Small ball probabilities for Gaussian random fields and tensor products of compact operators
HTML articles powered by AMS MathViewer
- by Andrei Karol’, Alexander Nazarov and Yakov Nikitin PDF
- Trans. Amer. Math. Soc. 360 (2008), 1443-1474 Request permission
Abstract:
We find the logarithmic $L_2$-small ball asymptotics for a large class of zero mean Gaussian fields with covariances having the structure of “tensor product”. The main condition imposed on marginal covariances is the regular behavior of their eigenvalues at infinity that is valid for a multitude of Gaussian random functions including the fractional Brownian sheet, Ornstein – Uhlenbeck sheet, etc. So we get the far-reaching generalizations of well-known results by Csáki (1982) and by Li (1992). Another class of Gaussian fields considered is the class of additive fields studied under the supremum-norm by Chen and Li (2003). Our theorems are based on new results on spectral asymptotics for the tensor products of compact self-adjoint operators in Hilbert space which are of independent interest.References
- Robert J. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes, Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 12, Institute of Mathematical Statistics, Hayward, CA, 1990. MR 1088478
- T. W. Anderson and D. A. Darling, Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes, Ann. Math. Statistics 23 (1952), 193–212. MR 50238, DOI 10.1214/aoms/1177729437
- L. Beghin, Ya.Yu. Nikitin, E. Orsingher, Exact small ball constants for some Gaussian processes under the $L_2$-norm, Zap. Nauchn. Sem. St.-Petersburg. Otdel. Mat. Inst. Steklov (POMI), 298 (2003), 5–21.
- Eduard Belinsky and Werner Linde, Small ball probabilities of fractional Brownian sheets via fractional integration operators, J. Theoret. Probab. 15 (2002), no. 3, 589–612. MR 1922439, DOI 10.1023/A:1016263614257
- M. Š. Birman and M. Z. Solomjak, Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory, American Mathematical Society Translations, Series 2, vol. 114, American Mathematical Society, Providence, R.I., 1980. Translated from the Russian by F. A. Cezus. MR 562305
- M.S. Birman and M.Z. Solomyak, Spectral Theory of Self-adjoint Operators in Hilbert Space. Leningrad University Publishers, 1980 (in Russian). English transl. in: Math. and Its Applic. Soviet Series, 5, Dordrecht, etc.: Kluwer Academic Publishers, 1987.
- M. Sh. Birman and M. Solomyak, On the negative discrete spectrum of a periodic elliptic operator in a waveguide-type domain, perturbed by a decaying potential, J. Anal. Math. 83 (2001), 337–391. MR 1828497, DOI 10.1007/BF02790267
- Jared C. Bronski, Small ball constants and tight eigenvalue asymptotics for fractional Brownian motions, J. Theoret. Probab. 16 (2003), no. 1, 87–100. MR 1956822, DOI 10.1023/A:1022226420564
- René Carmona, Tensor product of Gaussian measures, Vector space measures and applications (Proc. Conf., Univ. Dublin, Dublin, 1977) Lecture Notes in Math., vol. 644, Springer, Berlin-New York, 1978, pp. 96–124. MR 502402
- René Carmona and Simone Chevet, Tensor Gaussian measures on $L^{p}(E)$, J. Functional Analysis 33 (1979), no. 3, 297–310. MR 549116, DOI 10.1016/0022-1236(79)90069-7
- Ching-Hua Chang and Chung-Wei Ha, The Green functions of some boundary value problems via the Bernoulli and Euler polynomials, Arch. Math. (Basel) 76 (2001), no. 5, 360–365. MR 1824255, DOI 10.1007/PL00000445
- Xia Chen and Wenbo V. Li, Small deviation estimates for some additive processes, High dimensional probability, III (Sandjberg, 2002) Progr. Probab., vol. 55, Birkhäuser, Basel, 2003, pp. 225–238. MR 2033891
- Simone Chevet, Un résultat sur les mesures gaussiennes, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 8, A441–A444. MR 428413
