Grellier and Mohammad Kacim PDF
- Trans. Amer. Math. Soc. 360 (2008), 1377-1390 Request permission
Abstract:
We extend to multilinear Hankel operators the fact that some truncations of bounded Hankel operators are still bounded. We prove and use a continuity property of bilinear Hilbert transforms on products of Lipschitz spaces and Hardy spaces.References
- Aline Bonami and Joaquim Bruna, On truncations of Hankel and Toeplitz operators, Publ. Mat. 43 (1999), no. 1, 235–250. MR 1697523, DOI 10.5565/PUBLMAT_{4}3199_{1}0
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
- R. R. Coifman and Yves Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc. 212 (1975), 315–331. MR 380244, DOI 10.1090/S0002-9947-1975-0380244-8
- Ronald R. Coifman and Guido Weiss, Transference methods in analysis, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31, American Mathematical Society, Providence, R.I., 1976. MR 0481928
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Jesus Gasch and John E. Gilbert, Triangularization of Hankel operators and the bilinear Hilbert transform, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999) Contemp. Math., vol. 247, Amer. Math. Soc., Providence, RI, 1999, pp. 235–248. MR 1738092, DOI 10.1090/conm/247/03804
- Loukas Grafakos and Nigel Kalton, Multilinear Calderón-Zygmund operators on Hardy spaces, Collect. Math. 52 (2001), no. 2, 169–179. MR 1852036
- Loukas Grafakos and Xiaochun Li, Uniform bounds for the bilinear Hilbert transforms. I, Ann. of Math. (2) 159 (2004), no. 3, 889–933. MR 2113017, DOI 10.4007/annals.2004.159.889
- Loukas Grafakos and Rodolfo H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124–164. MR 1880324, DOI 10.1006/aima.2001.2028
- Grellier, S. and Kacim, M. Truncation of multilinear Hankel operators, preprint (2003).
- Carlos E. Kenig and Elias M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), no. 1, 1–15. MR 1682725, DOI 10.4310/MRL.1999.v6.n1.a1
- Michael T. Lacey, The bilinear maximal functions map into $L^p$ for $2/3<p\leq 1$, Ann. of Math. (2) 151 (2000), no. 1, 35–57. MR 1745019, DOI 10.2307/121111
- Michael Lacey and Christoph Thiele, $L^p$ estimates on the bilinear Hilbert transform for $2<p<\infty$, Ann. of Math. (2) 146 (1997), no. 3, 693–724. MR 1491450, DOI 10.2307/2952458
- Michael T. Lacey and Christoph M. Thiele, On Calderón’s conjecture for the bilinear Hilbert transform, Proc. Natl. Acad. Sci. USA 95 (1998), no. 9, 4828–4830. MR 1619285, DOI 10.1073/pnas.95.9.4828
- Michael Lacey and Christoph Thiele, On Calderón’s conjecture, Ann. of Math. (2) 149 (1999), no. 2, 475–496. MR 1689336, DOI 10.2307/120971
- Camil Muscalu, Terence Tao, and Christoph Thiele, Multi-linear operators given by singular multipliers, J. Amer. Math. Soc. 15 (2002), no. 2, 469–496. MR 1887641, DOI 10.1090/S0894-0347-01-00379-4
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
Additional Information
- Aline Bonami
- Affiliation: MAPMO, Université d’Orléans, Faculté des Sciences, Département de Mathéma- tiques, BP 6759, F 45067 Orleans Cédex 2, France
- Email: bonami@labomath.univ-orleans.fr
- Sandrine Grellier
- Affiliation: MAPMO, Université d’Orléans, Faculté des Sciences, Département de Mathéma- tiques, BP 6759, F 45067 Orleans Cédex 2, France
- Email: grellier@labomath.univ-orleans.fr
- Mohammad Kacim
- Affiliation: Université Saint-Joseph, Rue de Damas, Beirut 1104-2020, Lebanon
- Email: kacim76@hotmail.com
- Received by editor(s): November 22, 2004
- Received by editor(s) in revised form: October 7, 2005
- Published electronically: October 3, 2007
- Additional Notes: The authors were partially supported by the 2002-2006 IHP Network, Contract Number: HPRN-CT-2002-00273 - HARP
The authors would like to thank Joaquim Bruna who suggested this problem. - © Copyright 2007 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 360 (2008), 1377-1390
- MSC (2000): Primary 47B35; Secondary 42A50, 47A63, 47B10, 47B49
- DOI: https://doi.org/10.1090/S0002-9947-07-04185-2
- MathSciNet review: 2357699