- E. Csáki, On small values of the square integral of a multiparameter Wiener process, Statistics and probability (Visegrád, 1982) Reidel, Dordrecht, 1984, pp. 19–26. MR 758997
- Paul Deheuvels and Guennady Martynov, Karhunen-Loève expansions for weighted Wiener processes and Brownian bridges via Bessel functions, High dimensional probability, III (Sandjberg, 2002) Progr. Probab., vol. 55, Birkhäuser, Basel, 2003, pp. 57–93. MR 2033881
- Steffen Dereich, Small ball probabilities around random centers of Gaussian measures and applications to quantization, J. Theoret. Probab. 16 (2003), no. 2, 427–449. MR 1982037, DOI 10.1023/A:1023578812641
- C. Donati-Martin and M. Yor, Fubini’s theorem for double Wiener integrals and the variance of the Brownian path, Ann. Inst. H. Poincaré Probab. Statist. 27 (1991), no. 2, 181–200 (English, with French summary). MR 1118933
- J. Hoffmann-Jørgensen, L. A. Shepp, and R. M. Dudley, On the lower tail of Gaussian seminorms, Ann. Probab. 7 (1979), no. 2, 319–342. MR 525057
- T. Dunker, M. A. Lifshits, and W. Linde, Small deviation probabilities of sums of independent random variables, High dimensional probability (Oberwolfach, 1996) Progr. Probab., vol. 43, Birkhäuser, Basel, 1998, pp. 59–74. MR 1652320
- V. R. Fatalov, Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields, Uspekhi Mat. Nauk 58 (2003), no. 4(352), 89–134 (Russian, with Russian summary); English transl., Russian Math. Surveys 58 (2003), no. 4, 725–772. MR 2042263, DOI 10.1070/RM2003v058n04ABEH000643
- James Allen Fill and Fred Torcaso, Asymptotic analysis via Mellin transforms for small deviations in $L^2$-norm of integrated Brownian sheets, Probab. Theory Related Fields 130 (2004), no. 2, 259–288. MR 2093764, DOI 10.1007/s00440-004-0363-x
- F. Gao, J. Hannig, and F. Torcaso, Integrated Brownian motions and exact $L_2$-small balls, Ann. Probab. 31 (2003), no. 3, 1320–1337. MR 1989435, DOI 10.1214/aop/1055425782
- Fuchang Gao, Jan Hannig, Tzong-Yow Lee, and Fred Torcaso, Laplace transforms via Hadamard factorization, Electron. J. Probab. 8 (2003), no. 13, 20. MR 1998764, DOI 10.1214/EJP.v8-151
- F. Gao, J. Hannig, T.-Y. Lee, and F. Torcaso, Exact $L^2$ small balls of Gaussian processes, J. Theoret. Probab. 17 (2004), no. 2, 503–520. MR 2053714, DOI 10.1023/B:JOTP.0000020705.28185.4c
- Fuchang Gao and Wenbo V. Li, Small ball probabilities for the Slepian Gaussian fields, Trans. Amer. Math. Soc. 359 (2007), no. 3, 1339–1350. MR 2262853, DOI 10.1090/S0002-9947-06-03963-8
- Fuchang Gao and Wenbo V. Li, Logarithmic level comparison for small deviation probabilities, J. Theoret. Probab. 20 (2007), no. 1, 1–23. MR 2297848, DOI 10.1007/s10959-006-0027-0
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, Ont., 1980. Corrected and enlarged edition edited by Alan Jeffrey; Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin]; Translated from the Russian. MR 582453
- Siegfried Graf, Harald Luschgy, and Gilles Pagès, Functional quantization and small ball probabilities for Gaussian processes, J. Theoret. Probab. 16 (2003), no. 4, 1047–1062 (2004). MR 2033197, DOI 10.1023/B:JOTP.0000012005.32667.9d
- N. Henze and Ya. Yu. Nikitin, Watson-type goodness-of-fit tests based on the integrated empirical process, Math. Methods Statist. 11 (2002), no. 2, 183–202. MR 1941315
- I. A. Ibragimov, The probability of a Gaussian vector with values in a Hilbert space hitting a ball of small radius, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979), 75–93, 239, 245 (Russian, with English summary). Investigations in the theory of probability distributions, IV. MR 535459
- A.I. Karol’, A.I. Nazarov, Ya.Yu. Nikitin, Tensor products of compact operators and logarithmic $L_2$-small ball asymptotics for Gaussian random fields, Studi Statistici No.74, Istituto di Metodi Quantitativi, Università L.Bocconi, Milano, July 2003, 30 pp.
- Davar Khoshnevisan, Multiparameter processes, Springer Monographs in Mathematics, Springer-Verlag, New York, 2002. An introduction to random fields. MR 1914748, DOI 10.1007/b97363
- M. L. Kleptsyna and A. Le Breton, A Cameron-Martin type formula for general Gaussian processes—a filtering approach, Stoch. Stoch. Rep. 72 (2002), no. 3-4, 229–250. MR 1897916, DOI 10.1080/10451120290019203
- Thomas Kühn and Werner Linde, Optimal series representation of fractional Brownian sheets, Bernoulli 8 (2002), no. 5, 669–696. MR 1935652
- Wenbo V. Li, Comparison results for the lower tail of Gaussian seminorms, J. Theoret. Probab. 5 (1992), no. 1, 1–31. MR 1144725, DOI 10.1007/BF01046776
- W. V. Li and Q.-M. Shao, Gaussian processes: inequalities, small ball probabilities and applications, Stochastic processes: theory and methods, Handbook of Statist., vol. 19, North-Holland, Amsterdam, 2001, pp. 533–597. MR 1861734, DOI 10.1016/S0169-7161(01)19019-X
- M.A. Lifshits, Asymptotic behavior of small ball probabilities, In: Prob. Theory and Math. Stat., B.Grigelionis et al. (Eds), Proc. VII International Vilnius Conference, VSP/TEV, 1999, 453–468.
- Mikhail Lifshits, Alexander Nazarov, and Yakov Nikitin, Tail behavior of anisotropic norms for Gaussian random fields, C. R. Math. Acad. Sci. Paris 336 (2003), no. 1, 85–88 (English, with English and French summaries). MR 1968908, DOI 10.1016/S1631-073X(02)00013-4
- Harald Luschgy and Gilles Pagès, Functional quantization of Gaussian processes, J. Funct. Anal. 196 (2002), no. 2, 486–531. MR 1943099, DOI 10.1016/S0022-1236(02)00010-1
- Harald Luschgy and Gilles Pagès, Sharp asymptotics of the functional quantization problem for Gaussian processes, Ann. Probab. 32 (2004), no. 2, 1574–1599. MR 2060310, DOI 10.1214/009117904000000324
- David M. Mason and Zhan Shi, Small deviations for some multi-parameter Gaussian processes, J. Theoret. Probab. 14 (2001), no. 1, 213–239. MR 1822902, DOI 10.1023/A:1007833401562
- A. I. Nazarov, On the sharp constant in the small ball asymptotics of some Gaussian processes under $L_2$-norm, J. Math. Sci. (N.Y.) 117 (2003), no. 3, 4185–4210. Nonlinear problems and function theory. MR 2027455, DOI 10.1023/A:1024868604219
- A. I. Nazarov, Logarithmic asymptotics of small deviations for some Gaussian processes in the $L_2$-norm with respect to a self-similar measure, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 311 (2004), no. Veroyatn. i Stat. 7, 190–213, 301 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 133 (2006), no. 3, 1314–1327. MR 2092208, DOI 10.1007/s10958-006-0041-x
- A. I. Nazarov and Ya. Yu. Nikitin, Exact $L_2$-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems, Probab. Theory Related Fields 129 (2004), no. 4, 469–494. MR 2078979, DOI 10.1007/s00440-004-0337-z
- A. I. Nazarov and Ya. Yu. Nikitin, Logarithmic asymptotics of small deviations in the $L_2$-norm for some fractional Gaussian processes, Teor. Veroyatn. Primen. 49 (2004), no. 4, 695–711 (Russian, with Russian summary); English transl., Theory Probab. Appl. 49 (2005), no. 4, 645–658. MR 2142562, DOI 10.1137/S0040585X97981317
- Yakov Nikitin, Asymptotic efficiency of nonparametric tests, Cambridge University Press, Cambridge, 1995. MR 1335235, DOI 10.1017/CBO9780511530081
- A. Papageorgiou and G. W. Wasilkowski, On the average complexity of multivariate problems, J. Complexity 6 (1990), no. 1, 1–23. MR 1048027, DOI 10.1016/0885-064X(90)90009-3
- M. Reed and B. Simon, Methods of Modern Mathematical Physics. V.1: Functional Analysis, New York – London: Academic Press, Inc. XVII, 1972.
- Klaus Ritter, Grzegorz W. Wasilkowski, and Henryk Woźniakowski, Multivariate integration and approximation for random fields satisfying Sacks-Ylvisaker conditions, Ann. Appl. Probab. 5 (1995), no. 2, 518–540. MR 1336881
- Partial differential equations. VII, Encyclopaedia of Mathematical Sciences, vol. 64, Springer-Verlag, Berlin, 1994. Spectral theory of differential operators; A translation of Current problems in mathematics. Fundamental directions. Vol. 64 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 [ MR1033499 (91h:35229a)]; Translation by T. Zastawniak; Translation edited by M. A. Shubin. MR 1313735, DOI 10.1007/978-3-642-57876-2
- Eugene Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MR 0453936
- G.N. Sytaya, On some asymptotic representations of the Gaussian measure in a Hilbert space, In: Theory of Stochastic Processes, Kiev, 2 (1974), 93–104 (in Russian).
- Aad W. van der Vaart and Jon A. Wellner, Weak convergence and empirical processes, Springer Series in Statistics, Springer-Verlag, New York, 1996. With applications to statistics. MR 1385671, DOI 10.1007/978-1-4757-2545-2
- G. S. Watson, Goodness-of-fit tests on a circle, Biometrika 48 (1961), 109–114. MR 131930, DOI 10.1093/biomet/48.1-2.109
- Hermann Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479 (German). MR 1511670, DOI 10.1007/BF01456804
- V.M. Zolotarev, Gaussian measure asymptotics in $l_2$ on a set of centered spheres with radii tending to zero, In: 12th Europ. Meeting of Statisticians, Varna, 1979, 254.
- V. M. Zolotarev, Asymptotics of a Gaussian measure in $l_2$, Stability problems for stochastic models (Russian) (Moscow, 1984) Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow, 1984, pp. 54–58 (Russian). MR 859211
Additional Information
- Andrei Karol’
- Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetski pr., 28, St. Petersburg, 198504, Russia
- Email: karol@ak1078.spb.edu
- Alexander Nazarov
- Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetski pr., 28, St. Petersburg, 198504, Russia
- MR Author ID: 228194
- Email: an@AN4751.spb.edu
- Yakov Nikitin
- Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetski pr., 28, St. Petersburg, 198504, Russia
- Email: yanikit47@mail.ru
- Received by editor(s): April 24, 2005
- Received by editor(s) in revised form: November 22, 2005
- Published electronically: October 23, 2007
- Additional Notes: The authors were partially supported by RFBR Grant 04-01-00716.
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 360 (2008), 1443-1474
- MSC (2000): Primary 60G15; Secondary 60G60, 47A80
- DOI: https://doi.org/10.1090/S0002-9947-07-04233-X
- MathSciNet review: 2357702